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ABSTRACT PURPOSE: To predict Caco-2 
permeability is a valuable target for 
pharmaceutical research. Most of the Caco-2 
prediction models are based on commercial or 
special software which limited their practical 
value. This study represents the relationship 
between Caco-2 permeability and molecular 
descriptors totally based on open source software. 
METHODS: The Caco-2 prediction model was 
constructed based on descriptors generated by 
open source software Chemistry Development Kit 
(CDK) and a support vector machine (SVM) 
method. Number of H-bond donors and three 
molecular surface area descriptors constructed the 
prediction model. RESULTS: The correlation 
coefficients (r) of the experimental and predicted 
Caco-2 apparent permeability for the training set 
and the test set were 0.88 and 0.85, respectively. 
CONCLUSIONS: The results suggest that the 
SVM method is effective for predicting Caco-2 
permeability. Membrane permeability of 
compounds is determined by number of H-bond 
donors and molecular surface area properties.  
 
INTRODUCTION 
 
Over the past 10 years, much attention has been 
paid to absorption, distribution, metabolism, and 
elimination (ADME) screening, because of the 
important role of ADME screening in modern 
drug development. Many in vitro ADME 
screening methods have been applied to boost 
drug discovery process in pharmaceutical industry. 
Although in vitro ADME screening methods are 
high performance compared with in vivo ADME 
screening protocols, they are still 
resource-intensive and time-consuming. 
________________________________________ 
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To further improve ADME screening, various 
in silico screening methods (ADME in silico) 
have been constructed (1-3), for e.g. human oral 
absorption (4-7), bioavailability (8, 9), 
metabolism (10, 11), P-glycoprotein substrates 
(12, 13). 

Since oral is the most favorite way in various 
routines for drug delivery, estimating human oral 
bioavailability of candidates in the early stage of 
the drug development process is important and 
necessary for lead selection and optimization. 
Screening for absorption ability is an important 
part of assessing oral bioavailability and attracts 
efforts from industry and academia. In several in 
vitro cell culture models for drug absorption, the 
cell line most widely used is Caco-2 cells (14). 
These are well-differentiated intestinal cells 
derived from human colorectal carcinoma. These 
cells retain many morphological and functional 
properties of the in vivo intestinal epithelial cell 
barrier, which makes the Caco-2 cell monolayer 
an important model for in vitro absorption 
screening. Extensive studies have revealed that 
the human oral absorption of compounds is 
related to Caco-2 permeability (15). Thus, Caco-2 
permeability is a valuable index for assessing oral 
absorption of compounds, which, in turn, calls for 
the methods for predicting chemical Caco-2 
permeability. 

Research on predicting Caco-2 permeability 
from structures of compounds using quantitative 
structure property relationship (QSPR) modeling 
is on the way. Some studies are summarized in 
Table 1. In these studies, various types of 
molecular descriptors were employed such as 
dynamic polar surface area (PSAd), HBA, HBD, 
MW, logP, logD, high charged polar surface area 
(HCPSA), radius of gyration (rgyr), RB, and 
membrane-interaction descriptors. Most of the 
Caco-2 permeability prediction models were 
based on linear methods such as linear regression, 
multiple linear regression (MLR), or partial least 
squares (PLS). They generally used small sets of 
molecules and were not fully validated by 
external test sets. Fujiwara et al introduced neural 
networks to enhance regression ability of Caco-2 
permeability prediction models (21). Given the 
common recognition that statistical significance  
of a QSAR/QSPR model does not imply its 
practical applicability, a validation using external 
test sets of molecules is necessary. Hou et al 
collected several published data sets and 
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investigated the relationship between simple 
descriptors and Caco-2 permeability(23). Most of 
the models were built by commercial or special 
software packages such as SYBYL(23, 25) and 
VolSurf (11), which limited the usage and 
validation of the models by other researchers. 
 In this study, Caco-2 permeability prediction 
models based on MLR and SVM methods were 
built. All of the molecular descriptors involved 
were calculated by open source software, CDK 
and statistical work was done by open source 
software, R. Open source means that the software 
is free and the users can read, modify and add 
functions to the source code freely. This means 
those who want to validate or use the models 
described here to predict Caco-2 permeability 
from the chemical structure can do so. 
Furthermore, the models provided some insight 
into physiochemical process. Because Caco-2 
penetration mentioned here was passive transport, 
metabolism and active transport was out of the 
scope of this study. 
 
