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Abstract. For climate change projections to be useful, the magnitude of change must be
understood relative to the magnitude of uncertainty in model predictions. We quantified the
signal-to-noise ratio in projected distributional responses of boreal birds to climate change, and
compared sources of uncertainty. Boosted regression tree models of abundance were generated
for 80 boreal-breeding bird species using a comprehensive data set of standardized avian point
counts (349 629 surveys at 122 202 unique locations) and 4-km climate, land use, and topographic
data. For projected changes in abundance, we calculated signal-to-noise ratios and examined
variance components related to choice of global climate model (GCM) and two sources of species
distribution model (SDM) uncertainty: sampling error and variable selection. We also evaluated
spatial, temporal, and interspecific variation in these sources of uncertainty. The mean signal-to-
noise ratio across species increased over time to 2.87 by the end of the 21st century, with the signal
greater than the noise for 88% of species. Across species, climate change represented the largest
component (0.44) of variance in projected abundance change. Among sources of uncertainty
evaluated, choice of GCM (mean variance component¼ 0.17) was most important for 66% of
species, sampling error (mean¼0.12) for 29% of species, and variable selection (mean¼0.05) for
5% of species. Increasing the number of GCMs from four to 19 hadminor effects on these results.
The range of projected changes and uncertainty characteristics across species differed markedly,
reinforcing the individuality of species’ responses to climate change and the challenges of one-
size-fits-all approaches to climate change adaptation. We discuss the usefulness of different
conservation approaches depending on the strength of the climate change signal relative to the
noise, as well as the dominant source of prediction uncertainty.

Key words: avian density; boosted regression trees; boreal birds; boreal forest; climate change; global
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INTRODUCTION

Based on recent warming trends and global climate

model (GCM) projections for the next century, the North

American boreal forest is likely to experience particularly

large changes in temperature and moisture availability

(Balling et al. 1998, IPCC 2001). Climate change within

the boreal region has already led to increased

drought- and insect-induced tree mortality (Allen et al.

2010, Michaelian et al. 2010, Peng et al. 2011), wetland

drying (Klein et al. 2005), and wildfire activity (Podur et

al. 2002, Gillett et al. 2004, Soja et al. 2007). By virtue of

its large size and relative intactness, the boreal forest is

thought to provide a large proportion of North America’s

breeding bird habitat (Wells and Blancher 2011).

Therefore, species presently restricted to boreal regions

may experience range reductions if those biomes shift

northward and decrease in area, as projected for North

America (Rehfeldt et al. 2012). However, positive

temperature affinities and broad climatic tolerances

suggest that many other species could expand their

breeding distributions within the boreal region (Cumming

et al. 2014). Recent northward range expansions of

breeding birds have already been documented and

attributed to climate change in temperate North America

(Hitch and Leberg 2007), as well as in Europe (Thomas

and Lennon 1999, Devictor et al. 2008).

As evidence has mounted for anthropogenic climate

change and its widespread effects on species’ distribu-

tions, it has increasingly been incorporated in systematic
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conservation planning efforts (e.g., Hannah et al. 2007,

Carroll et al. 2009, Shaw et al. 2012). Accordingly, there

is growing interest in forecasting the potential ecological

impacts of climate change with an understanding of the

associated uncertainties. Species distribution models

(SDMs) have been widely used to project geographic

changes in species’ climatic habitat suitability (e.g.,

Peterson et al. 2002, Thuiller et al. 2005, Huntley et al.

2008). This correlative approach is based on the premise

that the environmental niche of a species (sensu Grinnell

1917) may be quantified and used to develop spatial

predictions of species’ distributions under given envi-

ronmental conditions, including future climates (Guisan

and Zimmermann 2000, Peterson 2001). Paleo-ecologi-

cal analysis of fossil pollen data suggests that, in the

absence of climate conditions with no current analog,

substitution of space for time is generally valid (Prentice

et al. 1991, Huntley et al. 1993, Roberts and Hamann

2012), although differences in short-term predictability

across taxa and ecological traits do exist (Kharouba et

al. 2009, Dobrowski et al. 2011, Eskildsen et al. 2013).

Passerine birds are not well represented in the fossil

record, but molecular analyses are consistent with avian

tracking of changes in climate and vegetation through-

out Pleistocene glaciation cycles (Mengel 1964, Weir and

Schluter 2004, Lovette 2005). Current climate has been

found to be an important predictor of continental-scale

avian distributions (Araújo et al. 2009, Jiménez-Val-

verde et al. 2011, Cumming et al. 2014), although not

without skepticism (Bahn et al. 2006, Beale et al. 2008).

Species’ realized niches are also limited by biotic

interactions (Hutchinson 1957), but empirical (Lovette

and Hochachka 2006, Rubidge et al. 2011) and

theoretical (Soberón 2007, Araújo and Rozenfeld

2014) evidence suggests that interactions that cannot

be defined climatically are mostly local-scale processes

that have minimal influence on broadscale distribution

patterns (Rehfeldt et al. 2012).

Assuming that climatic niches of species are conserved

over time (Wiens et al. 2010) and equilibrium with

climate is maintained (Araújo and Pearson 2005),

projecting species’ long-term distributional responses

to climate change will be problematic when uncertainty

overpowers the prediction signal. Uncertainty surround-

ing future climate change trajectories (Murphy et al.

2004), combined with high variability among the SDMs

themselves (Elith et al. 2006), has raised concerns about

the utility and reliability of future projections. This has

led to the development of ensemble forecasting ap-

proaches that use multiple models (Araújo and New

2007, Dormann et al. 2008b), as well as efforts to

quantify and compare different aspects of prediction

uncertainty. Although several studies have partitioned

the variance in SDM-based future projections (Dor-

mann et al. 2008a, Buisson et al. 2009, Diniz-Filho et al.

2009, Mbogga et al. 2010, Garcia et al. 2012), few have

evaluated uncertainty with respect to the magnitude of

predicted change (but see Thuiller 2004). High predic-

tion error may be outweighed by large directional

changes in distribution and abundance. Thus, species-

specific estimates of uncertainty (‘‘noise’’) vs. change

magnitude (the ‘‘signal’’) are needed over space and

time.

