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Abstract

The velocity of climate change is an elegant analytical concept that can be used to evaluate the exposure of organisms

to climate change. In essence, one divides the rate of climate change by the rate of spatial climate variability to obtain

a speed at which species must migrate over the surface of the earth to maintain constant climate conditions. However,

to apply the algorithm for conservation and management purposes, additional information is needed to improve real-

ism at local scales. For example, destination information is needed to ensure that vectors describing speed and direc-

tion of required migration do not point toward a climatic cul-de-sac by pointing beyond mountain tops. Here, we

present an analytical approach that conforms to standard velocity algorithms if climate equivalents are nearby. Other-

wise, the algorithm extends the search for climate refugia, which can be expanded to search for multivariate climate

matches. With source and destination information available, forward and backward velocities can be calculated

allowing useful inferences about conservation of species (present-to-future velocities) and management of species

populations (future-to-present velocities).
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Introduction

The velocity of climate change is a climatic landscape

metric proposed by Loarie et al. (2009) that evaluates

the exposure of organisms in the landscape to climate

change. The measure is derived by dividing the rate of

projected climate change in units of °C per year by the

rate of spatial climate variability, i.e. the temperature

differential of adjacent grid cells, measured in °C km�1.

The division cancels the °C units, while units of kilome-

tre in the denominator and the units of year in the

numerator swap positions. The resulting variable is a

speed or velocity measured in units of kilometres per

year, and represents an initial rate at which species

must migrate over the surface of the earth to maintain

constant climate conditions.

One advantage of this approach is its simplicity and

clarity of interpretation. No biological response of

organisms to climate change is implicitly or explicitly

inferred as, for example, would be by projections based

on species distribution models. Rather, velocities are a

simple function of spatial and temporal variation in cli-

mate conditions in a particular landscape, and can be

interpreted as one of several risk factors that contribute

to persistence or loss of species and populations in

complex landscapes under climate change. The mea-

sure has been used to rank exposure of organisms to

climate change in the 5th assessment report of the Inter-

governmental Panel on Climate Change (IPCC, 2014;

fig. SPM 5.), to evaluate the integrity of protected area

systems under climate change (Ackerly et al., 2010;

Schueler et al., 2014), to describe the expected rate and

direction of climate migrants (Dobrowski et al., 2013;

Burrows et al., 2014), and to identify climate refugia

during glacial–interglacial cycles (Sandel et al., 2011).
Limitations of the approach have been pointed out

by Loarie et al. (2009) and subsequent studies. Migra-

tion requirements inferred by velocity algorithms can

be markedly different from the results of climate enve-

lope approaches that attempt to match current and

future climate regions (Corlett & Westcott, 2013; Dif-

fenbaugh & Field, 2013; Ordonez & Williams, 2013).

Climate velocity vectors can diverge in direction and

magnitude among variables, and they are not easily

combined into a multivariate measure of climate

change exposure (Dobrowski et al., 2013). Finally, scale

and related search radius problems can arise in velocity

calculations. In areas of flat terrain, velocity estimates

may be inflated (approaching infinity in flat terrain),
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although suitable climate habitat may be very close, but

just outside the search radius. Conversely, in mountain-

ous terrain true migration requirements may be under-

estimated by orders of magnitude. For instance, a

population near a mountain top may face extinction of

suitable climate habitat in the immediate surroundings

under climate change (a climatic cul-de-sac). Yet, the

velocity algorithm will imply low migration require-

ments as long as the population is situated on a steep

climatic slope.

To apply the velocity of climate change concept to

conservation planning and natural resource manage-

ment, three improvements are needed. First, a broader

search radius of the velocity algorithm and destination

information should ensure that vectors describing

speed and direction do not point toward climatic cul-

de-sacs or result in infinite velocities. Instead, infinite

velocities should indicate no-analogue climate condi-

tions within the entire study area. Second, the algo-

rithm should be expanded from a univariate

temperature analysis to more appropriately assess a

suite of biologically relevant climate variables. Third,

with source and destination information available, for-

ward and backward velocities from current climate loca-

tions to potential future climate space, and from

projected future climate cells back to matching current

locations should be estimated. While this might seem

equivalent at first sight, the two calculations yield pro-

foundly different results and bothmeasures allow useful

inferences for the management and conservation of spe-

cies and their populations. Here, we provide a simple,

easy to understand set of algorithms for the open-source

R programming environment, capable of searching large

datasets for univariate or multivariate climate matches

and estimates of climate change velocities.