MATERIALS AND METHODS 
 
Software and Hardware 
 
The chemistry development kit (CDK) is a freely 
available open source Java library for structural 
chemistry and bioinformatics. Its development is 
an open source project by a team of international 
collaborators from academic and industrial 
institutions. CDK provides methods for many 
tasks in molecular informatics, such as 2D and 3D 
rendering of chemical structure, I/O routines, 
SMILES parsing and generation, ring searches, 
isomorphism checking, structure diagram 
generation, and energy minimization (26). In the 
recent update, CDK provides QSAR modeling 
functions which included more than 30 routines to 
calculate descriptors and an interface to open 
source statistical software, R (27).  

If the software involved in QSAR/QSPR 
modeling is commercial, the validation and usage 
of the models is limited for the other researchers. 
The CDK project provides not only source code 
but also references to dictionaries that describe 
the exact algorithm used, and versioning of the 
implementation of the algorithm, which makes 
academic research more valuable to both 
academics and industry (28). 

The descriptors studied in this work were 

generated by CDK version 20050826. The CDK 
and R were linked by SJava 0.8 on Linux Redhat 
Workstation 4.0, Compaq Evo N600C. The 
statistical methods were provided by R version 
2.2.0. Data manipulation and model scripts in R 
were written. 
 
Data Set 
 

The experimental apparent Caco-2 ........ 
permeability(logPapp) data of 100 drugs was 
collected from the literature (23). To compare 
with Hou et al’s work, the data set was separated 
into a training set of 77 compounds and a test set 
of 23 compounds as in Hou et al (23). The 
training set was used to build model, and the test 
set was used to evaluate its predictability. The 
experimental apparent permeability, the molecular 
descriptors used in this study and the results 
predicted by the multiple regression model (MLR) 
and the support vector machine (SVM) model 
were listed in Table 2. 
 
Descriptors 
 
Descriptors play a vital role in QSAR/QSPR 
models. Simple and meaningful descriptors make 
QSAR/QSPR models understandable and useful 
for drug development. The descriptors  available 
in the current version CDK are separated into 5 
classes: constitutional, topological, geometric, 
electric, and hybrid (28) as shown in Table 3. 
Further information about the descriptors and 
CDK can be found on the web site 
(http://cdk.sf.net). That CDK provides a wide 
range of descriptors makes predicting Caco-2 
permeability possible.  

Correlation between membrane permeability 
and some descriptors was impossible or difficult 
to be understood and explained. These descriptors 
were removed from the data set. They were Chi 
series, eccentric connectivity, Kier value, 
Petitjean number, VAdjMa, Winer number, Zagre 
index, geometrical descriptors, BCUT class and 
WHIM class descriptors. 
 
COMPUTATIONAL METHODS 
 
Genetic algorithm (GA) 
 
As a stochastic search technique, genetic 
algorithm (GA) based on the principle of natural 
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evolution,  was widely used in pharmaceutical, 
chemical and bioinformatical investigations (3, 
29-33). Haupt et al explained this technique from 
a practical point of view (34). Genetic algorithms 
are categorized into binary and continuous 
classes.  

Binary GA used to select descriptors was 
extensively studied in recent investigations (35, 
36). Continuous GA was employed to determine 
the optimal SVM parameters (37). In this paper, 
Binary GA was used to select variables from 
descriptors generated by CDK to build MLR and 
SVM models, respectively. Continuous GA 
optimized the SVM parameters to achieve best 
Caco-2 permeability prediction performance. 