A primary source of noise in future projections is the

extrinsic variation among GCMs (hereafter ‘‘GCM

uncertainty’’). Although different GCMs are mostly

based on the same physical principles (Jun et al. 2008,

Masson and Knutti 2011, Pennell and Reichler 2011),

the projections that they produce can be quite variable

(Murphy et al. 2004, Kingston et al. 2009). Some GCMs

are clearly better than others (Wang et al. 2007, Scherrer

2011), but metrics for model evaluation are not

straightforward, and prediction patterns among GCMs

can vary spatially as well as temporally (Tebaldi et al.

2005, Kang and Cressie 2013). Thus, the influence of

GCM variability on SDM predictions depends not only

on which model is considered, but also on the variables,

seasons, and geographic areas that are important for a

given species.

Considering the large variation among GCM projec-

tions, it is notable that intrinsic variation among SDM

algorithms has often been found to be even larger

(Dormann et al. 2008a, Buisson et al. 2009, Diniz-Filho

et al. 2009, Garcia et al. 2012; but see Mbogga et al.

2010). However, high SDM variability may be driven by

many factors, including the use of lower-performance

algorithms (Elith et al. 2006, Hijmans and Graham

2006), sparse or inconsistent data (Araújo et al. 2005,

Dormann et al. 2008a), poor or inconsistent model-

building strategies (Meynard et al. 2013), extrapolation

outside the range of data (Elith and Graham 2009), and

improper handling of spatial dependence (Swanson et al.

2012). Some of these sources of error can be manipu-

lated or controlled to reduce prediction uncertainty. In

particular, by reducing model variability due to spatial

dependence, inappropriate extrapolation, and model

specification, one can focus on evaluating two funda-

mental sources of SDM-based (intrinsic) uncertainty:

predictor variable selection and sampling error.

Predictor variable or model selection (hereafter

‘‘variable uncertainty’’) may have a large influence on

SDM predictions (Mbogga et al. 2010, Synes and

Osborne 2011, Braunisch et al. 2013), especially when

important correlated variables decouple in the future.

For example, many species’ distributions are limited by

the extent of agricultural land use (e.g., Siriwardena et

al. 2000) or by the distribution of wetlands (e.g., Calmé

and Desrochers 2000) more than by climate. Agriculture

is constrained by current climate, particularly in

northern environments, and the effects of climate and

land use on bird distributions can be hard to disentangle

(Clavero et al. 2011). However, land use will not

necessarily track climate in the future, such that present

confounding of climate and land use could lead to errors

in future projections. Northern wetland distribution is

also correlated with climate at continental extents, due
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to the propensity for excess moisture to persist in colder

environments. Despite reports of rapid boreal wetland

drying attributed to recent climate change (e.g., Klein et

al. 2005), loss of wetlands may take longer, depending

on size and local hydrology, providing another mecha-

nism by which presently correlated variables could

become decoupled.

Sampling error (hereafter ‘‘sampling uncertainty’’)

results from various elements of epistemic uncertainty

(‘‘uncertainty associated with knowledge of the state of a

system’’; Regan et al. 2005), including measurement

error, sampling bias, and inherent variability in the

abundance of organisms across space and time (Elith et

al. 2002). This type of uncertainty is often reflected in the

differences among SDM algorithms that produce a wide

range of individual model specifications. Multi-model

predictions based on a diverse assortment of SDM

techniques therefore can produce more robust predic-

tions than single models (Thuiller et al. 2009). However,

ensemble methods based on a single type of model (e.g.,

boosted regression trees) have similar strengths (Lawler

et al. 2006), and bootstrapping methods may be used to

estimate sampling error.

Here, we used an extensive boreal bird data set for

North America (Cumming et al. 2010) to evaluate the

signal-to-noise ratio for projected changes in boreal bird

abundance over the next century. We also compared

different sources of uncertainty related to factors

extrinsic (GCM uncertainty) and intrinsic (sampling

and variable uncertainty) to SDMs. We evaluated

spatial, temporal, and species-specific variation in each

source of prediction uncertainty.

METHODS

Study area and avian survey data

We developed climate-change projections for boreal

and southern arctic level II ecological regions as

delineated by the Commission for Environmental

Cooperation (CEC 1997). This included all subunits

within the Taiga, Hudson Plain, and Northern Forests

ecological regions, as well as the southern subunits of

the Tundra ecological region (Alaska Tundra, Brooks

Range Tundra, Southern Arctic), and boreal portion of

the Northwestern Forested Mountains ecological region

(Boreal Cordillera); see Fig. 1. We used data from avian

point-count surveys (Ralph et al. 1995) that were

conducted from 1992 to 2010 within the Nearctic boreal

region (Brandt 2009), as compiled by the Boreal Avian

Modelling (BAM) project (Cumming et al. 2010). This

FIG. 1. Boreal and southern arctic study area shown in light gray, with boreal/arctic boundary as a gray line. Additional
ecoregions projected to move into the study area by 2100 are depicted in darker gray. Point-count locations sampled for modeling
are shown in black.
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included primarily off-road data from numerous inven-

tory, monitoring, research, and impact assessment

projects, including Provincial Breeding Bird Atlases

and the Alaska Landbird Monitoring Survey, but also

roadside point-count surveys conducted as part of the

North American Breeding Bird Survey, BBS (Sauer et

al. 2011). To account for anticipated shifts of southern

climate conditions into currently boreal regions, we

included point-count data from the same period

collected in ecoregions within the continental United

States and southern Canada that are south of the

current boreal region, with climate conditions that are

projected to shift northward into the study area within

the next 100 years (Rehfeldt et al. 2012). This primarily

consisted of BBS data, but also included off-road data

from the western Great Lakes region (Hanowski and

Niemi 1995).

Our initial compilation included data from 128

distinct projects with a total of 356 018 surveys at

125 547 unique locations (Fig. 1). To reduce the

confounding influence of anthropogenic disturbance on

modeled climate relationships, we removed surveys that

had been conducted at agricultural, urban, or barren

sites, according to the CEC’s North American Land

Change Monitoring System (NALCMS) land cover data

set. We also removed surveys known to be conducted

after recent timber harvest or other anthropogenic

disturbance activities (not including fire), as mapped

by Global Forest Watch Canada, the Alberta Biodiver-

sity Monitoring Institute, and the United States LAND-

FIRE program. For our analysis, 349 629 surveys at

122 202 unique locations remained.