Materials and methods

Climate data

All climate data representing current, past, and future periods

were generated with the ClimateWNA software package

(Wang et al., 2012; Hamann et al., 2013), which is available for

anonymous download (http://www.ualberta.ca/~ahamann/

climate.html and http://adaptwest.databasin.org/pages/

adaptwest-climatewna). The software overlays historical data

and general circulation model (GCM) projections on high-res-

olution climate normal data and applies lapse-rate-based ele-

vation adjustments, when resampling to different grid

resolutions and projections. Climate surfaces were generated

in Lambert Conformal Conic projection at 1 km resolution,

and include various biologically relevant temperature and

precipitation variables, as well as extremes, growing and chill-

ing degree days, various dryness and indices and growing

season descriptors such as frost-free days.

To represent current climate conditions, we use the 1961–

1990 climate normal period. Future climate data for the 2011–

2040, 2041–2070, and 2071–2100 period, hereafter referred to

as the 2020s, 2050s, and 2080s, were based on A2 emissions

scenarios implemented by seven GCMs of the CMIP3 multi-

model dataset: CCMA CGCM3.1, CSIRO MK3.0, IPSL CM4,

MIROC3.2 HIRES, MPI ECHAM5, NCAR CCSM3.0, UKMO

HADGEM1, referenced in the IPCC’s Fourth Assessment

Report (IPCC, 2007). Similar to Fordham et al. (2011) we

excluded poorly validated GCMs, and report ensemble veloc-

ity estimates based on individual runs for each future

scenario.

Velocity algorithms

Given enough precision in measurement of climate variables,

no two grid cells have the same climate value. Therefore, the

search algorithm for finding a climate match for a current grid

cell in a climate surface representing a future projection relies

on a user-defined threshold. The search algorithm is imple-

mented with the following R code

1 id <- 1:length(p)

2 for (i in 1:length(p)) {

3 ti <- id[abs(f-p[i])<t]

4 di <-sqrt((x[ti]-x[i])^2+(y[ti]-y[i])^2)

5 d[i] <- min(di) }

The variables p, f, x, y are vectors (or columns of a table),

representing present (p) and future (f) climate values and

their x and y coordinates in a gridded dataset. p[i] denotes

the i-th element in the vector. Line 1 creates a string of con-

secutive identification numbers, and line 2 initiates a pro-

cessing loop for all present climate values. Line 3 extracts

the identification numbers of future climate grid cells within

a user-defined climate threshold (t) of a present climate ref-

erence cell (p[i]), Line 4 calculates the geographic distance of

x and y coordinates of all matching future climate cells (x

[ti], y[ti]) to the present reference cell (x[i], y[i]), and line 5

finds the shortest geographic distance (d) from this vector of

distances to matching cells (di). This distance divided by the

number of years between the current and future climate is

the required velocity of migration.

The algorithm can be modified to process large datasets

more than an order of magnitude faster by implementing

thresholds through rounding and then working with lists of

unique values

1 p <- round(p*t)/t; f <- round(f*t)/t

2 u <- unique(p)[order(unique(p))]

3 match <- function(u){c(which(u==f))}

4 m <- sapply(u, match)

5 for(i in 1:length(p)){

6 mi <- m[[which(u==p[i])]]

7 d[i]<-sqrt(min((x[i]-x[mi]) 2̂+(y[i]-y[mi]) 2̂}

Line 1 rounds present climate values (p) and future climate

cells (f) using a user defined threshold (t) as above. Line 2 cre-

ates a list of unique present climate values after rounding, so

the geographic search will only be carried out once for each

unique climate value. Line 3 creates a function that we can
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subsequently use to find all climate cells in the future dataset

that match a current climate grid cell. Line 4 executes that

function, creating a list of future climate matches for each

unique present climate value. Line 5 initiates a processing

loop as before. Line 6 now simply recalls the climate matches,

and line 7 calculates as before the distance to the geographi-

cally closest climate match.

