Interpolated climate grids developed with deep neural networks for Africa

is limited to global products that have
methodological and data limitations.

In this study, | am compiling an
extensive weather station data base for
Africa, and creating interpolated climate
grids with deep neural networks.

The grids will then form the basis of a
software package ClimateAF
(programmed by collaborators at UBC as
in Wang et al, 2016 to provide easy access
to 48 monthly climate variables (Tmin,
Tmax, Tave, Prec), and 36 bioclimatic
variables (such as dryness indices) from
1901 to present and for CMIP6 future
projections.

Materials & Methods
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and cover), and ocean-atmoSpheric genera
circulation models (e.g. wind direction and
strength). Some covariate examples are shown
in Fig 1.

Fig 1. Weather stations and examples for covariates

* Deep Neural Networks were then applied to
fine-tune a basic thin-plate spline interpolation
using covariates, according to the schematic
shown in Fig 2.
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Fig 2: Conceptual model of DNN
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Fig 4: Interpolation of Tmax01 (°C)

In Fig 4, the DNN is able to capture the variation

in maximum temperature (January) influenced by
pvation, slope exposure and local lake effects
ample in the Ethiopian highlands. High
atures in this region (horn of Africa) are
enced by the dry Harmattan and

yinds from the Arabic Peninsula.
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Fig 3: Interpolation of PrecO1 (mm)




