The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
	The Data	The Data Linear Regression Modelling 00000 0000	The Data Linear Regression Modelling Generalized Additive Models 00000 0000 000000

A Corpus Analysis of Frequency Effects on Eye-Movements in Sentence Context

Philip Dilts¹ Gary Libben^{1,2} Harald Baayen¹

1-University of Alberta

2-University of Calgary

American Association for Corpus Linguistics Conference, 2009

The Story

• Do frequency effects disappear in sentence context?

2 The Data

- The Dundee Corpus
- Types of Predictor Variables
- Exploring the Predictors
- 3 Linear Regression Modelling
 - A Large Model
 - A Useful Model
 - A Better Model
- 4 Generalized Additive Models
 - Why GAMs
 - The Best Model

5 Conclusions

The Story	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions

The Story

・ロト ・回ト ・ヨト

< ∃ >

The Story ●○	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Stor Do frequency	∩ y ∕ effects disa∣	opear in sentence context?		

• We know a lot about how people process words presented one at a time, but what happens in context?

▲□ ► ▲ □ ►

3.1

The Story ●○	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Stor Do frequency	ry / effects disap	opear in sentence context?		

- We know a lot about how people process words presented one at a time, but what happens in context?
- Van Petten and Kutas (1990) looked at the effects of word frequency on the N400 event-related brain potentials
 - Word frequency had no effect later in the sentence.

The Story ●○	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Stor Do frequency	ry / effects disap	opear in sentence context?		

- We know a lot about how people process words presented one at a time, but what happens in context?
- Van Petten and Kutas (1990) looked at the effects of word frequency on the N400 event-related brain potentials
 - Word frequency had no effect later in the sentence.
- That's crazy!

The Story ●○	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Stor Do frequency	Y v effects disap	pear in sentence context?		

- We know a lot about how people process words presented one at a time, but what happens in context?
- Van Petten and Kutas (1990) looked at the effects of word frequency on the N400 event-related brain potentials
 - Word frequency had no effect later in the sentence.
- That's crazy!
- The frequency effect is everywhere!

The Story ●○	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Stor Do frequency	'Y v effects disap	pear in sentence context?		

- We know a lot about how people process words presented one at a time, but what happens in context?
- Van Petten and Kutas (1990) looked at the effects of word frequency on the N400 event-related brain potentials
 - Word frequency had no effect later in the sentence.
- That's crazy!
- The frequency effect is everywhere!
- Maybe later in a sentence, context is more important than word properties?

The Story ●○	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Stor Do frequency	r y / effects disap	pear in sentence context?		

- We know a lot about how people process words presented one at a time, but what happens in context?
- Van Petten and Kutas (1990) looked at the effects of word frequency on the N400 event-related brain potentials
 - Word frequency had no effect later in the sentence.
- That's crazy!
- The frequency effect is everywhere!
- Maybe later in a sentence, context is more important than word properties?
- Can we test this using a corpus of eye-tracking?

The Story ○●	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Stor Do frequency	r y / effects disap	pear in sentence context?		

- Eye movement is affected by frequency
 - Readers spend longer looking at less frequent words
- Does this effect disappear at the end of a sentence?
- We can use the Dundee corpus to investigate
- We make and compare statistical models:
 - Trying to predict how long people first look at each word (first fixation duration)
 - Using models of two different types (Linear Models and GAMs)
- Does adding a frequency-by-sentence-position interaction help us predict this duration?

- 4 回 ト 4 ヨ ト 4 ヨ ト

The Story ○●	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Sto	ry / effects disap	pear in sentence context?		

- Eye movement is affected by frequency
 - Readers spend longer looking at less frequent words
- Does this effect disappear at the end of a sentence?
- We can use the Dundee corpus to investigate
- We make and compare statistical models:
 - Trying to predict how long people first look at each word (first fixation duration)
 - Using models of two different types (Linear Models and GAMs)
- Does adding a frequency-by-sentence-position interaction help us predict this duration?
- In short, No. Frequency effects don't go away or get smaller.

(4 回) (4 回) (4 回)

The Story	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusion

The Data

臣

The Story	The Data ●○○○○	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Da	ata ee Corpus			

- The Dundee Corpus of Eye-movement data Kennedy et al. (2003)
- 10 native English speakers in Dundee, Scotland
- Each read 20 editorials from The Independent newspaper
- Editorials were presented on 40 screens of 5 lines each
- Some sentences were split across two screens

The Story	The Data ○●○○○	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Da	ata /ariables			

- 10 predictors considered
 - 4 measures of word properties:
 - $\bullet \ {\rm COBLOG} \ {\rm Log-transformed} \ {\rm CELEX} \ {\rm word-form} \ {\rm frequency}$
 - $\bullet~\mathrm{WL_{EN}}$ Length of the current word in characters
 - $\bullet~{\rm POSTMARKS}$ Punctuation marks following the word
 - $\bullet~\mathrm{PreMarks}$ Punctuation marks preceding the word
 - 6 measures of context and position:
 - $\bullet~{\rm POSOnLINEInCHARS}$ How far right on a line the word is
 - $\bullet~\mathrm{PosInText}$ How far along in the text the word is
 - $\bullet~\mathrm{PosOnScreen}$ How far along in the screen the word is
 - $\bullet~\mathrm{AbsPosInSent}$ How far along in the sentence the word is
 - $\bullet~{\rm SentLength}$ Length of the current sentence
 - SENTALLONESCREEN Is sentence all on one screen?
 - Collinearity is high (condition number 23) but not fatally high
- Dependent variable: First Fixation Duration

(4月) (1日) (日)

The Story	The Data ○○●○○	Linear Regression Modelling	Generalized Additive Models	Conclusions
The Da Exploring t	ata :he Predictors			

- Look at each predictor's relationships with fixation duration
- For example....