This computational approach also lends itself to a multivar-

iate extension. Instead of creating a list of unique values for

one climate variable, we can create lists of unique combina-

tions of two or more climate variables

1 p1 <- round(p1*t1)/t1; f1 <- round(f1*t1)/t1

2 p2 <- round(p2*t2)/t2; f2 <- round(f2*t2)/t2

3 u <- unique(paste(p1,p2)); f <- paste(f1,f2)

Line 1 and 2 create lists of rounded climate values for two

climate variables in present (p1, p2) and the equivalent for the

future climate grids (f1, f2). In line 3 the two variables are com-

bined into list of unique present climate value combinations

(u) that can be searched for matches for the same combina-

tions in the future grid (f). The remaining programme is iden-

tical to the above lines 3–7.

Sample code and sample datasets for all three algorithms

can be found in online supplements: univariate threshold-

based (Appendix S1), the faster approach with univariate lists

of unique values (Appendix S2), and the multivariate exten-

sion (Appendix S3). In Appendix S3 we also use a k-nearest

neighbour search algorithm, increasing computational effi-

ciency by another order of magnitude. The appendices further

include code for import of gridded climate surfaces, post-

processing of velocity grids, flagging of no-analogue climates,

and tabular output of source and target coordinates of climate

matches for further analysis of expected rate and direction of

climate migrants.

Multivariate climate velocities

For a multivariate implementation of climate change veloci-

ties, we used a principal component analysis for a pooled

sample of present and future climate surfaces. Climate vari-

ables for the principal component analysis include: mean

annual temperature, mean temperature of the warmest month,

mean temperature of the coldest month, mean annual precipi-

tation, mean growing season (May to August) precipitation,

annual compound moisture index, summer (June–August)

compound moisture index, degree days above 5 °C, and num-

ber of frost-free days. Using principal component scores rather

than original variables has the advantage that multiple highly

correlated climate variables do not have an inappropriate

influence the final velocity measure.

As variables p1 and p2 in the algorithm above, we use the

first two principal component scores for each grid cell, which

capture a large portion of the variance contained in the origi-

nal climate variables. We further use a single threshold value

for all components that yielded approximately 120 unique val-

ues for the first principal component score. Subsequent com-

ponents (as long as principal component analysis is based on

the eigenvalue decomposition of the correlation matrix) are

therefore automatically weighted according to the variance

1
Velocity (km yr–1) Velocity (km yr–1)

10+0.10.01

Present day
to 2020s
Distance
method

Loarie et al.
2009 method

1 10+0.10.01

Present day
to 2020s

Present day to 2080sPresent day to 2050sPresent day to 2020s

Fig. 1 The new distance-based velocity algorithm (left and top insets), and the standard slope method according to Loarie et al. (2009)

compared. The velocity based on the distance to the nearest climate match yields lower velocities in flat areas, such as the central

California valley (compare histograms). However, higher velocities are generated at mountain tops, where current climate conditions

become locally extinct as climate change becomes more pronounced over time (top insets).
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they explain. The number of 120 multivariate climate bins was

empirically determined as described in the next section.

Results & discussion

Comparison of velocity algorithms

Estimates of velocity of required migration from a

global search for climate equivalents broadly conform

to the results of Loarie et al.’s (2009) standard velocity

algorithm when climate equivalents are nearby. This

generally applies under moderate climate warming sce-

narios or projections for the near future, such as the

2020s (Fig. 1). However, even by the 2020s, the required

migration rates diverge near mountain tops, where the

distance-based required migration rates are higher

because they measure to a climate match further north

or on an adjacent mountain with higher elevation posi-

tions. Conversely, our velocity estimates tend to be

lower in valley bottoms, where geographic distances

are measured to the base of the nearest mountain, while

the standard velocity estimates can approach infinity if

the surrounding grid cells are of the same elevation,

and therefore show little or no spatial climate gradients

(Fig. 1, histograms).

When calculated for a larger geographic region of

western North America (25–80°N latitude and 100–
179°W longitude), velocities obtained by the standard

slope method and the proposed distance-based method

are almost identical between the 5th and 95th percentile

for a moderate degree of climate change (Table 1, first

two data lines). However, for the 2050s and the 2080s,

they diverge with the distance-based method yielding

increasingly higher migration requirements than the

standard slope method. Note that the slope method

generally yields the same result regardless of the future

time period as long as the rate of change measured in

degree Celsius per year stays approximately constant.

We therefore only included the 2050s values for

comparison for the slope method in Table 1. Con-

Table 1 Distribution of climate change velocities for western

North America for different time period and methods

Time period & method

Velocity for percentiles

p5 p25 p50 p75 p95

Mean annual temperature

Slope method

6190 to 2050s 0.05 0.17 0.53 1.64 2.83

Climate match (forward)

6190 to 2020s 0.05 0.15 0.47 1.61 3.33

6190 to 2050s 0.08 0.26 0.75 2.54 6.12

6190 to 2080s 0.10 0.34 0.94 2.88 7.39

Multivariate (PCA)

Climate match (forward)

6190 to 2020s 0.21 0.77 1.87 3.55 9.87

6190 to 2050s 0.40 1.36 2.81 4.96 10.68

6190 to 2080s 0.52 1.61 3.29 5.54 10.67

Climate match (reverse)

2020s to 6190 0.23 1.04 2.55 4.57 9.11

2050s to 6190 0.39 1.50 3.29 5.21 8.76

2080s to 6190 0.72 2.31 4.24 6.21 9.83
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Fig. 2 Sensitivity of the distance-based velocity to the threshold

value used to define a climate match (a). If the requested preci-

sion for a climate match becomes very high, geographic dis-

tances to a match increase rapidly, and the resulting velocity

maps become noisy. For the multivariate implementation

(b), high requested precision (high number of bins of unique cli-

mate combinations) does not have the same effect. However,

the frequency of no-analogue climates increases rapidly (data

not shown). Grey envelopes indicate the 25th and 75th percen-

tiles of velocities for western North America.
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versely, the required migration estimates from the dis-

tance-based method is strongly influenced by the abso-

lute values of climate change, reflecting the increasing

prevalence of climatic cul-de-sacs in the landscape as cli-

mate change progresses.

Sensitivity of threshold values and scale dependencies

An important decision for the implementation of the

distance-based velocity algorithm is the threshold of

what constitutes a matching climate between a current

cell and a nearby grid cell that has a similar value in

the future. Given enough precision in measurements,

no two grid cells will have the same climate value, and

this becomes obvious when matching cells in multivari-

ate climate space. This decision could be informed by

biological data, for example, if the climate tolerances of

an organism are known. However, for a general land-

scape analysis we find it useful to set the threshold as

small as possible while avoiding artefacts due to using

excessive precision (Fig. 2a).

Generally, the required migration distances increase

linearly and monotonically with smaller thresholds, but

beyond a certain point velocities increase rapidly driven

by more random climate matches. For example, if the

algorithm has to search for a climate match to a present

cell with a value of 5.36 °C, and the value of a nearby

future climate cell of 5.32 °C is rejected, then large and

small distances start to occur by random chance and the

resulting surfaces become noisy (Fig. 2a, left inset). In

the example shown in Fig. 2, a good threshold would

be �0.2 °C. The resulting maps of velocity equal or

higher to this value remain very robust, until the thresh-

old exceeds the warming signal so that the required

migration distance is by definition zero.

Another factor that influences the velocity esti-

mates, and that depends on user choices is the spatial

resolution of the gridded climate data. For both Loa-

rie’s slope method and the distance-based method

proposed in this paper, median velocities increase in

the same monotonic fashion (Fig. 3). Maximum veloc-

ities for the distance-based method are not resolution

dependent, while they decrease substantially for the

slope-based method. The decrease in the slope-based

method arises from the fact that at coarser resolutions

it becomes less likely that surrounding cells all

have the same elevation and temperature values,

and therefore yield very high velocity estimates.

Conversely, the distance-based method shows stron-

ger resolution dependence for the minimum distance.

This is due to the minimum velocity value being

restricted by the distance to the nearest neighbour

grid cell. We therefore recommend use of gridded

data with as high resolution as is computationally

feasible and justifiable based on the precision of inter-

polated climate grids.