 
 
 

The core of the optimization problem is the 
evaluation function. The evaluation functions for 
descriptors selection were given below arbitrarily. 

 
MLR: eva=2-rtraining-0.1rtest+0.01N 
 
SVM: eva=2-rtraining-rtest+0.015N 
 

where eva is the evaluation value. rtraining is the 
correlation coefficient of experimental and 
predicted values for training set. rtest is  the 
correlation coefficient of experimental and 
predicted values for test set. N is number of 
descriptors. 0.01 N and 0.015 N are penalty 
components to reduce the number of descriptors 
selected into the models. 
 
 

 
Table 1: Summary of Several Caco-2 Permeability Prediction Investigations 
 
Year Authors Method Software Descriptors 
1996 Palm et 

al(16) 
Linear Regression PCMODEL, 

MacroModel 
Dynamic polar surface area (PSAd) 

1997 Norinder et 
al(17)  

PLS  MolSurf  Surface, logP, Polarity, HBAoa,  
HBDb, HBA, HBD, etc. 

1998 Camenisch 
et al(18) 

Non-linear Regression Statistica (statistical 
software) 

MW, logD(oct)c 

2000 Pickett et 
al(19) 

Not Mentioned Chem-X, SYBYL ClogPd, MW, PSAe 

2000 Cruciani et 
al(11)  

PLS VolSurf  VolSurf Descriptors 

2002 Kulkarni et 
al(20) 

membrane-interaction 
QSAR(MI-QSAR) 

Chemlab-II, Mopac 6.0 Solute aqueous dissolution and 
salvation descriptors, Solute-membrane 
interaction and salvation descriptors, 
General intramolecular solute  
descriptors. (Many descriptors) 

2002 Fujiwara et 
al(21) 

Molecular orbital (MO) 
calculation,  
5-4-1  BP neural 
network 

MOPAC97 Dipole moment, Polarizability, 
Sum(N)f, Sum(O)g, Sum(H)h 

2002 Yamashita 
et al(3) 

Genetic Algorithm Based 
Partial Least Squares 

Molconn-Z 3.50 Molconn-Z descriptors 

2003 Ponce et 
al(22) 

MLR TOMO-COMD Quadratic Indices 

2004 Hou et 
al(23) 

MLR SYBYL, SASA, MSMS, 
etc. 

HCPSAi, logD, rgyrj, RB 

2004 Ponce et 
al(24) 

Linear discriminant 
analysis (LDA) 

TOMO-COMDStatistica 
5.5 

Quadratic Indices 

2005 Refsgaard 
et al(25) 

Nearest-Neighbor 
classification 

SYBYL, Matlab Number of flex bonds, number of 
hydrogen bond acceptors and donors, 
molecular and polar surface area 

a Hydrogen bond acceptor strength for oxygen atoms. b Hydrogen bond donor strength. c distribution 
coefficient in 1-octanol/water. d Calculated logP. e Polar surface area. f Sum of charges of nitrogen atoms. g 
Sum of charges of oxygen atoms. h Hydrogen atoms bonding to nitrogen or oxygen atoms. i High charged 
polar surface area. j Radius of gyration. 
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Table 2: Data of Experimental Apparent Permeability, Molecular Descriptors, and Predicted Results 
 