Climate data

Interpolated climate data were generated based on the

parameter–elevation regressions on independent slopes

model (PRISM) for the 1961–1990 normal period (Daly

et al. 2008) and bioclimatic variables were derived

according to Wang et al. (2012) and Hamann et al.

(2013). Climate variables were chosen based on several

criteria, including relevance to vegetation distributions

(Hogg and Bernier 2005), avoidance of extreme colin-

earity (Dormann et al. 2013), and a preference for

seasonal over annual variables when they showed high

correlations. The final set of variables included extreme

minimum temperature (EMT), chilling degree-days

(DD0), growing degree-days (DD5), seasonal tempera-

ture difference (TD), mean summer precipitation

(MSP), climate moisture index (CMI), and summer

climate moisture index (CMIJJA). For complete vari-

able definitions, see Appendix A: Table A1.

To represent potential future climates for three

consecutive 30-year periods (2011–2040, 2041–2070,

and 2071–2100), we used projections from the CMIP3

multi-model data set, corresponding to the fourth IPCC

assessment report (Meehl et al. 2007). To limit

computation time, we selected a subset of four

complementary GCMs that spanned a range of project-

ed growing-season temperatures and precipitation levels

within our study area: the German MPI ECHAM5, the

Canadian CCCMA CGCM3.1, the United States

GFDL CM2.1, and the United Kingdom Met Office

HadGEM1 (Appendix A: Table A2, Fig. A1). Model

projections were added as anomalies to the 4-km

resolution 1961–1990 baseline data using the delta

method and bilinear interpolation according to Wang

et al. (2012). The data used in this study are part of a

more comprehensive data set for North America,

described in Appendix A and the Supplement. For this

analysis, we adopted a scenario of high and monoton-

ically increasing emissions (SRES A2; IPCC 2001),

reflecting actual emissions during the decade elapsed

since the scenario was defined (Raupach et al. 2007).

Nineteen GCMs had runs available under the A2

emissions scenario.

The most highly correlated climate variables within

our model-building data set (averaged across bootstrap

samples, as described in the next section) were EMT and

DD01 (r ¼�0.88), followed by MSP and CMIJJA (r ¼
�0.80) (Appendix B: Table B1). Within the boreal and

subarctic study area, the most highly correlated vari-

ables were CMI and CMIJJA (r ¼ 0.91) and CMI and

MSP (r¼ 0.87). Averaging across all 19 GCMs available

for scenario A2, we found limited future decoupling

(decrease in correlation over time) within the set of

climate variables used, although there were differences

between the model-building data set and prediction data

sets (Appendix B: Fig. B1). EMT, DD0, and TD were

the variables among which study area-wide correlations

changed the most over time and were the most different

from correlations within the model-building data set.

Land use and topography data

For a second set of models, we included a set of key

land use/land cover variables that may influence bird

abundance. We used the 250-m NALCMS land cover

data set to calculate the current proportions of

agriculture (AGRICULT), urban development (UR-

BAN), open water (WATER), and wetlands (WET-

LAND) within each 4-km grid cell. We also derived a

compound topographic index, CTI (Gessler et al.

1995)—or wetness index—from a 4-km digital elevation

model and used it as a surrogate for wetland areas. The

CTI was intended to differentiate lowland vs. upland

vegetation types, in order to constrain future projections

accordingly. These variables were not highly correlated

with the seven climate indices or with each other

(Appendix B: Table B1), and only minor future

decoupling was observed.

We did not include proportions of natural upland

land cover types, given the strong climatic basis for

vegetation distribution at this resolution (Hamann and

Wang 2006, McKenney et al. 2007). Limitation of data

quality and coverage prevented adequate modeling and

prediction of these remotely sensed land cover types

relative to climate at such a broad scale.
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Density models

We made use of the abundance information contained
in point-count data by using survey- and species-specific

correction factors, as described in Sólymos et al. (2013),
to standardize density estimates across diverse protocols

and environmental conditions. We examined 80 boreal-
breeding passerine species with mapped breeding ranges

(Ridgely et al. 2005) covering at least 10% of the boreal
region (P. Blancher, unpublished data), as defined by

Partners in Flight bird conservation regions 4, 6, 7, and
8 (Rich et al. 2004), which coincide with the boreal

portion of our study area (Fig. 1). Each species also had
surveys conducted with multiple time and/or distance

intervals, general requirements for fitting the distance
sampling (Buckland et al. 2001) and removal models

(Sólymos et al. 2013) used to generate the correction
factors.

We used boosted regression trees (BRT; De’ath 2007,
Elith et al. 2008) to model avian densities at the level of

the individual point-count station. We used the ‘dismo’
(Hijmans et al. 2011), ‘gbm’ (Ridgeway 2012) and

‘raster’ (Hijmans and van Etten 2012) packages for R (R
Development Core Team 2012) to build BRT models for
each species and then generate spatial predictions. We

used the raw survey count at a point-count location as
the response variable and included the log-transformed

correction factors derived by Sólymos et al. (2013) as
offsets to model avian density (number of males per

hectare). For these count data, we specified a Poisson
generalized boosted model (GBM) in the BRT estima-

tion. The Poisson GBM uses an exponential function of
the linear predictor within a gradient boosting algorithm

(Friedman 2001, Ridgeway 2012).
We defined sampling units as the combination of the

site (route, plot, or other local grouping of point counts)
and 4-km grid cell (n¼39 186 total sampling units); from

each sampling unit with .10 surveys, we randomly
selected a single point-count survey in each bootstrap

iteration. This was to minimize spatial autocorrelation
in surveys among points at the same site and temporal

autocorrelation among surveys at the same point. We
accounted for additional spatial autocorrelation among
nearby sampling units by weighting the selection

probabilities of each sampling unit by the inverse of
the total number of surveys within the 20 3 20 km area

surrounding the sampling unit. We minimized the
influence of single data points by randomly selecting

only one-third of the sampling units with �10 surveys in
each bootstrap replicate. This procedure resulted in a

total of 18 299 sampling units for each bootstrap
replicate.