イロト イポト イヨト イヨト

Predictor Variables Exploring the Predictors

500

The Story	The Data ○○○○●	Linear Regression Modelling	Generalized Additive Models	Conclusions
Predicto Exploring th	or Variable e Predictors	es		

- \bullet The average line for $\operatorname{POSONSCREEN}$ looked curvy
 - (POSONLINEINCHARS, WLEN and COBLOG do too)
 - We'll model those 4 predictors with cubic splines
- We also consider every possible 2-way interaction between predictors
 - Our main question is about an interaction! (Sentence position × Frequency)

・ 同下 ・ ヨト ・ ヨト

The Story	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions

Linear Regression Modelling

同下 イヨト イヨト

 The Story
 The Data
 Linear Regression Modelling
 Generalized Additive Models
 Conclusions

 Linear Regression
 Modelling
 Additive Models
 Conclusions

 Linear Regression
 Modelling
 A Large Model
 Conclusions

- Linear modelling using ordinary least squares regression (ols in R)
- Large initial model:
 - All 10 predictors, 6 straight and 4 curvy
 - 39 2-way interactions (interactions between curvy predictors are too hard)
- Use fast backwards elimination (fastbw) to cut out non-significant or inefficient predictors

イロト イポト イヨト イヨト

- New model with only the factors remaining after fastbw
- 10 of the original 49 predictors remain:
- 6 single predictors, 4 interactions
- Our variables of interest:
 - Frequency is a significant predictor (*p* < .0001)
 - Position in sentence is NOT a significant predictor! (p appx. 0.2)
 - But, the sentence-position by sentence-all-on-one-screen interaction IS significant (*p* < .0001)
 - Here's what the interaction looks like:

イロト イポト イヨト イヨト

4 ∰ ≥ 4 ∃

-

 The Story
 The Data
 Linear Regression Modelling
 Generalized Additive Models
 Conclusions

 Linear Regression Modelling
 Abetter Model
 Modelling
 Conclusions

- Let's cut out split-screen sentences and words with punctuation
 - We shouldn't expect them to be typical
 - They participate in all interactions in the model!
- Let's use at a better modelling tool, too...

・ロト ・ 一下・ ・ ヨト

Image: A matched and and a matched and an

 The Story
 The Data

 00
 00000

Linear Regression Modelling

Generalized Additive Models

・ロト ・回ト ・ヨト ・ヨト

臣

Generalized Additive Models

Dilts Libben Baayen Frequency effects in sentence context

The Story

The Data 00000 Linear Regression Modelling

Generalized Additive Models

イロト イポト イヨト イヨト

Conclusions

Generalized Additive Models Why GAMs?

- Two advantages of Generalized Additive Models:
 - They choose how curvy the predictors are for you
 - Arbitrary "Smooth functions" of the dependent variables instead of splines
 - They can look at interactions between two curvy predictors
 - For example...

 The Story
 The

 00
 0000

The Data

Linear Regression Modelling

Generalized Additive Models ○●○○○○ Conclusions

< ∃⇒

Generalized Additive Models Why GAMs?

The Story	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
Cenera	lized Add	litiva Models		

General	lized	Add	litive	Mo	dels
The Best N	/lodel				

Predictor	Estimated	F	Р
	degrees of freedom		
s(PosInText)	3.1	3.357	0.01
s(WLen)	5.4	6.397	1.15 x 10-6
s(CobLog)	8.6	45.454	$< 2.0 \text{ x} 10^{-16}$
s(AbsPosInSent)	4.5	8.742	2.44 x810-6
te(PosOnLineInChars,PosOnScreen)	21.2	85.529	$< 2.0 \text{ x} 10^{-16}$
Total R-so	quared for thi	s model:	9.98%

- (te(,) is a way of investigating interactions)
- Frequency (CobLog) and sentence position are very significant!
- What if we add their interaction?

イロト イポト イヨト イ

The StoryThe DataLinear Regression00000000000

Linear Regression Modelling

Generalized Additive Models

イロト イポト イヨト イヨト

Conclusions

Generalized Additive Models The Target Model

Predictor	Estimated	F	Р
	degrees of freedom		
s(PosInText)	3.1	3.331	0.01
s(WLen)	5.4	5.984	3.35 x 10-6
te(AbsPosInSent, CobLog)	7.6	52.497	$< 2.0 \text{ x} 10^{-16}$
te(PosOnLineInChars, PosOnScreen)	21.2	85.240	$< 2.0 \text{ x} 10^{-16}$
Total R-se	quared for thi	s model:	9.95%

- The interactive term is significant
- ... but it replaced two significant factors
- Does the interaction make the MODEL better?