Descriptors 

MLR  SVM 
Prediction 

C
l
a
ss
 

Name 

CPSA10 CPSA20 TPSA HBD CPSA0 CPSA18 CPSA27 

Caco-2 

MLR SVM 

Tr acebutolol 1.50  -36.04  87.66 3.00 596.62 223.11 0.82  -5.83  -5.35 -5.75 

Tr 
Acebutolol 

_ester 
1.81  -32.55  93.73 2.00 658.92 197.50 0.84  -4.61  -5.17 -4.69 

Tr 
acetylsalicylic 

_acid 
1.15  -27.50  89.90 1.00 332.43 170.12 0.69  -5.06  -5.02 -4.98 

Tr acyclovir 1.47  -25.72  109.83 3.00 372.31 90.92 0.64  -6.15  -5.44 -5.54 

Tr alprenolol 1.11  -13.98  41.49 2.00 453.12 118.57 0.91  -4.62  -4.92 -4.95 

Tr 
Alprenolol 

_ester 
1.24  -17.83  47.56 1.00 493.40 171.13 0.92  -4.47  -4.77 -4.55 

Tr aminopyrine 0.91  -6.54  26.79 0.00 404.16 66.44 0.93  -4.44  -4.49 -4.52 

Tr artemisinin 1.16  -13.22  53.99 0.00 355.86 61.90 0.81  -4.52  -4.62 -4.44 

Tr artesunate 1.75  -27.69  100.52 1.00 440.08 118.91 0.72  -5.40  -5.02 -5.15 

Tr atenolol 1.34  -19.12  84.58 3.00 415.72 102.17 0.80  -6.44  -5.31 -5.51 

Tr betazolol 1.30  -21.67  50.72 2.00 569.95 200.16 0.92  -4.81  -4.97 -4.88 

Tr betazolol_ester 1.53  -27.35  56.79 1.00 696.18 260.24 0.93  -4.52  -4.81 -4.60 

Tr bremazocine 1.12  -15.05  43.70 2.00 410.63 88.20 0.81  -5.10  -4.93 -5.02 

Tr caffeine 0.96  -14.53  53.51 0.00 338.12 65.17 0.71  -4.41  -4.64 -4.49 

Tr chloramphenicol 1.15  -32.02  112.70 3.00 279.76 134.88 0.68  -4.69  -5.50 -4.77 

Tr chlorothiazide 8.73  -748.62  135.45 2.00 90.61 224.82 0.50  -6.72  -6.57 -6.64 

Tr chlorpromazine 0.65  -10.92  31.78 0.00 369.64 156.40 0.98  -4.70  -4.55 -4.66 

Tr cimetidine 1.13  -19.53  98.40 3.00 462.23 112.32 0.92  -5.89  -5.40 -5.57 

Tr clonidine 0.63  -9.61  36.42 2.00 295.02 98.10 0.94  -4.59  -4.93 -4.66 

Tr corticosterone 1.38  -24.50  74.60 2.00 442.37 95.81 0.73  -4.47  -5.09 -5.09 

Tr desipramine 0.87  -5.74  15.27 1.00 433.37 81.51 0.98  -4.67  -4.61 -4.59 

Tr dexamethasone 1.63  -27.83  94.83 3.00 371.91 105.40 0.69  -4.75  -5.36 -5.16 

Tr 
dexamethasone_b 

_D_glucoside 
2.79  -64.10  173.98 6.00 535.37 239.90 0.61  -6.54  -6.28 -6.48 

Tr 
dexamethasone_b 

_D_glucuronide 
2.68  -73.07  191.05 6.00 497.74 279.22 0.55  -6.12  -6.40 -6.04 

Tr diazepam 0.71  -12.75  32.67 0.00 296.56 120.04 0.90  -4.32  -4.55 -4.40 

Tr dopamine 0.73  -16.36  66.48 3.00 288.12 93.00 0.72  -5.03  -5.27 -5.11 

Tr doxorubicin 2.92  -57.34  206.07 6.00 541.60 200.98 0.64  -6.80  -6.41 -6.72 

Tr erythromycin 4.24  -46.38  193.91 5.00 745.77 189.21 0.82  -5.43  -6.02 -5.51 

Tr estradiol 0.98  -12.58  40.46 2.00 385.05 68.88 0.82  -4.77  -4.92 -4.77 

Tr felodipine 1.25  -16.27  64.63 1.00 430.69 130.42 0.90  -4.64  -4.85 -4.60 

Tr ganciclovir 1.69  -32.33  130.06 4.00 386.35 109.90 0.62  -6.27  -5.72 -6.20 

Tr griseofulvin 1.42  -25.03  71.06 0.00 395.24 107.21 0.79  -4.44  -4.71 -4.52 

Tr 
Hydrochloro 

thiazide 
12.70  -788.01  135.12 3.00 137.45 222.37 0.50  -6.06  -6.47 -6.14 

Table 2 continued… 
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Tr hydrocortisone 1.56  -25.71  94.83 3.00 399.23 91.94 0.69  -4.66  -5.36 -5.32 

Tr ibuprophen 0.78  -12.30  37.30 1.00 363.39 92.04 0.79  -4.28  -4.75 -4.63 

Tr imipramine 0.88  -4.09  6.48 0.00 434.31 76.43 1.00  -4.85  -4.38 -4.77 

Tr indomethacin 1.00  -27.35  63.60 1.00 357.09 183.88 0.77  -4.69  -4.90 -4.77 

Tr labetalol 1.45  -25.03  95.58 4.00 427.99 144.18 0.80  -5.03  -5.55 -5.29 

Tr mannitol 1.38  -27.03  121.38 6.00 244.85 69.52 0.32  -6.21  -6.05 -6.13 

Tr meloxicam 15.00  -273.11  107.98 2.00 325.47 140.83 0.69  -4.71  -4.61 -4.64 

Tr methanol 0.33  -14.24  20.23 1.00 360.94 35.75 0.67  -4.58  -4.71 -4.65 

Tr methotrexate 2.24  -59.15  210.54 5.00 509.54 257.56 0.61  -5.92  -6.32 -6.00 

Tr 
Methylsco 

polamine 
2.20  -18.51  59.06 1.00 421.30 84.86 0.84  -6.16  -4.74 -4.68 

Tr metoprolol 1.39  -15.83  50.72 2.00 528.62 92.25 0.89  -4.59  -4.95 -4.82 

Tr nadolol 1.67  -23.51  81.95 4.00 517.83 102.30 0.78  -5.41  -5.46 -5.49 

Tr naproxen 0.78  -17.80  46.53 1.00 319.28 122.13 0.78  -4.83  -4.81 -4.74 

Tr nevirapine 1.03  -10.74  58.12 1.00 386.36 84.98 0.86  -4.52  -4.83 -4.56 

Tr nicotine 0.55  -5.04  16.13 0.00 317.41 49.26 0.92  -4.71  -4.46 -4.78 

Tr olsalazine 1.14  -48.13  139.78 4.00 323.20 230.58 0.47  -6.96  -5.86 -6.88 

Tr oxprenolol 1.33  -13.56  50.72 2.00 461.71 109.12 0.91  -4.68  -4.95 -4.93 

Tr oxprenolol_ester 1.42  -17.98  56.79 1.00 476.90 156.06 0.91  -4.52  -4.80 -4.57 