For each BRT model, we used a stepwise procedure
and 10-fold cross-validation to identify the optimal

number of trees needed to maximize the mean deviance
explained. In each model run, we used a tree complexity

of 3, learning rate of 0.001, and a bag fraction of 0.5. To
ensure that the optimal number of trees could be found

(Elith et al. 2008), we increased the learning rate to 0.005

if the limit of 10 000 trees was achieved, and reduced it to

0.0001 if fewer than 1000 trees were obtained. Using the

optimal number of trees, we calculated 10-fold cross-

validation statistics (proportion of deviance explained

and Pearson’s correlation coefficient) to assess predic-

tion accuracy. For each species, we compared these

statistics between the two variable sets (climate-only and

climateþ land useþ topography) using paired t tests (n¼
11 bootstrap replicates). Significance values were ad-

justed for multiple comparisons using a Holm (1979)

correction. The importance of each model covariate was

assessed by averaging the proportion of total deviance

explained by a particular variable over all 11 bootstrap

replicates.

Abundance projections

For each of the 80 boreal-breeding bird species, we

applied the fitted BRT models to current and future

climate conditions to predict avian density in each 4-km

grid cell in the boreal/southern arctic study area. We

multiplied the predicted density estimates for each grid

cell (males/ha as an estimate of breeding pair density) by

the grid cell area (1600 ha), and summed these values

across grid cells to estimate total potential abundance.

We evaluated two sets of covariates: climate-only and

climate þ land use þ topography. We generated models

for 11 bootstrap samples, which were identical across

species and covariate sets. We evaluated fitted BRTs

under projected climates of alternate GCMs for three

future time periods (2011–2040, 2041–2070, and 2071–

2100).

For each species, we produced a total of 22 models

from 11 bootstrap replicates and two variable sets for

the 1961–1990 baseline period. We then produced a

balanced set of future projections (264 total) for each

species. This included predictions for all combinations

of 11 bootstrap replicates, two variable sets, four

GCMs, and three future time periods, for a total of

286 predictions for each species. To better assess the full

range of variability across GCMs, we also generated an

additional set of projections across the remaining 15

GCMs using just one bootstrap replicate, two variable

sets, and three future time periods. This resulted in an

additional 90 predictions, for a grand total of 376,

including projections for the 1961–1990 baseline period.

Quantifying prediction uncertainty

To evaluate the overall signal-to-noise ratio for the

projected change in overall abundance, we calculated

Cohen’s d (defined as the difference between means

divided by the pooled standard deviation; Cohen 1992)

for each species and each future time period compared

to the baseline period, with variances pooled across the

two time periods of interest for each calculation. For

each time period, d was calculated for the full-factorial

combination of 11 bootstrap replicates, two variable

sets, and four GCMs (n ¼ 88).
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Next, to compare the climate change effect size to the

variance components attributable to each source of
uncertainty, we conducted two analyses of variance

(ANOVA) for each species. Using projected change in
overall abundance as the dependent variable, we first

conducted four-factor ANOVAs with balanced data
using just the four complementary GCMs (n ¼ 264; 11
bootstrap replicates 3 2 variable sets 3 4 GCMs 3 3

future time periods). We partitioned the sums of squares
among the effects of time period (climate change effect),

sampling uncertainty, variable uncertainty, and GCM
uncertainty, as well as the interactions between GCM

and time, and variable and time. Variance components
for each of these factors were calculated as the partial

sum of squares divided by the total sum of squares (g2).
To evaluate the additional uncertainty introduced by

considering the full suite of available GCMs (an
additional 15 models), we also conducted an unbalanced

ANOVA using type II sums of squares (Langsrud 2003)
(n¼354; 264 originalþ90 additional) with the ‘car’ (Fox

and Weisberg 2011) package for R. For comparison
across species, proportional abundance change was

plotted against total uncertainty (sum of variance
components for all uncertainty sources, including
residuals).

Finally, to evaluate the relative magnitudes of each
uncertainty source with respect to abundance projec-

tions, we calculated several versions of the coefficient of
variation (CV); i.e., the standard deviation divided by

the mean. For each species and time period, we
calculated the CV in overall abundance for each source

of uncertainty: sampling, variable, and GCM (future
time periods only). Calculations were based on the full-

factorial set of predictions (four complementary
GCMs), and CV values for each uncertainty source

were calculated with predictions for the other sources of
uncertainty held constant at their average values. To

evaluate spatial patterns of uncertainty for each species,
using the same method, we also calculated the CV in

density (males/ha) at the 4-km grid cell level for each
source of uncertainty in each time period.

RESULTS

Model evaluation

All confidence ranges represent 5th and 95th percen-

tiles except when otherwise noted. Across 80 species,
prediction success of climate-only BRT models, assessed

via cross-validation, averaged 0.222 (0.069, 0.462) in the
deviance explained, and 0.225 (0.071, 0.474) in the

Pearson correlation coefficient (Appendix C: Table C1).
On average across species, the addition of land use and

topographic variables to the climate-only models did not
markedly improve cross-validation correlation (differ-

ence ¼ 0.003 6 0.014 SD) or deviance explained
(difference ¼ 0.002 6 0.011 SD). However, for 18 of
80 species, the climate-only models were significantly

improved by adding the land use and topography
variables, in terms of one or both diagnostics after

multiple comparison correction. The climate-only model

was significantly better for only one species.

Across species, temperature variables, on average,

explained 0.145 (0.038, 0.330) of total deviance, and

moisture variables explained 0.074 (0.017, 0.156) in

climate-only models (Appendix C: Table C2). With

models that also included land use and topographic

variables, 0.051 (0.004, 0.167) of the deviance explained

was accounted for by these additional variables,

primarily agricultural land use proportion and com-

pound topographic index (Appendix C: Table C3).

Based on visual inspection of variable response curves

from all 11 bootstrap runs, a total of 32 species exhibited

clear monotonic decreases in abundance in response to

agricultural land use proportion across bootstrap

iterations; seven species had a clear negative response

to urban land use proportion.

Projected changes in potential abundance

Of the 80 species modeled, 30 were projected to

decline in potential abundance across the boreal and

southern arctic regions by 2040; 34 species by 2070; and

37 species by 2100 (Appendix D: Table D1). Considering

all sources of prediction uncertainty, projected declines

were unequivocal (i.e., confidence intervals around

projected change values did not contain zero) for 15

species by 2040, 18 by 2070, and 30 by 2100. Projected

increases were unequivocal for 35 out of 50 species by

2040, 37 out of 46 by 2070, and 35 out of 43 by 2100.

The distribution of projected species’ responses shifted

negatively and became increasingly dispersed over time,

reflecting larger magnitudes of increase and decrease in

abundance (Table 1).

Most species exhibited a northward (toward higher

elevations) distributional shift in response to climate

change (Appendix D: Fig. D1). Species’ range centroids

shifted an average of 18 m upward in elevation, 3

degrees north in latitude, and 3 degrees west in longitude

by the end of the century (Table 2). Although areas of

high richness of boreal species were projected to shift

northward in distribution, total potential abundance

across all species was projected to decline within the

study area. Decreases in boreal species richness and

density over time were most apparent in the interior west

(Fig. 2). Projected current and future density layers

(mean and CV across all sources of uncertainty) are

available online.8

Prediction uncertainty relative to change

On average across 80 species, the signal-to-noise ratio,

as measured by Cohen’s d, was greater than 1 (i.e., signal

. noise) for all three future time periods (Fig. 3). For

the 2011–2040 time period, mean d was 1.42 (0.11, 3.49),

and was greater than 1 for 46 species (Appendix D:

Table D2). For the 2041–2070 time period, mean d

8 http://borealbirds.databasin.org/
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increased to 2.38 (0.31, 5.32), and was greater than 1 for

59 species. By 2071–2100, mean d was 2.87 (0.73, 5.33),

and was greater than 1 for 70 species.

Results from the balanced ANOVA indicated that the

greatest source of variability in abundance predictions

across species was attributed to the effect of climate

change over time, with mean variance component ¼
0.442 (0.134, 0.760) (Table 3). When 19 GCMs were

considered in an unbalanced ANOVA, the mean

variance component of climate change decreased slightly

to 0.397 (0.098, 0.725) (Table 3). For 21 species,

sampling error represented the largest source of uncer-

tainty (mean variance component ¼ 0.118 across all 80

species) (Table 3; Appendix D: Table D3). For 13 of

these species, sampling uncertainty was greater than the

climate change effect. For 53 species, GCM represented

the largest source of uncertainty (mean variance

component¼ 0.174). However, it was only greater than

the climate change effect for 10 species. When all 19

GCMs were considered, the mean variance component

of GCM uncertainty increased to 0.228, compensating

for a decrease in time- and sampling-related compo-

nents. Variable selection resulted in a large variance

component (up to 0.745) for a few species, but it was the

greatest source of uncertainty for only four species

(mean variance component ¼ 0.047).

By definition, prediction uncertainty (calculated as the

sum of all variance components except climate change

from the balanced ANOVA) was negatively related to

the magnitude of projected change in total abundance

(Fig. 4), but a wide range of response magnitudes was

seen along the range of prediction uncertainty. Predic-

tion uncertainty was generally low relative to the

projected magnitude of change for species with large

projected increases. Species with the highest overall

prediction uncertainty were evenly split between those

with high sampling uncertainty and those with high

GCM uncertainty.

Spatial and temporal uncertainty

The magnitude and relative importance of the three

components of prediction uncertainty changed over time

(Table 4). Averaging across all 80 species, sampling

error was the greatest source of uncertainty in current

predictions of potential population size (as measured by

CV), but uncertainty decreased over time, from an

average of 0.129 (0.036, 0.390) in the current period to

0.099 (0.032, 0.228) by the end of the century. Variable-

related uncertainty exhibited the opposite trend, increas-

ing in importance over time from 0.058 (0.009, 0.163) to

0.115 (0.007, 0.347), as did uncertainty across the four

GCMs, which more than doubled in magnitude from

0.092 (0.028, 0.161) in the 2011–2040 period to 0.216

(0.054, 0.505) in the 2071–2100 period (Table 4). When

19 GCMs were considered, the CV attributed to this

component further increased to 0.266 (0.086, 0.630) by

the end of the century.

Spatial patterns of uncertainty in the density predic-

tions varied widely across species (Appendix D: Fig.

D2), but for the current period it was concentrated in

northern portions of the study area, where data are

sparser (Fig. 5). Over time, areas of high sampling

uncertainty were greatly reduced, as northern areas were

projected to warm and thus more closely resemble the

current climates of well-sampled boreal regions (Fig.

5a). By the end of the century, the small remaining areas

of high variable uncertainty were concentrated in the

western interior boreal region (Fig. 5b). Uncertainty

based on four complementary GCMs increased over

time, eventually overshadowing the other two sources of

TABLE 2. Projected changes over time in indices of spatial distribution (with 5th and 95th
percentiles in parentheses) across 80 boreal-breeding bird species.

Time period Mean latitude (8N) Mean longitude (8W) Mean elevation (m)

Current 56.2 (49.9, 63.3) �98.7 (�115.7, �86.4) 473.2 (371.6, 686.8)
2011–2040 57.2 (50.3, 63.2) �99.9 (�116.0, �88.0) 477.7 (375.1, 698.1)
2041–2070 58.0 (50.9, 64.1) �100.8 (�116.3, �88.4) 481.4 (378.8, 674.5)
2071–2100 59.2 (52.4, 64.9) �101.7 (�114.2, �89.3) 490.9 (387.5, 642.5)

Note: Species-level values are based on 11 bootstrap iterations, two variable sets, and four
GCMs.

TABLE 1. Frequency of projected percentage change in abundance across 80 boreal-breeding bird
species.

Time period

Number of species showing the specified change in abundance

.50%
decrease

25–50%
decrease

25% decrease
to 25% increase

25–50%
increase

50–100%
increase

.100%
increase

2011–2040 0 7 50 18 4 1
2041–2070 2 10 33 7 16 10
2071–2100 10 16 17 6 10 21

Notes: Mean change values for each species are based on 11 bootstrap iterations, two variable
sets, and four global climate models (GCMs). For individual species’ projections, see Appendix D:
Table D1.
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uncertainty in most of the study area (Fig. 5c), with

pockets of high GCM uncertainty concentrated in the

northwest.

DISCUSSION

Signal vs. noise in projections of abundance

For projections of species’ responses to future

climate change to be useful, the magnitude of a species’

projected response needs to be understood relative to

the magnitude of uncertainty (Thuiller 2004). We

found that for 58% of 80 boreal songbird species over

the next 30 years—increasing to 88% of species by the

end of the century—the climate change ‘‘signal’’ in

projections of abundance was greater than the ‘‘noise’’

generated by uncertainty due to a combination of

sampling error, variable selection, and choice of global

climate model (GCM). Despite the future increase in

GCM uncertainty over time, this variability was

swamped by the increasing magnitude of the projected

directional change (positive or negative) in species

abundance. This suggests that the predicted trajectories

of avian responses to future climates are relatively

robust for informing conservation planning and re-

source management decisions under climate change.

Although the strength of a projected warming signal

compared to GCM ‘‘noise’’ has been demonstrated

(Kang and Cressie 2013), we found that the additional

FIG. 2. Projected change over time in (a) boreal-breeding bird species richness and (b) total density of boreal-breeding birds.
Species richness within each 4-km grid cell was calculated by converting density to probability of occurrence and summing
probabilities across 80 species. The boreal/arctic boundary is shown in red.
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uncertainties introduced by the species modeling

process (specifically, sampling error and variable

selection) generally did not overwhelm the climate

change signal. This result appears consistent with

Thuiller (2004), who found a majority (56%) consensus

among different combinations of GCMs and SDMs for

mid-century species turnover projections in European

plant communities.

Uncertainty due to GCM projections

By the end of the century, the largest source of

prediction uncertainty across species was the choice of

FIG. 3. Change in the distribution of signal-to-noise ratios (Cohen’s d ) over time for 80 boreal bird species’ abundance
projections. The violin plots show the shapes of the distribution for each time period, with wider regions representing more
common d values. Violin plots were generated using the beanplot package for R (Kampstra 2008) with a density bandwidth of 0.5
and Gaussian kernel estimation, where bandwidth is the standard deviation of the kernel. Gray lines link each species through the
different time periods. The dashed line represents d¼1; above this line, the climate change signal is greater than the noise due to the
sources of uncertainty examined. Narrow black lines represent the 80 species; longer lines black lines extending beyond the violins
represent mean d values for each time period.

TABLE 3. Variance components for four sources of variability (and interactions) in projected abundance change summarized
across 80 boreal- and arctic-breeding species (a) for four complementary GCMs and (b) for all 19 GCMs available for the A2
emissions scenario (IPCC AR4).

Statistic Time Sampling Variable GCM GCM 3 time Variable 3 time Remaining

a) Four GCMs

Mean 0.442 0.118 0.047 0.174 0.107 0.017 0.095
2 SD 0.404 0.298 0.190 0.224 0.154 0.050 0.172
5th percentile 0.134 0.005 0.028 0.000 0.018 0.000 0.014
95th percentile 0.760 0.424 0.388 0.146 0.260 0.066 0.246
No. spp., largest N/A 21 4 53 1 0 1
No. spp., .Time N/A 13 3 10 6 0 9

b) All 19 GCMs

Mean 0.397 0.090 0.045 0.228 0.134 0.016 0.090
2 SD 0.417 0.261 0.187 0.250 0.172 0.047 0.188
5th percentile 0.098 0.004 0.076 0.000 0.039 0.000 0.011
95th percentile 0.725 0.327 0.457 0.146 0.327 0.061 0.216
No. spp., largest N/A 10 4 58 8 0 0
No. spp., .Time N/A 13 3 21 14 0 11

Notes: Variance components are based on an ANOVA with three future time periods (climate change effect), two variable sets,
and 11 bootstrap sampling iterations. No. spp., largest is the number of species for which that source of uncertainty was greatest;
No. spp., .Time is the number of species for which that source of uncertainty was greater than the time effect. N/A means not
applicable. The last column includes all other sources of variability, including unspecified interactions. For species-specific results,
see Appendix D: Table D2.
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GCM, indicating that multiple complementary GCMs

should be used to capture the range of alternative

futures. Direct comparison with other variance parti-

tioning studies (Dormann et al. 2008a, Buisson et al.

2009, Diniz-Filho et al. 2009, Mbogga et al. 2010,

Garcia et al. 2012) is complicated by differences in taxa,

geographic regions, data resolution, and specific GCMs

and time periods. However, our high-end estimate of

23% of variation due to GCM was comparable to the

other study in this group (Garcia et al. 2012) that

considered a full suite of available GCMs (17 vs. 19 in

our study). The relatively small (6%) increase in variance

from 4 to 19 GCMs reflects the high redundancy among

these models (Masson and Knutti 2011) and suggests

that a well-selected subset can appropriately reflect

climate model uncertainty. Furthermore, GCMs are not

of equal accuracy (Scherrer 2011), so the use of poorly

performing GCMs may be counterproductive (Räisänen

2007). Despite the large amount of uncertainty contrib-

uted by choice of GCM, we identified only 10 species for

which the GCM-related uncertainty was consistently

greater than the overall climate change effect (up to 21

when all 19 GCMs were considered). For these species

primarily associated with deciduous forest (e.g., Mourn-

ing Warbler Geothlypis philadelphia and Canada Warbler

Cardellina canadensis), future abundance trajectories were

often nonlinear and diverged substantially over time, with

larger projected decreases associated with the drier

GCMs (Appendix D: Fig. D3). Areas of high GCM

uncertainty were primarily located in the western interior

FIG. 4. The magnitude of projected proportional change in abundance (y-axis) plotted against the magnitude of uncertainty (x-
axis) by the end of the century (2071–2100) for 80 boreal bird species based on four complementary global climate models (GCMs).
For species code identifications, see Appendix C: Table C1. Symbol fills indicate the greatest source of variability: climate change
effect for species in gray; GCM for species in white; sampling or variable selection (CCSP only) for species in black. The x-axis
represents the sum of all variance components except the climate change effect. The y-axis represents the log-transformed projected
proportional changeþ 1 (y ¼ 0 indicates no change).

TABLE 4. Sources of prediction uncertainty (coefficient of variation) over time averaged across 80 boreal- and arctic-breeding bird
species; confidence intervals in parentheses represent 5th and 95th percentiles.

Time period Sampling Variable GCM-4 GCM-19

1961–1990 0.129 (0.036, 0.390) 0.058 (0.009, 0.163) N/A N/A
2011–2040 0.110 (0.028, 0.305) 0.051 (0.010, 0.136) 0.092 (0.028, 0.161) 0.131 (0.034, 0.276)
2041–2070 0.097 (0.027, 0.247) 0.072 (0.002, 0.230) 0.146 (0.041, 0.344) 0.184 (0.065, 0.385)
2071–2100 0.099 (0.032, 0.228) 0.115 (0.007, 0.347) 0.216 (0.054, 0.505) 0.266 (0.086, 0.630)

Notes: Sampling uncertainty is due to variation across 11 bootstrap samples; model uncertainty is due to variation between
climate-only and climate þ land use þ topography models. Global climate model uncertainty is due to variation across four
complementary models (GCM-4) and all 19 models (GCM-19) available for the A2 emissions scenario (IPCC AR4). N/A means
not applicable.
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boreal region, where available moisture is generally low,

and small fluctuations in moisture may lead to major

vegetation differences such as grassland vs. forest, or

conifer vs. deciduous tree species (Hogg 1994, Schneider

et al. 2009, Mbogga et al. 2010).