Predictor	Estimated	F	Р
	degrees of		
	freedom		
s(PosInText)	3.1	3.357	0.01
s(WLen)	5.4	6.397	1.15 x 10-6
s(CobLog)	8.6	45.454	$< 2.0 \text{ x} 10^{-16}$
s(AbsPosInSent)	4.5	8.742	2.44 x810-6
te(PosOnLineInChars,PosOnScreen)	21.2	85.529	$< 2.0 \text{ x} 10^{-16}$
Total R-se	quared for thi	s model:	9.98%
Predictor	Estimated	F	р
	degrees of		*
	freedom		
s(PosInText)	3.1	3.331	0.01
s(WLen)	5.4	5.984	3.35 x 10-6
te(AbsPosInSent, CobLog)	7.6	52.497	$< 2.0 \text{ x} 10^{-16}$
te(PosOnLineInChars, PosOnScreen)	21.2	85.240	$< 2.0 \text{ x} 10^{-16}$
Total R-s	quared for thi	s model:	9.95%

The Story T

The Data

Linear Regression Modelling

Generalized Additive Models

イロト イポト イヨト イヨト

Conclusions

Generalized Additive Models Comparing Models

- The higher R-squared means more predictive power
- The model WITH the interaction has LESS power
- The AICs tells us that it is slightly less EFFECIENT, too: with interaction: AIC = 335,644 without interaction: AIC = 335,640

The Story	The Data	Linear Regression Modelling	Generalized Add

・ロト ・日下・ ・ ヨト

< ∃ >

臣

Conclusions

Dilts Libben Baayen Frequency effects in sentence context

The Story	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
Conclusi	ons			

- Frequency effects on eye movement DO NOT go away later in a sentence
 - Linear regression model shows no significant interaction
 - Generalized additive models get worse if we add an interaction
- Context plays a role in word reading, but not the only role

Selected References

- A Few References
 - ERP Study:

Van Petten, C. and Kutas, M. (1990). Interactions between sentence context and word frequency in event-related brain potentials. Memory and Cognition 18(4), 380-393.

- Some frequency effects: J Bybee, P Hopper - Frequency and the emergence of linguistic structure, 2001.
- Dundee Corpus:

Kennedy, A., Hill, R., and Pynte, J. (2003). The Dundee corpus. Poster presented at ECEM12: 12th European Conference on eye movements., Dundee, August 2003.

 Linear Modelling of Linguistic Data: Baayen, R. H. (2007). Analyzing Linguistic Data: A practical introduction to statistics using R. Cambridge: Cambridge University Press.

◆□> ◆舂> ◆注> ◆注> 注

 Generalized Additive Modelling: Wood, S. N. (2006). Generalized additive models: An introduction with R. Chapman and Hall CRC Press.

The Story	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions
Conclusi	ons			

- Frequency effects on eye movement DO NOT go away later in a sentence
 - Linear regression model shows no significant interaction
 - Generalized additive models get worse if we add an interaction
- Context plays a role in word reading, but not the only role

The Story

The Data

Linear Regression Modelling

Generalized Additive Models

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

E

Conclusions

Factors in useful linear model

Factor	t (linear)	p (linear)	F (non-lin.)	p (non-lin.)	F(all)	p (all)
PostMarks	5.96	2.57 x 10 ⁻⁹			12.8	< .0001
SentAllOneScreen	-4.04	5.26 x 10 ⁻⁵			24.1	< .0001
AbsPosInSent	1.29	0.196			15.2	< .0001
PosOnLineInChars	-2.14	0.033	99.67	< .0001	69.2	< .0001
PosOnScreen	5.76	8.43 x 10 ⁻⁹	108.67	< .0001	122.8	< .0001
CobLog	-13.43	0.000	11.21	< .0001	127.7	< .0001
WLen	-0.38	0.704	4.21	.0149	26.4	< .0001
SentAllOneScreen * AbsPosInSent	-4.25	2.18 x 10 ⁻⁵			18.0	< .0001
PostMarks * PosOnLineInChars	-1.23	0.22	26.42	< .0001	17.6	< .0001
SentAllOneScreen * PosOnLineInChars	7.36	5.44 x 10 ⁻¹²	26.16	< .0001	35.5	< .0001
PostMarks * CobLog	-3.50	$4.72 \ge 10^{-4}$	2.43	0.0880	9.9	< .0001
č	Total R-squared for this model: 7.82%					

 The Story
 The Data
 Linear Regression Modelling
 Generalized Additive Models

 00
 00000
 00000
 000000

Conclusions

Smooth 1-d predictors in Best GAM

Dilts Libben Baayen

CobLog

AbsPosInSent
Frequency effects in sentence context

문 > 문

The Story	The Data	Linear Regression Modelling	Generalized Additive Models	Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで