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Productivity of forest tree plantations can be maximized by matching genetically adapted planting stock
to environments where they perform best. We used multivariate regression tree (MRT) analysis with
environmental predictors to quantify and characterize the nature of genotype by environment interac-
tions (G x E) of radiata pine diameter at breast height (DBH) grown in New Zealand. The analysis was car-
ried out for 21 provenance trials, and 48 progeny trials of second-generation selections that are widely
used in plantation forestry today. To quantify the maximum variance explained by G x E, we used uncon-
strained clustering of genotypes based on their performance across all sites. Subsequently, the clustering
was constrained by climate and soil variables, i.e. the putative causes for G x E. Unconstrained clustering
explained 62% and 58% of the observed G x E variance in provenance and progeny trials, respectively.
Constrained clustering explained approximately 50% and 25% of the G x E variance in provenance and
progeny trials, respectively. Minimum temperature was identified as an important driver of G x E in both
provenance and progeny trials. Environments can be grouped into warm humid sites, where most
second-generation selected genotypes performed better, and cold sites, where specific genotypes per-
formed best. Based on the progeny trials, only marginal (ca. 3%) gains can be made by targeted deploy-
ment to warm humid sites, but more substantial (approx. 20%) genetic gain can be made on cold sites,

Keywords:

Pinus radiata

Multivariate regression trees
Genotype by environment interaction
Climate variables

Soil variables

compared to current deployment strategies.
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1. Introduction

Commercial plantations of radiata pine (Pinus radiata D. Don)
are the basis for forest industry in New Zealand, and likewise are
also important in Australia and Chile. Over the past five decades,
radiata pine resources have been expanded and consolidated as a
major provider of domestic and export solid-wood and pulp prod-
ucts. This has largely been achieved through long-term invest-
ments in tree breeding and silviculture. Significant progress has
been made in understanding the genetic control of growth, form
and wood quality traits of radiata pine. Based on data from genetic
field trials, substantial gains of up to 32% in volume have been
achieved (Mead, 2013, Table 6.3). However, an important obstacle
to the realization of this genetic gain in commercial plantations lies
in suboptimal matching of selected germplasm to varied environ-
ments of different regions and planting sites within regions. The
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New Zealand Radiata Pine Breeding Company (RPBC) programme
aims to breed and provide germplasm for deployment across
New Zealand, the Central and Southern Tablelands of New South
Wales and Tasmania in Australia (Cullis et al., 2014). At present,
RPBC produces a single set of breeding values for each trait.
These breeding values are calculated including data from all avail-
able test sites, making the assumption that genotype by environ-
ment interaction (G x E) is not important.

Genotype by environment interaction (G x E) is a phenomenon
in which different genotypes respond differently to variations in
environment. It can consist of heterogeneous genetic variances
across environments, and/or genetic correlations between expres-
sions of a trait in different environments being low with changes of
genotype rankings. The options that are available when dealing
with G x E depend upon the predictability of the role of environ-
ment in generating G x E (Kang, 2002). The environments in which
radiata pine grows in New Zealand have some predictable compo-
nents and it is possible to exploit G x E. Johnson and Burdon,
(1990), in a study of radiata pine in the New Zealand regions of
Northland were able to select families for which regionalisation
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improved predicted genetic gain to 25% as compared to 22% from
non-regionalisation. Carson (1991) also found an increase in
expected genetic gain for diameter through regionalisation of seed
orchards from 11.2% for a non-regionalised programme to 14.4%
for a site-specific selection. It should be noted, however, that
Johnson and Burdon’s (1990) study included only four sites,
whereas Carson (1991) reported findings from 11 sites with pro-
geny derived from a set of just 25 parents. As a result, the conclu-
sions drawn from these studies are probably insufficient to
discount the need for regionalisation. Burdon et al. (1997) investi-
gated the relative performance of three provenances from
California and three land races across 21 sites throughout New
Zealand. Strong differences among sources in their relative perfor-
mance on different site categories were reported. A recent large
G x E study by McDonald (2009) reported that genetic correlations
for diameter at breast height growth between sites averaged 0.50.
The study also reported evidence for heterogeneous genetic vari-
ances (i.e. level of expression) for diameter growth across different
regions in New Zealand.

For multi-site progeny trials in forestry, site-site genetic corre-
lations (also called type-B genetic correlations) were usually esti-
mated using linear mixed models (Burdon, 1977). Since 1980s,
Singular Value Decomposition (SVD) was employed to describe
G x E patterns (Gauch, 1992), initially applied for agronomic crops
using Additive Main effects and Multiplicative Interaction model
(AMMI), and later on in forestry trials (Wu and Ying, 2004). More
recently, factorial regression using a mixed model approach
(Factor Analytic method) was introduced to explore G x E patterns
for multi-environment trials (Smith et al., 2001; Costa e Silva et al.,
2006; Beeck et al., 2010; Cullis et al., 2010) and to relate underlying
factors to the causes of G x E interactions (Costa e Silva et al., 2006;
Cullis et al., 2010; Hardner et al., 2011; Cullis et al., 2014). Beside
linear and non-linear fixed and mixed models using parametric
approaches to decompose the G x E interactions, Multivariate
Regression Trees (MRT) are a method to analyse G x E that can also
handle categoric as well as ordinal environmental variables
(Sheaves et al., 2007; Chen et al., 2010; Hamann et al., 2011). The
method has been originally developed for ecological research, to
analyze interactions between environmental variables and species
abundance in ecological communities (De’ath, 2002; Larsen and
Speckman, 2004). The method is a recursive binary partitioning
algorithm that assigns objects of the response matrix (species in
inventory plots, or genotypes in genetic test plantations) to
homogenous groups, with partition criteria being sourced from a
separate data matrix (environmental variables for each site or
plot).

In the present study, we explore whether multivariate regres-
sion tree analysis can be applied to identify and quantify environ-
mental drivers of G x E in radiata pine grown in New Zealand. We
first re-analyze archival data from previously published work
(Burdon et al., 1997) which found strong G x E across a wide range
of test environments, to investigate if the technique can reliably
replicate these results using a recursive algorithm to identify the
primary environmental drivers of G x E. Second, we applied the
MRT analysis to a large data set from 48 second- and
third-generation radiata pine progeny trials established by the
RPBC, with some of the genotypes in these trials widely deployed
in New Zealand for commercial plantation forestry. The main
objective of this paper is to investigate if we can identify environ-
mental drivers of G x E that could be translated into straightfor-
ward guidelines to plant particular sets of genotypes under
different planting-site environments. Lastly, this study contributes
a broad comparison of how unimproved provenances or land races
(Burdon et al., 1997) compare to genetically improved second- and
third-generation selections (RPBC material) in their response to
different environments.

2. Materials and methods
2.1. Radiata pine provenance trial data

Twenty-one provenance trials planted across New Zealand pro-
vide the experimental basis for the first part of this study, site
information being provided in Table 1. Seventeen trials repre-
sented provenances as 6-tree row plots with 12 replicates in ran-
domized complete blocks. At the sites Pouto, Riverhead, Rotoehu,
and Kaingaroa, 6 x 6-tree plots with 10 replicates were used, and
6 x 6-tree plots with five replicates were used at the sites
Berwick and Longwood. Tree spacing varied among trials with 16
trials with a typical spacing of 4 x 3 m (see Table 1 for details).

Three seed origins from California, as well as three land races of
naturalized New Zealand sources were planted at all provenance
trials. California collections of radiata pine (Eldridge, 1978)
included an average of 40 seed parents from each of 13 local sub-
populations but are analyzed here as three main populations Afio
Nuevo (four localities), Monterey (six localities) and Cambria
(three localities). The breakdown into subpopulations was disre-
garded, as previous studies reported subpopulation differences
being negligible (Burdon et al, 1992, 1997; Raymond and
Henson, 2009). The three regional land-race stocks, Kaingaroa,
Nelson and Southland were collected mostly from select-trees
found in unimproved stands (Burdon et al., 1997). The landrace
seedlots were representative of 15 stands in Kaingaroa, six in
Southland, and one large commercial stand in Nelson (Burdon
et al., 1997). For simplicity, we refer to all genetic entries as
provenances.

Assessments were carried out when provenance plantations
reached 7-10 m in height, which varied among sites and led to
measurements being carried out between 5 and 15 years (Burdon
et al., 1997). Diameter at breast height (DBH) was chosen as the
variable to study because it has two advantages: (i) having been
measured with good precision throughout, and (ii) often DBH is
more sensitive to maladaptation than height growth (e.g., Rais
et al.,, 2014). DBH data had already been subjected to spatial
adjustments where possible, as in Gapare et al. (2012) for microsite
differences to reduce residual error as recommended by Costa e
Silva et al. (2001) and Dutkowski et al. (2002, 2006). To standardize
measurements from different ages and different site types, we sub-
tracted the mean of individual-tree DBH in cm at each test site and
divided by the test site standard deviation, so that each
individual-tree DBH is expressed in units of standard deviations
from a site mean of zero. Best Linear Unbiased Estimates (BLUEs)
were obtained for each provenance and site, treating provenances
as fixed effects using the software ASReml (Gilmour et al., 2009).
We note here, that standard errors were slightly larger for the land
races (0.14-0.15) than for the Californian origins (0.09-0.10), for
standardized BLUEs that ranged from —0.82 to +0.82. However,
this should not influence the G x E analysis presented in this paper
other than producing a residual error variance.

2.2. Radiata pine progeny trial data

The second dataset we used in this study contains 48 field trials
of the RPBC. The trial design was in most cases, randomized com-
plete block designs, with two trials having incomplete blocks. Most
trials were planted with restricted randomization of families in
disconnected sets that were randomised in main plots within repli-
cates, and then families were randomized within sets. The num-
bers of plots, blocks, family-sets-in-blocks and parents varied
among trials and are provided in Table 2. Thirty-three trials con-
tained controlled-pollinated (CP) families and the remaining 15
contained open-pollinated (OP) families.
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Table 1

Location, spacing, and environmental variables identified as relevant by the regression tree analysis for the radiata pine provenance trials series in New Zealand.

Trial name Spacing Latitude Longitude Elevation MAP MinTCM Soil type “Burdon et al. (1997) site cate-
(m x m) (°S) (°E) (masl) (mm) (°C) gories
Aupouri 4x3 34°45' 173°00/ 30 1207.3 8.9 Coastal sand 2
Balmoral 4x3 42°50' 172°45' 170 624.2 20 Fluvial gravel 5
Berwick 4x3 46°00/ 170°00 520 774.0 0 Schist loess 5
Dean 4x3 46°00 167°30 200 775.0 -0.5 Schist loess 5
Golden 4x3 41°35’ 172°45’ 300 1490.6 0.5 Weathered fluviogravel 4
downs
Kaingaroa 4x4 38°40 176°45’ 560 1326.9 1.1 Pumice 3
Kaniere 4x3 42°45' 171°05 220 2976.9 2.1 Bladed podzol NC
Longwood 3x3 46°17' 167°40 250 774.0 0.7 Schist loess 5
Mangaokewa 4 x 3 38°35 173°20 270 1736.5 2.7 Fine volcanic ash 3
Mohaka 4x3 39°17 177°00 420 1279.5 4.1 60 cm pumice over 4
mudstone
Nemona 45 %3 42°35' 171°10 200 2829.0 2.7 Bladed podzol NC
Ngaumu 4x3 41°06 176°15’ 280 12429 3.0 Fertile clay (mudstone) 4
Pouto 3.5x%x3.5 36°33/ 174°05 50 11383 6.9 Coastal sand 2
Riverhead 33x3 36°50 174°35’ 100 1418.3 6.5 Gumland clay 1
Rotoehu 4x4 38°00 176°35’ 150 2162.3 3.0 Pumice 3
Ruatoria 4x3 37°45 178°55’ 180 2015.9 5.0 Fertile loam 4
Mahana 4x3 41°26' 173°05’ 80 11135 1.4 Weathered fluvioglacial 1
gravel

Waimate 4x3 44°58' 170°55’ 620 732.4 -29 Greywacke loess 5
Waimihia 4x24 38°50 176°15 760 1561.2 0.5 Pumice 3
Wairau 4x3 41°30' 173°30 325 1641.3 0.3 Schist-derived loam 4
Waitangi 4x3 36°15’ 174°00 25 1651.3 8.0 Gumland clay 1

MAP = mean annual precipitation; MinTCM = mean daily minimum temperature coldest month.
2 Burdon et al. site categories: 1 = Infertile clays (IC); 2 = Coastal dunes (other); 3 = Volcanic plateau (other); 4 = Central (other); 5 = Southern S.I (other); NC = no class.

A multi-environment trial analysis of the DBH measurements
was conducted using a mixed model analysis with a factor analytic
variance structure for the G x E effects and separate variance for
the errors for each trial (e.g., Beeck et al, 2010; Cullis et al,
2010, 2014). In this analysis, the reduced animal model of Cullis
et al. (2010) was extended to accommodate multi-environment
trial data. The analysis was carried out by Cullis and Jefferson
(2012) using ASReml-R (Butler et al., 2009). It provided best linear
unbiased predictors (BLUPs) of parental additive genetic effects for
each parent at each site for subsequent analysis. In the subsequent
analysis we included BLUPs of 24 parents that were most widely
used in commercial plantations and that were tested in all main
deployment regions of New Zealand (Northland, Bay of Plenty,
Central North Island, North Island East Coast, Nelson, Canterbury,
and Otago-Southland).

As with most tree breeding programs, the allocation of parents
to trials is incomplete, resulting in a sparse genotype by trial
matrix. Of the 24 parents by 48 trial-site matrix, parents were rep-
resented on 31% of all site-parent combinations, and each parent
was tested at 10 to 23 sites. The BLUPs we used in our analysis
were extracted from the complete analysis by Cullis and Jefferson
(2012) that used a sparse matrix. For unbalanced designs, BLUP
estimates are also preferable because they converge toward the
overall mean where data coverage is sparse, so that less precise
estimates have less influence on G x E clustering procedures.
Less precise estimates therefore drive groups to a lesser degree
because they explain less variance in the cluster approach that
minimizes within-group variance.

2.3. Climate and soil data

Climate data were obtained from Land and Environment New
Zealand (LENZ) (http://Iris.scinfo.org.nz/layers). The resolution of
climate data was a 0.05° latitude/longitude grid, covering all of
New Zealand. The climate data was generated with a thin-plate
smoothing spline model based on latitude, longitude and elevation
(Tait et al., 2006). For each provenance- or progeny-trial test site,
we extracted figures for mean annual precipitation, temperature,
radiation, and moisture indices as annual averages, maxima or

minima where appropriate, or averages for different periods of
the year, such as the warmest quarter or the wettest quarter.
These variables were selected for biological relevance according
to Watt et al. (2010).

Soil variables and soil classification data were also obtained
from Land and Environment New Zealand (LENZ) (http://Iris.
scinfo.org.nz/layers) and extracted for all test sites. Soil data was
provided as polygon data with a useful resolution in 1:50,000 map-
ping. Additional soil data, depth to slowly permeable horizon, drai-
nage, macroporosity at depth and at surface, maximum salinity,
minimum pH, phosphate retention, total carbon, potential rooting
depth and topsoil gravel content were extracted from the National
Soils Database and the New Zealand Fundamental Soil Layers (Wilde
et al., 2000).

2.4. Statistical analysis

To investigate the relationship between matrices of genetic data
(provenance or progeny performance at multiple sites) and envi-
ronmental predictors (climate and soil variables at multiple sites),
we used multivariate regression tree (MRT) analysis. MRT can be
viewed as a constrained clustering, where groups with similar
measurement are determined in one dataset, but the group parti-
tioning criteria are based on a second dataset. Observations in
the first dataset (genetic data) are grouped with an empirical algo-
rithm that tests various predictor variables and cut-off values in
the second dataset (environmental variables), aiming to minimize
the within-group multivariate variance (De’Ath, 2002). Here, we
group planting sites based on their similarity in performance of
genotypes. MRT analysis was implemented with the MVpart pack-
age v1.2-6 for the R programming environment (R Development
Core Team, 2011).

We also complemented the constrained clustering with a regu-
lar, unconstrained cluster analysis (i.e. grouping based on similar-
ity of genotype performance only, not considering environmental
variables as partitioning criteria), so that we know the maximum
variance that could be explained by G x E. Hierarchical clustering
was performed with hclust in R, using Euclidian distances and
Ward’s minimum variance clustering method (Ward, 1963) for
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Table 2

Experimental design and environmental variables identified as relevant by the regression tree analysis for the 48 radiata pine progeny trial sites in New Zealand.
Trial ID # Blocks # Sets # Plots # Parents Family type Latitude (°S) Longitude Elevation MAP (mm) MinTCM (°C) Soil type

(°E) (m asl)

S1 5 9 6851 271 OP 37°06' 174°33' 62 1264 6.7 Sand
S2 10 4 3827 101 oP 36°49’ 174°20 62 1240 6.7 Sand
S3 6 5 1054 40 CP 36°49 174°20 62 1240 6.7 Sand
S4 10 4 4525 107 OP 37°30 175°26' 113 1435 5.1 Sand
S5 6 6 1360 42 CcpP 37°30 175°26' 113 1435 5.1 Sand
S6 35 0 1209 19 OoP 38°12 177°03’ 277 1600 4.3 Gravel
S7 30 0 483 19 OP 38928’ 175°57 147 1610 2.6 Sandy silt
S8 30 4 3075 125 CP 37°16 174°40 62 1289 6.7 Sand
S9 30 5 3635 157 CcpP 38°29 176°16’ 327 1644 2.7 Sandy silt
S10 30 5 4642 157 CP 38°33 176°26’ 521 1466 3.2 Gravel
S11 32 4 3952 128 OP 38°13’ 177°02' 277 1605 4.2 Gravel
S12 25 3 1946 12 CcpP 38°13 176°53' 493 1792 3.4 Gravel
S13 30 6 5176 194 CP 39923 177°10 509 1710 2.1 Sandy silt
S14 30 3 1984 103 CP 38°32 177°06 232 1644 24 Loamy sand
S15 32 2 3930 34 CcP 38°12’ 177°10 53 1613 4.4 Gravel
S16 30 2 900 53 CcpP 38°47 176°57 521 1498 1.9 Loamy sand
S17 30 2 1282 53 CP 38°42 176°21' 327 1323 33 Sandy silt
S18 30 2 1231 49 CcP 38°10 177°25' 277 1682 3.7 Loamy sand
S19 30 0 701 47 CcpP 38°28' 175°13' 556 1601 3.1 Gravel
S20 30 0 823 43 CP 38°14 176°57 53 1575 4.1 Gravel
S21 6 10 1469 34 CcpP 38°17 176°53' 493 1799 3.0 Gravel
S22 6 5 990 35 CP 38°17 176°53' 493 1799 3.0 Gravel
S23 6 10 2008 43 CP 36°59 174°26’ 62 1212 6.9 Sand
S24 6 5 1174 35 CP 36°59 174°26' 62 1212 6.9 Sand
S25 30 2 1437 58 CcpP 38°35 176°18' 147 1411 34 Sandy silt
S26 5 9 2627 33 CcP 38°17 176°53’ 493 1799 3.0 Gravel
S27 5 9 2035 33 CP 37°13 174°39 62 1286 6.7 Sand
S28 26 6 1983 112 CcP 38°24 178°26' 273 1553 33 Sandy loam
S29 30 6 2397 86 CP 38°23 176°37 556 1752 2.2 Sandy loam
S30 30 6 3321 116 CP 38°15 175°02' 277 1574 4.2 Loamy coarse sand
S31 10 4 4116 105 OP 42°18’ 173°23' 632 1660 0.2 Hill soils
S32 15 0 1327 27 CcP 37°24 176°13' 521 1405 1.7 Sand
S33 46 4 6354 105 CP 38°04' 175°13’ 10 1550 4.7 Fine sandy loam
S34 45 5 6968 171 OP 38°38’ 176°54' 232 2183 3.2 Gravel
S35 35 5 5754 170 oP 38°33 176°13' 631 1528 15 Sand
S36 33 5 5065 169 OoP 38°40' 176°02 337 1271 3.1 Gravelly sand
S37 33 5 5043 169 OP 38°47 176°51’ 631 1541 1.6 Sand
S38 15 0 2972 27 CP 38°46’ 176°50 631 1545 1.6 Sand
S39 6 5 1452 25 CcpP 38°47 176°51’ 631 1541 1.6 Sand
S40 6 5 1085 40 CP 38°14 178°26’ 503 2441 3.6 Sandy loam
541 10 4 5433 106 OP 39°02 176°35 631 1473 15 Sand
S42 50 4 8174 182 CcpP 39°02' 176°34' 631 1473 15 Sand
543 6 6 1796 42 CP 39°02 176°34 631 1473 15 Sand
S44 5 10 8121 372 OP 38927 177°10 277 1763 23 Gravel
S45 5 16 14,544 588 oP 39°20 176°13' 337 1331 1.9 Sand
S46 5 10 7847 298 oP 46°09 170°11 119 845 0.4 Sandy loam
S47 3766 100 46°36’ 170°32' 399 976 -14 Sandy loam
S48 1296 25 42042’ 171°44 218 3042 2.7 Hill soils

MAP = mean annual precipitation; MinTCM = mean daily minimum temperature coldest month.

finding spherical clusters similar to MRT, implemented with the
pvclust package for the R programming environment (R
Development Core Team, 2011).

There are several methods to trim trees from constrained or
unconstrained cluster analysis. The mvpart package provides guid-
ance via a complexity parameter, and via variance explained by suc-
cessive nodes in a screen plot, where the first nodes explain most of
the variance and additional nodes have diminishing importance
(similar to principal component analysis). We report variance
explained by each node in constrained and unconstrained cluster
analysis and subjectively trim the cluster to omit additional nodes
that do not explain a substantial amount of additional variance.

3. Results

3.1. Provenance trial analysis

The first three nodes of the cluster analyses of the provenance
performance across multiple sites (G x E matrix) explain 62% and

34% of the variance in the unconstrained and constrained version,
respectively (Fig. 1). The bar charts at the nodes and leaves of the
dendrogram represent the performance of the six provenances at a
particular group of sites. For clarity, performance is expressed as
deviation of each provenance from its average performance across
all sites. Upward bars can therefore be interpreted as diameter at
breast height (DBH) higher than average, downward bars lower
than average. All variance shown in the plots therefore represents
G x E. For the unconstrained clustering, the cluster analysis finds
two sites, where the provenance “Cambria” significantly
under-performs, explaining a third of the total variation in the
G x E matrix (Fig. 1a). Notably, there is no environmental variable
in our constrained cluster analysis that can separate this group of
two planting sites, and this portion of the variance remains unex-
plained in Fig. 1b.

The second split in the unconstrained cluster analysis identifies
eight sites, where Cambria shows above-average performance,
explaining just under a fifth of the total variance in the G x E
matrix. This is to some degree mirrored by the first split of the con-
strained cluster analysis that is attributed to infertile clays in the
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Fig. 1. Unconstrained (a) and constrained cluster (b), grouping 21 planting sites
according to the performance of Afio Nuevo, Monterey and Cambria provenances
and three regional land-race stocks, ‘Kaingaroa’, ‘Nelson’ and ‘Southland’. The same
order of provenances used for legend (vertical order of listing) is also used for the
histograms (horizontal order). Variances in genotypic values explained by each
node of the cluster are indicated in red. In gray scale, colored bars represent group
means expressed in deviation from an overall mean of zero (horizontal line). Site
names are given below each group.

constrained cluster analysis: all three infertile clays sites also
appear in the second cluster from the left in the unconstrained
analysis. The third split of the unconstrained cluster appears
near-identical to the constrained cluster, with the same three sites
(Aupouri, Pouto, and Ruatoria) separated by high minimum tem-
perature of the coldest month. An additional split in the con-
strained cluster analysis separates the coldest planting sites,
where provenances Monterey and Cambria tend to under-perform.

In summary, we find prevalent cross-over interactions in the
provenance dataset, where some provenances outperform others
at one set of sites, but the reverse is true for other site types.
There appears to be some correspondence between the uncon-
strained and constrained cluster analysis, but the unconstrained
cluster analysis also revealed that important G x E exists that
could not be explained by environmental data available for the test
sites.

3.2. RPBC progeny trial analysis

The unconstrained clustering analysis of genotypic performance
of the 24 most-tested parents at 48 RPBC progeny trials revealed
less pronounced cross-over interactions (Fig. 2). Here, we provide
two sets of bar charts for each group. BV refers to absolute breed-
ing values of the RPBC breeding program, while 8BV is normalized
as in Fig. 1 to better visualize interactions. Parent genotypes are
ordered from the highest to the lowest overall breeding value from
left to right. The first split in the unconstrained analysis primarily
distinguishes between high-performing parents (left two-thirds of
the bar chart) that do particularly well at nine sites (Group A),
whereas they somewhat under-perform in relative terms at the
39 remaining sites. Nevertheless, in terms of absolute breeding val-
ues, they still rank as top-performers at those sites. The second
split is similar in principle, but Group B identifies overall
high-performing parents that more severely underperform at
another 16 sites.

Note that unlike in the provenance trial dataset, G x E revealed
by these splits are only partially due to cross-over interactions.
Also, in the progeny trial dataset, the unconstrained cluster analy-
sis is quite closely mirrored by the constrained analysis (Fig. 3).
Group A, characterized by planting sites where the best overall
performers do exceptionally well in Fig. 2, overlaps with
high-precipitation sites identified by the MRT analysis. Group B,
the overall best-performing parents, do relatively poorly at sites
with the lowest minimum temperature of the coldest month.

In summary, we find that a set of parents highlighted in gray in
Figs. 2 and 3 perform disproportionately well at wet sites, and rel-
atively poorly at cold sites. That said, the amount of variance
explained by the splits in unconstrained and constrained cluster
analysis differ substantially, indicating that other site factors that
we did not measure have substantial contributions. The type of
G x E that accounts for most of the variance does not represent
cross-over interactions, where some parents outperform others at
some sites with the opposite being true at other sites. Cross-over
interactions do exist, however, in the second split of the con-
strained analysis (Fig. 3), indicating that there could be opportu-
nity for genetic gain by deploying different parents to the coldest
planting sites.

4. Discussion
4.1. Environmental variables responsible for G x E

Our analysis suggests that the likely drivers of G x E are soil fac-
tors and minimum temperature. Our first analysis with provenance
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data showed that the multivariate regression tree approach can
approximately replicate the results of Burdon et al. (1997), detect-
ing strong G x E among provenances grown on a wide range of
sites across New Zealand. For example, Cambria was classified as
underperforming at two sites (Kaniere and Waimihia) as was
observed in Burdon et al. (1997) site classes. However, Kaniere,
having a particularly high rainfall, would have been very conducive
to Dothistroma needle blight, to which the Cambria provenance is
especially susceptible (R.D. Burdon - personal communication).
Dothistroma infection has a strong negative impact on growth.
Growth losses are directly proportional to the amount of the crown
that is infected. For example, Gapare et al. (2011) reported negative
genetic correlations between Dothistroma defoliation and DBH
growth in radiata pine grown in New Zealand. Our constrained
analysis, however, could not find environmental factors that distin-
guished those two sites, and that could potentially account for a
large portion of the variance in the unconstrained cluster analysis
(Fig. 1a, left group). Our interpretation is that an environmental
factor that we either did not measure, or that was not accurately
enough represented in the available soil data is responsible for this
interaction. The analysis also showed Cambria performing rela-
tively better in a site cluster that includes three infertile clay sites
(Mahana, Riverhead and Waitangi), also consistent with Burdon
et al. (1997). In addition, Afio Nuevo performed best at the coldest
sites and Cambria the worst.

In the progeny-trial analysis, mean annual precipitation (MAP)
and minimum temperature of the coldest month (MinTCM) were
identified as the most likely drivers of G x E. Interestingly,
cross-over interactions were much less prevalent in this trial ser-
ies. A possible reason is that the Cambria provenance, primarily
responsible for G x E in the provenance trials, was not included
in the ancestry of the New Zealand breeding land races. Breeding
programs regularly select for genotypes that have stable perfor-
mance over a wide range of environments in addition to identify-
ing the best performers. The second important observation from
this analysis is that the type of G x E that accounts for most of
the variance in the progeny trial series does not represent
cross-over interactions, where some parents outperform others at
some sites, while the opposite is true at other sites (Fig. 3 first
split). The current practice of the RPBC to produce a single set of
breeding values for each trait, making the assumption that G x E
is not important, therefore appears well supported by our results
for the warm humid sites.

Due to sparse nature of our data, BLUP calculations resulted in
shrinkage of estimates, because BLUP estimates will approach the
overall mean of zero, if there is little data available for a reliable
estimate. However, the sparse matrix in our data could not have
influenced the observed groupings in MRT analysis because shrunk
BLUPs will not account for much variance. In unconstrained cluster
analysis, this could result in artificial groups of sites that are
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similar because they all lack data (i.e. estimates are consistently
zero), but such groups do not exist (Figs. 1a and 2). Since groups
have to be defined by an external variable, such a problem cannot
conceptually occur in the constrained analysis (Figs. 1b and 3).

4.2. Genetic gains by accounting for G x E at cold sites

That said, cross-over interactions that could be exploited by
selecting genotypes for specific environments were detected in
the second split of the constrained cluster analysis (Fig. 3). These
sites of the left group, characterized by low minimum tempera-
tures, are in Otago, Nelson and at high elevations in the Central
North Island region. For deployment purposes, it appears possible
to group the sites into warm, high-rainfall sites where the
top-ranked RPBC parents perform consistently well, and cold sites
where specific genotypes need to be selected for maximum perfor-
mance. For example, we used the cut-off value of minimum tem-
perature of the coldest month below 1.6 °C from constrained
clustering to produce a map of suitable deployment areas, and it
is apparent that a substantial portion of radiata pine plantations
fall into this category (Fig. 4). A similar map (not presented) of
the South Island showed that most of the Otago-Southlands region
fell below the MinTCM of 1.6 degrees Celsius. It is also apparent
that more trials are needed on high-elevation, cold sites on both
the North and South Island. From a total of 48 trials, only seven fell
into the low MinTCM category.

