Towards the Unsupervised Learning of Parts of Speech

Simon Fung
University of Alberta
AACL 2009

POS-Tagging

- Hand-tagging
- Transformational taggers
 - e.g. Brill tagger
- Supervised learning
 - e.g. HunPOS
- Unsupervised learning
 - e.g. Ravi & Knight (2009)
- Unsupervised POS induction

POS-Tagging

- Hand-tagging
- Transformational taggers
 - e.g. Brill tagger
- Supervised learning
 - e.g. HunPOS
- Unsupervised learning
 - e.g. Ravi & Knight (2009)
- Unsupervised POS induction

Questions

- Ideas about POS various and vague
- What determines POS?
 - context? what kind of context?
 - function words? morphology?
 - semantics?
- How well do words conform to POS in a language?
 - dense clusters?
 - how many rebels?

Goal

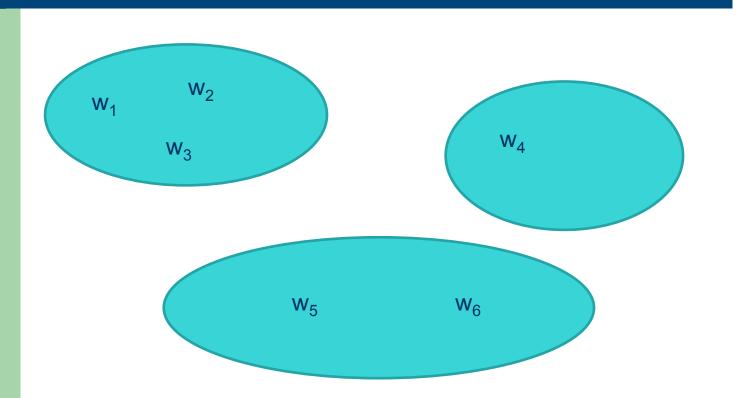
- improved unsupervised learning algorithm for POS
 - language-independent
 - incorporate morphology and syntactic context
 - semantics?
- currently: evaluate existing algorithms on non-Indo-European languages
 - so far: Lushootseed, Tagalog

- several algorithms developed
 - Clark (2003) least work to run
- both distributional & morphological info
- K-means clustering

- initialize k clusters
- maximize:

```
P(word | prev. word) = dictionary grammar
P(word | category(word)) *
P(category(word) | category(prev. word))
```

move each word to cluster that maximizes function



Corpora

- Lushootseed (Salishan)
 - 23,625 words
 - elicited stories (field work by Thom Hess)
- Tagalog (Austronesian)
 - 1,870,568 words
 - from Wikipedia
- both languages have disputed distinctions between nouns and verbs

Extracting from Wikipedia

- Parser available from PediaPress
 - Python library (mwlib)
 - writing your own parser not recommended
 - mwlib still not perfect, but final clean-up manageable (albeit tedious)
- text in other languages mixed in
 - e.g. English text in Tagalog articles
- advantage: free corpora available in different languages!

Evaluation

- Clark (2003) suggested 3 ways:
 - manual evaluation
 - conditional entropy of learned classes given pre-labeled POS
 - lower entropy = less surprise
 - perplexity of data based on bigram language model from learned classes
 - lower perplexity = less surprise

Evaluation

(see tables)

Evaluation

8	32	64	128
263.154	346.391	359.12	440.215
	670 692	570 292	515.621
	263.154	263.154 346.391	263.154 346.391 359.12

- drawbacks:
 - bigrams provide limited context
 - no difference between function and content words
 - syntactic vs. semantic clustering
 - limited morphological analysis
 - no recognition of morphological paradigms

Sketch of algorithm

- most frequent N words as function words
- contexts: one function word on each side
 - e.g. The second sort of information →
 the _ sort of
- cluster content words by prob. distr. of contexts
 - can "see" layout of words in context space
 - cluster without specifying num. of clusters?
- then use content words to cluster function words
- morphological paradigms
 - can be as important than syntactic contexts

Issues

- one word, several POS (conversion)
 - e.g. swim, run, walk
- homography
 - e.g. bear, saw
- not easy, but oh, the glory . . .

References

• Clark, Alexander. Combining distributional and morphological information for part of speech induction. In *Proceedings of the tenth Annual Meeting of the European Association for Computational Linguistics (EACL)*, pages 59-66, 2003.