Multivariate velocity calculations

Principal component analysis of multiple climate vari-

able grids in western North America yielded two

dimensions that explained 69% and 21% of the total

variance for a cumulative total of 90% for the two cli-

mate dimensions (Table 2). The first component (PC1)

represents temperature variables, with the highest ei-

genvectors for annual and summer temperature
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Fig. 3 Resolution sensitivity of the new distance vs. the stan-

dard slope method, corresponding to the California extent of

Fig. 1. Both methods show identical median velocity increases

as resolution becomes coarser. For the distance method, mini-

mum velocities are by definition restricted by the size of grid

cells.

Table 2 Loadings or eignvalues of principal component

scores for a pooled sample of present and future climate sur-

faces. The first two principal components are the basis for the

velocity maps shown in Fig. 4

Climate variable PC1 PC2 PC3

Mean annual temperature 0.37 0.26 �0.04

Mean temperature of the warmest

month

0.38 0.08 0.16

Mean temperature of the coldest

month

0.34 0.33 �0.23

Mean annual precipitation �0.19 0.61 �0.31

Mean summer (May–August)

precipitation

�0.21 0.51 0.75

Annual compound moisture index �0.34 0.29 �0.45

Summer (June–August)

compound moisture index

�0.37 0.18 0.11

Degree days above 5 °C 0.38 0.14 0.17

Number of frost-free days 0.36 0.24 �0.14

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 21, 997–1004

VELOCITY OF CLIMATE CHANGE ALGORITHMS 1001



variables (Table 1, PC1). The second component (PC2)

primarily represents mean annual precipitation, but

also scores high for variables that describe mild win-

ters. The third component (PC3) represents variance in

summer precipitation that is not already captured by

the second component. However, this additional

component only explained 5% of the variance and for

computational efficiency PC3 was not used in

subsequent velocity calculations.

Estimates of velocity of climate change based on a

multivariate climate matches of the first two principal

components are shown in Fig. 4a, with additional

statistics reported in Table 1. Velocities based on a

multivariate climate match are always higher than the

univariate estimate, which is expected since additional

criteria were added to what constitutes a climate

match. Adding more principal component dimensions

would further increase velocity estimates across the

distribution of values (data not shown). Otherwise,

univariate and multivariate velocity estimates behave

similarly, with a stronger climate change signal result-

ing in disproportionately higher velocities due to the

increasing prevalence of climatic cul-de-sacs in the

landscape (compare data lines 2–4 with 5–7 in

Table 1).

The multivariate velocity algorithm behaves slightly

differently than the univariate algorithm in one other

respect. The lack of a climate match in a future surface

to a present cell is rare in the univariate analyses, while

no-analogue situations occur more frequently with

increasing numbers of climate variables (dark red

patches in Fig. 4). The prevalence of no-analogue cli-

mates is also a function of the requested precision of

what constitutes a climate match (Fig. 3b). Here, we

described the requested precision by the number of

‘bins’ of principal component scores. In a two-dimen-

sional plot of the first two components, these can be

visualized as rectangular areas with similar climate val-

ues in multivariate space. We find that there is initially

a rapid increase in velocity values with increasing pre-

cision. Subsequently, the increase in estimated velocity

values is monotonic, but no-analogue climates become

more prevalent with increasing precision. We therefore

find it useful to balance the precision of climate match

against the prevalence of no-analogue climates (here

we used 120 bins) to obtain general-purpose velocity

maps.

In summary, climate change velocity estimates

depend to some degree on user choices that include the

methodological approach, the number of climate vari-

ables, the resolution of climate grids, and threshold set-

tings of what constitutes a climate match. Yet, it is

remarkable that the resulting maps of velocities are

very robust in their overall ranking of exposure of

organisms to climate change (compare Fig. 1 left vs.

right, Fig. 2 insets, Fig. 1 vs. Fig. 4). There are virtually

no changes to spatial arrangements of velocity values,

except for the method-related differences that we have

previously pointed out. We therefore propose that the

approach should be useful for prioritizing conservation

(b)  PCA velocity, 2050s to present, 100 equal interval bins

1
Velocity (km yr –1)

100.10.01 100+

(a)  PCA velocity, present to 2050s, 100 equal interval bins

1
Velocity (km yr–1)

100.10.01 100+

Fig. 4 Multivariate forward (a) vs. backward (b) velocity calculations from current to projected future climate conditions and vice

versa. No analogue climates are indicated in dark red. The forward calculation can be interpreted as exposure of species and popula-

tions to climate change. The backward calculations can be used to prioritize need for human intervention, such as assisted migration

prescriptions.
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and management prescriptions to address climate

change.