Uncertainty due to sampling error

Sampling error in the data used to build the model

explained ;10% of the variance, on average, but much

more for approximately a dozen species. The species

with highest sampling error were generally less well

represented in our data set, mostly due to their high-

latitude affinities but also probably due to low densities;

e.g., Rusty Blackbird Euphagus carolinus and American

Pipit Anthus rubescens. This reflects the obvious fact that

SDM accuracy may be reduced when limited occurrence

data are available (Stockwell and Peterson 2002),

especially when using more complex methods such as

boosted regression trees (Wisz et al. 2008). For this

small subset of species with sparse data, current models

probably could be improved by targeted surveys,

especially in climatically underrepresented northern

regions. However, despite large error bounds, most of

these species were projected to decrease in abundance

over time, with high signal-to-noise ratios. As such, their

models are still informative, especially from the stand-

point of identifying species most vulnerable to climate

change. For almost all species examined, the sampling

uncertainty decreased over time, as poorly sampled

climates to the north were replaced by better-sampled

climates to the south, i.e., eastern deciduous forest and

interior grassland biomes. The relative lack of projected

novel climate emergence (Williams et al. 2007) within

our large study area (Rehfeldt et al. 2012) makes

sampling uncertainty a much smaller problem than

might otherwise be the case (e.g., Stralberg et al. 2009,

Zurell et al. 2012). However, the regions with highest

future sampling-related prediction uncertainty (mostly

in Alaska) did tend to correspond with projected non-

analog climates according to Rehfeldt et al. (2012),

suggesting that signal-to-noise ratios may be much lower

in regions that experience major novel climate develop-

ment. These high-uncertainty regions may also be

related to the partial decoupling of minimum annual

temperature from temperature seasonality and growing-

season heat sums (Appendix B).

Uncertainty due to predictor variables

Variable uncertainty was a minor component of the

variability in future projections for all but a handful of

the species that we evaluated. This probably reflected the

low overall correlation between climate and land use

variables in our data set, as well as the relatively strong

predictive power of climate, compared to land use and

topography, at a 4-km resolution. However, this source

of uncertainty was important for a few species, primarily

those with strong agricultural land use relationships

such as Clay-colored Sparrow Spizella pallida (positive)

and Blue-headed Vireo solitarius (negative). This sug-

gests that, when variable relationships are strong,

minimal broadscale decoupling is sufficient for local

variations in projections to arise. When climate and land

use are confounded, the effects of climate on species’

distributions may be overestimated, thereby misleading

both the climate change projections (Clavero et al. 2011)

and the conservation decisions based upon them.

Consequently, there is a need for observational data

sets that span a range of land use and climate conditions.

This requirement is not always satisfied by roadside data

from the North American Breeding Bird Survey (BBS;

McKenney et al. 2001, Sauer et al. 2011), which

comprise the primary distributional data available for

climate change projection purposes in North America

(e.g., Matthews et al. 2011; National Audubon Society

2014). In the boreal region in particular, roads and

therefore BBS routes are simultaneously biased toward

southern climates and agriculturally dominated land-

scapes (NABCI Canada 2012; Machtans et al. 2014).

Our extensive data set, which included data from more

remote parts of the boreal region, markedly reduced this

bias.

Although the inclusion of land use and topography

variables did not strongly influence range-wide predic-

tions for most species, it was sometimes quite important

locally. By the end of the century, variable uncertainty

was concentrated in the southern portions of the boreal

region, where the potential to support agricultural land

uses in the future is greatest due to projected transition

to prairie ecosystems (Frelich and Reich 2009). Unfor-

tunately, boreal-wide spatially explicit projections of

agricultural expansion generally do not exist, except for

coarse (0.58 grid cell resolution) global projections that

do not indicate any noticeable projected land-use

conversion for the region (Strengers et al. 2004, Jetz et

al. 2007, Hof et al. 2011). Other modeling efforts have

focused on climatic suitability and plant hardiness zones

(McKenney et al. 2001), which can be considered

equivalent to our climate-only model and used to infer

change (i.e., agricultural land uses shift with climate).

However, projections that include socioeconomic and

other policy drivers (e.g., Bierwagen et al. 2010, Radel-

off et al. 2011) would be necessary to adequately project

local responses to the combined effects of climate and

land-use change.

Other potential sources of uncertainty

It is rarely possible to evaluate and quantify all

potential sources of uncertainty, some of which stem

from vagueness of terms (Regan et al. 2005). For

example, our models were intended to predict potential

breeding-bird abundance based on climatic suitability.

Actual bird numbers will depend on multiple demo-

graphic factors (e.g., overwinter survival and dispersal)

that are not easily incorporated into a distribution

modeling approach (but see Keith et al. 2008, Zurell et

al. 2009, Fordham et al. 2013). Even within the more
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tangible sources of ‘‘epistemic’’ (known) uncertainty

(Regan et al. 2005), we could not evaluate every

potential contributor. Given the strong climatic basis

for vegetation distribution at this resolution (Hamann

and Wang 2006, McKenney et al. 2007), we assumed

that avian responses to climate change would be driven

by climate’s direct effects on vegetation, and we did not

attempt to disentangle these effects. Thus the accuracy

of short-term projections may be compromised when

vegetation is in disequilibrium with climate (Svenning

and Sandel 2013). However, because our intent was to

evaluate trajectories of potential change rather than

projected conditions for specific time periods, the

specific years were less important than the climate

conditions that they represent.