Fig. 4 also shows that a relatively large deployment area falls
into this category that appears underrepresented by test sites. Of
a total of 1,157,600 ha of plantation area on the North Island, and
396,500 ha of plantations on the South Island (Statistics New

Zealand, 2011), approximately 16% and 74% fell into the
MinTCM < 1.6 °C category, respectively. To illustrate potential
gains from targeted deployment, we assume that we select 10 of
24 parents to include in a new production population (e.g., a new
seed orchard, or in a crossing program to produce seed for vegeta-
tive propagation). Our reference group and reference genetic gain
calculation is equivalent to the current practice of using a single
breeding value for all sites. If we now introduce regional deploy-
ment population for the wet group (MAP > 1670 mm) represented
by 11 sites in Fig. 3 and select the top 10 performers based on this
bar chart, expected genetic gains would be 3% relative to the refer-
ence group. Optimizing deployment for the cold group
(MinTCM < 1.6 °C) has a much larger effect. Selecting the top-10
parents from this group yields a 20% improvement in performance
relative to the reference selection (top 10 overall performers). This
suggests that it is feasible to increase plantation productivity and
realize genetic gain through targeted deployment for the cold sites.

4.3. Limitations of environmental data

Minimum temperature has previously been identified as a
potential driver of G x E in radiata pine in New Zealand, in addition
to extreme maximum temperatures (McDonald, 2009). Likewise,
cold high-elevation sites were found to be responsible for G x E
of radiata pine in Australia (Wu and Matheson, 2005; Raymond,
2011; Gapare et al.,, 2012). It should be noted that drivers of
G x E do not necessarily imply that these environmental variables
are generally responsible for limiting productivity. A study by Watt
et al. (2010) reported that variables driving productivity in New
Zealand included mean annual temperature, available root zone
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water storage, mean annual wind speed, length and slope factor
and major soil parent material. However, in our case, we specifi-
cally screen for interactions, not absolute effects on productivity,
which were removed by normalizing the data for each test site.

The second major limitation of this analysis relates to the accu-
racy of environmental data. This limitation is highlighted by the
discrepancies between the unconstrained and constrained cluster
analyses. The most salient example is the first split of the uncon-
strained provenance trial analysis (Fig. 1a), which is simply missing
in the constrained analysis, while the subsequent groups are sim-
ilar. If it was of practical importance to target this particular site
type represented by the Kaniere and Waimihia sites, one would
have to identify what particular soil or climatic characteristics that
set these sites apart. Furthermore, if the responsible environmental
variable was identified and verified, one would need to be able to
map the driver of G x E in order to guide general reforestation.
Thus, practical applications are limited to identifying the drivers
of G x E, but also to accurately mapping these variables so that
selected genotypes could be deployed to the appropriate
environments.

The third important issue is collinearity among predictor vari-
ables. Correlation does not imply causation, and the true driver
of G x E could be an environmental variable that we did not mea-
sure (or that we did not measure accurately), but that is collinear
with another variable that was available for the analysis. To give
a hypothetical example from the progeny trial analysis, consider
the first split in Figs. 2 and 3. Fig. 3 indicates that mean annual pre-
cipitation is responsible for this split, but it is probable that the
true underlying driver is water availability to the plant, which is
also influenced by soil and topographic factors. Precipitation is
only one aspect of water availability and could therefore only
explain a relatively small fraction of the variance of the uncon-
strained cluster analysis.

In summary, results from any correlative analysis need to be
interpreted carefully, and multivariate regression trees are no
exception. From a practitioner’s perspective, there appears to be
sufficient evidence from this analysis as well as prior research that
minimum temperatures (or otherwise indicated as high-elevation
sites) are a significant source of G x E in radiata pine (e.g.,
McDonald, 2009; Raymond, 2011). This should enable us to make
better-informed decisions on how genotypes may be allocated to
cold sites in order to maximize productivity.
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