Applications of forward and reverse velocities

The distance-based method proposed here can be

implemented in two directions: a search of climate

matches for a present cell in grids of projected future

climate (as explained above), or the reverse search from

a future reference cell to a climate match in a current

grid (implemented by swapping the p and f vectors in

the algorithms explained above). For the forward calcu-

lation we ask: what is the minimum distance an organ-

ism in the current landscape has to migrate to maintain

constant climate conditions? Conversely, in the reverse

calculation we ask: given the projected future climate

habitat of a grid cell, what is the minimum distance an

organism has to migrate from to colonize this climate

habitat? The answers are not always similar, especially

in mountainous terrain (Fig. 4).

Forward velocity calculations can be interpreted as

the exposure of organisms to climate change. Low

velocity values indicate that suitable habitat can be

found nearby, and that is generally the case in areas of

high topographic heterogeneity. The algorithm pro-

posed in this paper also flags mountain-top positions as

vulnerable (Figs 1 and 4a), and the extent of this vul-

nerability is a function of the absolute value of pro-

jected climate change, not just the rate per year. The

forward calculation should therefore be particularly

useful for the evaluation of protected area systems, or

to assess the conservation status of species and their

populations under climate change. Such assessments

have been implemented using the slope-based velocity

calculation (Ackerly et al., 2010; Burrows et al., 2011;

IPCC, 2014; Schueler et al., 2014) as well as using a cli-

mate-analogue approach not unlike the distance-based

method developed here (Ordonez & Williams, 2013).

In the reverse calculation (Fig. 4b), the distance from

future to modern habitat equivalents can be interpreted

as a relative difficulty of species to colonize new habitat,

or in the case of plants, the relative difficulty for popula-

tions to adapt in situ to new climate conditions sup-

ported by gene flow from matching populations.

Notably, habitat near mountain tops is now evaluated as

unproblematic habitat, because appropriately adapted

organisms can be sourced from nearby downslope loca-

tions. Conversely, habitat in valley bottoms lacks nearby

climate analogues, and organisms would have to travel

much longer distances to colonize these locally new hab-

itat conditions. Thus, the reverse velocity measure could

be useful to prioritize human interventions through

assisted migration, either in the context of rare species

conservation (e.g., Richardson et al., 2009), or imple-

mented as movement of locally adapted populations of

wide-ranging species in regular reforestation operations

(Gray et al., 2011; Pedlar et al., 2012).

We have previously noted that climate change veloci-

ties are a simple function of spatial and temporal varia-

tion in climate in a particular landscape. No biological

data are used, and no specific biological response is

inferred by the expected rate and direction of climate

migrants. Consequently, we see value in combining cli-

mate change velocities with data on species’ climate tol-

erances and adaptive capacities, or with statistical and

mechanistic models of species’ realized or fundamental

niche spaces. For example, forward velocity calcula-

tions could be done with climate grids restricted to

plant species distributions to evaluate pollen-flow

among various locally adapted populations as a poten-

tial adaptive mechanism. For an assisted migration

application, reverse velocities could be calculated

between projected habitat and the current distribution

to prioritize human intervention. In summary, the

velocity of climate change measure complements but

does not replace ecological modelling approaches for

species vulnerability assessments and management

applications.

Acknowledgements

We thank the Fulbright Program for a visiting scholar grant and
the host David Ackerly at UC Berkeley for valuable discussions.
This research is part of the AdapTree Project, funded by Gen-
ome Canada, Genome BC, GenomeAlberta, Alberta Innovates
Bio Solutions, the Forest Genetics Council of British Columbia,
the BC Ministry of Forests, Lands and Natural Resources Opera-
tions, Virginia Tech, the University of British Columbia, and the
University of California, Davis. Additional funding was pro-
vided by the Wilburforce foundation.

References

Ackerly DD, Loarie SR, Cornwell WK, Weiss SB, Hamilton H, Branciforte R, Kraft

NJB (2010) The geography of climate change: implications for conservation

biogeography. Diversity and Distributions, 16, 476–487.