Furthermore, our evaluation of variable uncertainty

was limited to a subset of climate and land-use variables

among which future decoupling was limited and

localized. There may be other correlated, but unmea-

sured, climate variables, such as interannual variability

(Cumming et al. 2014), that also decouple in the future,

leading to additional prediction uncertainty. However,

we were limited to existing GCM projections that do not

yet adequately model changes to interannual climate

variability (Mehta et al. 2010). More dramatically,

inadequate representation of major positive feedbacks

such as changes in albedo due to snow/ice (Screen and

FIG. 5. Spatial and temporal representations of the coefficient of variation in projected abundance at the 4-km grid cell level
across multiple sources of uncertainty, averaged over 80 boreal-breeding bird species. (a) Sampling uncertainty due to variation
across 11 bootstrap samples; (b) variable uncertainty due to variation between climate-only and climateþ land useþ topography
models; and (c) GCM uncertainty due to variation across four complementary GCMs.
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Simmonds 2010) and cloud cover (Fasullo and Tren-

berth 2012) may also mean a substantial underestima-

tion of climate sensitivity among current GCMs

(Hansen et al. 2013). Consideration of more extreme

scenarios could overwhelm the signal with noise, but we

have focused here on generally accepted projections

based on the so-called ‘‘fast feedbacks’’ (Rohling et al.

2012) for which short-term responses are better under-

stood. Our results must be interpreted within these

boundaries.

Conservation and management implications

A striking aspect of our results is the wide range of

projected changes and uncertainty characteristics exhib-

ited across species. Without quantitative analysis, we

found some consistent and anticipated patterns among

the species modeled. Species with the most northerly

distributions often had high sampling uncertainty, due

to sparse data, but also had large projected declines,

leading to high signal-to-noise ratios that increased over

time. Southern grassland-associated species were all

projected to increase, but a combination of high variable

uncertainty (due to positive associations with agricul-

ture) and high GCM uncertainty led to low signal-to-

noise ratios among this group. Deciduous forest-

associated species tended to have high GCM uncertain-

ty, given the potential for rapid broadscale conversion of

deciduous and mixed forest to grassland, depending on

‘‘tipping points’’ in available moisture (Price et al. 2013).

Although less common species generally had high

sampling uncertainty, the signal-to-noise ratio for these

species could easily be much higher than for common,

high-abundance species with little projected response to

climate change. Variability among species responses to

climate change may be attributed to a variety of traits,

the importance of which is not well understood

(Kharouba et al. 2013). For birds, larger ranges are

generally associated with lower model accuracy (Stock-

well and Peterson 2002, McPherson et al. 2004,

Segurado and Araújo 2004, McPherson and Jetz

2007). Other factors such as migratory behavior, trophic

level/feeding guild, habitat specialization, and habitat

association (especially wetland affinity) have been found

to be important, but not consistently across regions and

taxonomic subsets (Brotons et al. 2004, Huntley et al.

2004, Hernandez et al. 2006, McPherson and Jetz 2007).

Further analysis is needed to better explain interspecific

variation in climate change response, uncertainty, and

signal-to-noise ratio.

However, this reinforces the individuality of species’

responses to climate change (Williams and Jackson

2007, Stralberg et al. 2009), and highlights the challenges

of adopting one-size-fits-all approaches to climate

change adaptation. Where feasible, land-based ap-

proaches that maintain natural disturbance dynamics

(Noss 2001, Leroux et al. 2007) and facilitate broadscale

distributional shifts, e.g., along gradients (Halpin 1997,

Noss 2001, Hodgson et al. 2009), may prove most

effective in maintaining species diversity without requir-

ing certainty about long-term outcomes. Such approach-

es are particularly viable in northern regions that are still

relatively intact, such as the North American boreal

forest.

However, individual species management is warranted

for species of high conservation concern. Several studies

have demonstrated the long-term inadequacy of relying

solely on current environmental conditions to conserve

and manage future species populations (Araújo et al.

2004, Veloz et al. 2013). Nevertheless, different conser-

vation approaches may be justified depending on the

strength of the climate change signal relative to the

noise. When prediction uncertainty is high, there is

greater risk associated with focusing on areas of

predicted future climatic suitability (Fuller et al. 2008,

Carroll et al. 2009, Carvalho et al. 2011). In these cases,

a greater emphasis on areas of predicted overlap

between current and future climatic distributions, i.e.,

macrorefugia (Keppel et al. 2012), may be appropriate.

Conversely, justification is greater for an emphasis on

future climate space when prediction uncertainty is low

compared to the magnitude of change (Hamann and

Aitken 2012, Oliver et al. 2012). The range of

uncertainty exhibited across species also suggests a need

for differential and quantitative weighting in assess-

ments of climate change vulnerability (e.g., Gardali et al.

2012).

The dominant source of prediction uncertainty is also

an important consideration in evaluating conservation

and research strategies. For some species, especially

those that are sensitive to changes in moisture balance,

different GCMs result in distinctly different future

trajectories. These species may be most effectively

managed in an adaptive framework that considers the

likelihood of alternative climate futures, updated as new

information becomes available about GCM accuracy

and reliability. Long-term monitoring at stationary

locations will be a critical component of adaptive

management efforts (Nielsen et al. 2009). For species

with high sampling or variable uncertainty, the choice of

GCM is less important within the already large range of

future trajectories. In such cases, short-term efforts may

be well spent by improving models through additional

targeted sampling, e.g., in our case, in underrepresented

northern regions, and in agricultural landscapes within

marginal climates, respectively. It will also be important

to study potential climate change effects on agricultural

land uses (David and Marshall 2008), so that they may

be factored into conservation decisions.

Finally, of immediate conservation concern within the

boreal region is the rapid rate of industrial development,

including forestry, energy, and other resource extrac-

tion, which could dramatically alter forest habitat over

coming decades (Schneider et al. 2003, Hauer et al.

2010). Landscape-level effects of anthropogenic distur-

bance on avian communities (Schmiegelow et al. 1997,

Drapeau et al. 2000, Hobson and Bayne 2000), and
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avian vegetation type/age class relationships (Hobson

and Schieck 1999, Schieck and Song 2006) have been

identified regionally, and could be quantified across

larger spatial extents with the development of compre-

hensive, standardized vegetation (e.g., Beaudoin et al.

2014; Cumming et al. in press) and anthropogenic

disturbance (e.g., Pasher et al. 2013) data sets. With a

better understanding of future development and vegeta-

tion trajectories, more temporally and spatially refined

avian projections can also be generated. In the

meantime, we suggest that bioclimatic models, when

constructed carefully with accompanying uncertainty

estimates, can provide useful projections for a majority

of passerine species and should be interpreted in the

context of associated uncertainties to inform conserva-

tion and management decisions.
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