Agreeing with Google: We are Sensitive to the Relative Corpus Frequency of n-grams.

Cyrus Shaoul & Chris Westbury University of Alberta, Dept. Of Psychology Harald Baayen University of Alberta, Dept. Of Linguistics

Why a psychology of n-grams?

- There may be parallels between the morpheme/ word relationship and the word/n-gram relationship.
- Storage is ubiquitous (for inflected and derived words, and perhaps for some n-grams too).
- May allow us to better understand the process of lexicalization.
- May offer a better way of understanding semantic processing of sentences.

Classical Orthographic Freq.

- For words: a very strong predictor of speed and accuracy in word comprehension and production.
- If we are so sensitive to a word's frequency, why not to an n-gram's frequency?
- Subjective Frequency is related to Objective/ Corpus Frequency. Both are estimates of our experience with words.

Extending Subjective Frequency to n-grams

- Collected ratings on the subjective frequency of ngrams.
- groups of 150 undergraduates to rate 120 ngrams each.
- Measured the mean rating and the standard deviation of the ratings for each n-gram.

Second: please rate how frequently the phrases below are used. A rating of *almost never* means that the phrases are used very rarely. A rating of *very often* means that the phrase is used very frequently.

	almost never			about average			very often
be able	0	0	0	0	0	0	0
can be used	0	0	0	0	0	0	0
umbilical cord	0	0	0	0	0	0	0
is part of the	0	0	0	0	0	0	0
serve as a guide to	0	0	0	0	0	0	0
	almost			about			very
	never			average			often
hip and stylish	0	0	0	0	0	0	0
safer to keep it here	0	0	0	0	0	0	0

Sanity Check

- Inter-rater variability was within reason for each item (1-2 points standard deviation for all items).
- Zero-frequency n-grams were rated appropriately.

Subjective Vs. Objective Frequency

- Is subjective n-gram frequency (familiarity) correlated with objective n-gram frequency?
- Previous work with single words is compelling (Balota, Pilotti & Cortese, 2001): Log Freq and meaningfulness were correlated with familiarity. (Celex vs. Subjective Familiarity, r=0.83)

Subjective frequency Rating

Getting at implicit frequency effects: the n-gram comparison task

Hypothesis: The ratio of the frequencies of the two n-grams will influence the ability of subjects to predict the n-gram's Google frequency. The larger the ratio, the easier it will be to detect the difference, and therefore the more accurate the decisions will be.

First up: Unigrams

- Stimuli: I 20 pairs of words, matched on OLD20 (Yarkoni & Balota, 2008) and length (4, 5 or 6 letters), with a even spread across the range of frequency ratios.
- 33 right handed undergraduates from U of A Psychology Dept. Research Pool, all native English speakers.

Statistical Inference

Due to the nature of the design (within subjects, fully crossed items) we used Linear Mixed Effects Models to model the accuracy (Ime4 package in R using a generalized linear mixed model for the binomial dependent variable).

tooth

+

alert

100 Incorrect Correct ltem 80 accuracy for I-60 Percent Correct 40 grams 20 0 Above.38 Nine.To.ThirtyEight Three.to.Nine Under.Three

Accuracy by Ratio of Ngram Frequency for unigrams

Size of Ratio

Plots of relationship from Linear Mixed Effects model for Google Web I T frequencies

Next: 2,3,4 and 5-grams

- Stims: 2, 3, 4 and 5-grams sampled from the Google
 WebIT data set based on n-gram frequency.
 - Pairs were matched on the geometric mean of the individual word frequencies.
 - Distributed across a broad range of geometric means and n-gram frequency ratios.
 - Subject Variables: Age, Education, Gender, Reading Speed, Vocabulary Size
- Participants: 49 right handed undergraduates from U of A Psychology Dept Research Pool, all native English speakers.

Sample 2-gram Stimuli

N-gram	n-gram Freq	Word I Freq	Word 2 Freq	Geom. Mean
metric tons	0.61	4.38	8.68	I.5
inner workings	0.26	11.48	1.22	I.5
N-gram Freq Ratio	2.3			

More sample stimuli

3-gram: <u>dubious scientific value</u> vs. <u>long curly hair</u> (N-gram Frequency Ratio= 41.8)

4-gram: <u>played a central role</u> vs. <u>making false statements in</u> (N-gram Frequency Ratio= 10.7)

5-gram: <u>the first step in the</u> vs. <u>and can be used for</u> (N-gram Frequency Ratio= 0.8)

motor vehicle

heart disease

Size of Ratio

you will find

+

feel free to

Accuracy by Ratio of Ngram Frequency

Size of Ratio

in court was a

starting in the new

Accuracy by Ratio of Ngram Frequency for 4grams

Size of Ratio

gave birth to a beautiful

+

help you organize your home

Accuracy by Ratio of Ngram Frequency for 5grams

Plots of relationship from Linear Mixed Effects model for Google Web I T n-gram frequencies

Plots of relationship from Linear Mixed Effects model for subjective ratings

Conclusions

- The subjective corpus frequency of n-grams can predict the likelihood of choosing the higher frequency n-gram.
- Lexical frequency of words in the n-gram are not driving performance.
- Implicit knowledge of the relative frequency of n-grams exists, and it is correlated with corpus frequency.

Questions to look into...

- How might n-gram frequency be represented?
- Are n-grams similar to words in other ways besides frequency effects?
- How are zero frequency n-grams processed?
- What impact does n-gram frequency have on production tasks?

Thank you!