Burrows MT, Schoeman DS, Buckley LB et al. (2011) The pace of shifting climate in

marine and terrestrial ecosystems. Science, 334, 652–655.

Burrows MT, Schoeman DS, Richardson AJ et al. (2014) Geographical limits to spe-

cies-range shifts are suggested by climate velocity. Nature, 507, 492–495.

Corlett RT, Westcott DA (2013) Will plant movements keep up with climate change?

Trends in Ecology & Evolution, 28, 482–488.

Diffenbaugh NS, Field CB (2013) Changes in ecologically critical terrestrial climate

conditions. Science, 341, 486–492.

Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden

ZA, Schwartz MK (2013) The climate velocity of the contiguous United States dur-

ing the 20th century. Global Change Biology, 19, 241–251.

Fordham DA, Wigley TML, Brook BW (2011) Multi-model climate projections for bio-

diversity risk assessments. Ecological Applications, 21, 3317–3331.

Gray LK, Gylander T, Mbogga MS, Chen PY, Hamann A (2011) Assisted migration to

address climate change: recommendations for aspen reforestation in western

Canada. Ecological Applications, 21, 1591–1603.

Hamann A, Wang TL, Spittlehouse DL, Murdock TQ (2013) A comprehensive,

high-resolution database of historical and projected climate surfaces for Wes-

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 21, 997–1004

VELOCITY OF CLIMATE CHANGE ALGORITHMS 1003



tern North America. Bulletin of the American Meteorological Society, 94, 1307–

1309.

IPCC (2014) Climate change 2014: impacts, adaptation and vulnerability. In: Summary

for Policy Makers. Contribution of Working Group II to the Fifth Assessment Report

of the Intergovernmental Panel on Climate Change (eds. Field CB, Barros VR,

Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada

YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR,

White LL), pp. 1–32. Cambridge University Press, Cambridge, UK.

IPCC (2007) Climate change 2007: the physical science basis. In: Contribution of

Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change (eds Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt

KB, Tignor M, Miller HL), pp. 591–648. Cambridge University Press, Cambridge,

UK.

Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The veloc-

ity of climate change. Nature, 462, 1052–1055.

Ordonez A, Williams JW (2013) Projected climate reshuffling based on multivariate

climate-availability, climate-analog, and climate-velocity analyses: implications for

community disaggregation. Climatic Change, 119, 659–675.

Pedlar JH, Mckenney DW, Aubin I et al. (2012) Placing forestry in the assisted migra-

tion debate. BioScience, 62, 835–842.

Richardson DM, Hellmann JJ, Mclachlan JS et al. (2009) Multidimensional evaluation

of managed relocation. Proceedings of the National Academy of Sciences of the United

States of America, 106, 9721–9724.

Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC

(2011) The influence of late quaternary climate-change velocity on species ende-

mism. Science, 334, 660–664.

Schueler S, Falk W, Koskela J et al. (2014) Vulnerability of dynamic genetic conserva-

tion units of forest trees in Europe to climate change. Global Change Biology, 20,

1498–1511.

Wang TL, Hamann A, Spittlehouse DL, Murdock TQ (2012) Climate WNA: high-reso-

lution spatial climate data for western North America. Journal of Applied Meteorol-

ogy and Climatology, 51, 16–29.

Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Appendix S1. R code to calculate the distance from a grid
cell with a climate value for the present to climate match in
the future (forward calculation). This code is easiest to
understand but fairly slow (about 5 h to process 1 million
grid cells).
Appendix S2. R code to calculate the distance from a grid
cell with a climate value for the present to climate match in
the future (forward calculation). This code is more efficient
using a rounding operation on the data to implement thresh-
olds, and subsequently creating list of unique climate values
with their climate matches (about 20 min to process 1 mil-
lion cells).
Appendix S3. Multivariate extension of the R code shown in
Appendix S2. This sample also uses a more efficient k-near-
est neighbour search, and writes out source and target coor-
dinates in a table for further analysis. The variables p1 and
p2 represent principle components, but they could stand for
any climate variable (about 5 min to process 1 million grid
cells).
Appendix S4. Sample climate data at 1 km resolution for
the geographic extent shown in Fig. 1 to run the code from
Appendices S1–3.

1004 A. HAMANN et al.

© 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 21, 997–1004