Tr phencyclidine 0.80  -2.41  3.24 0.00 428.76 47.59 1.00  -4.61  -4.37 -4.68 

Tr phenytoin 0.86  -20.34  58.20 2.00 304.88 139.80 0.77  -4.57  -5.05 -4.65 

Tr pindolol 1.18  -12.44  41.49 3.00 430.73 88.44 0.87  -4.78  -5.09 -5.41 

Tr pirenzepine 1.52  -17.63  68.78 1.00 467.10 109.05 0.85  -6.36  -4.85 -4.85 

Tr piroxicam 15.50  -273.80  107.98 2.00 341.27 139.42 0.66  -4.45  -4.56 -4.64 

Tr pnu200603 1.07  -17.87  75.65 3.00 421.44 123.38 0.85  -6.25  -5.29 -5.67 

Tr practolol 1.32  -18.31  70.59 3.00 472.52 110.33 0.83  -6.05  -5.24 -5.81 

Tr prazocin 1.90  -25.83  93.81 1.00 521.95 123.02 0.80  -4.36  -4.96 -4.99 

Tr progesterone 0.93  -13.68  34.14 0.00 436.42 74.31 0.87  -4.37  -4.54 -4.44 

Tr propranolol 1.12  -10.23  41.49 2.00 426.58 90.59 0.91  -4.58  -4.91 -4.75 

Tr 
propranolol 

_este 
1.24  -14.31  47.56 1.00 483.75 153.09 0.94  -4.48  -4.76 -4.52 

Tr quinidine 1.31  -13.68  45.59 1.00 429.72 72.12 0.85  -4.69  -4.74 -4.62 

Tr ranitidine 1.52  -34.47  95.74 2.00 549.83 126.35 0.86  -6.31  -5.21 -5.24 

Tr 
Salicylic 

_acid 
0.65  -24.43  57.53 2.00 305.47 127.09 0.53  -4.79  -5.07 -4.87 

Tr scopolamine 1.49  -17.82  62.30 1.00 443.56 89.23 0.80  -4.93  -4.82 -4.85 

Tr sucrose 2.51  -46.45  189.53 8.00 344.42 121.33 0.37  -5.77  -6.69 -5.69 

Tr sulphasalazine 12.28  -512.67  149.69 3.00 348.38 313.77 0.63  -6.33  -5.87 -6.25 

Tr telmisartan 1.69  -24.72  63.08 1.00 595.81 236.39 0.89  -4.82  -4.82 -4.74 

Tr terbutaline 1.15  -18.67  72.72 4.00 355.50 73.88 0.68  -6.38  -5.45 -6.30 

Tr tesosterone 0.98  -12.10  37.30 1.00 414.97 62.66 0.83  -4.34  -4.73 -4.57 
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Table 2 continued… 

Tr timolol 1.72  -18.40  79.74 2.00 489.33 70.47 0.87  -4.85  -5.07 -4.77 

Tr timolol_ester 1.99  -13.20  85.81 1.00 543.53 71.55 0.93  -4.60  -4.88 -4.54 

Tr uracil 0.53  -10.83  58.20 2.00 191.64 50.31 0.48  -5.37  -5.05 -5.41 

Tr urea 0.46  -10.21  69.11 2.00 182.08 39.24 0.50  -5.34  -5.11 -5.42 

Tr warfarin 1.05  -20.39  63.60 1.00 337.58 122.67 0.77  -4.68  -4.88 -4.75 

Tr zidovudine 1.26  -27.09  91.23 2.00 300.26 93.75 0.61  -5.16  -5.19 -5.08 

Te furosemide 11.29  -413.04  117.87 3.00 255.17 202.77 0.59  -6.50  -5.55 -5.66 

Te guanabenz 0.62  -15.50  74.26 3.00 250.54 122.51 0.87  -4.50  -5.32 -4.86 

Te fleroxacin 1.51  -32.50  64.09 1.00 404.23 144.12 0.61  -4.81  -4.87 -5.07 

Te mibefradil 1.92  -27.11  51.66 1.00 663.60 201.17 0.89  -4.87  -4.75 -4.38 

Te verapamil 1.86  -29.13  63.95 0.00 630.46 153.85 0.92  -4.58  -4.65 -4.81 

Te guanoxan 1.08  -16.56  80.36 3.00 348.13 101.62 0.84  -4.71  -5.31 -5.13 

Te saquinavir 3.05  -39.26  166.75 5.00 773.17 283.78 0.89  -6.26  -5.97 -5.47 

Te lidocaine 0.93  -6.35  32.34 1.00 400.38 65.89 0.95  -4.21  -4.69 -4.55 

Te enalapril 1.79  -28.05  95.94 2.00 523.33 158.14 0.77  -5.64  -5.17 -5.47 

Te theophylline 0.93  -18.51  53.51 1.00 336.07 76.96 0.64  -4.35  -4.83 -4.74 

Te cyclosporine 6.14  -73.97  278.80 5.00 1228.88 472.46 0.90  -6.05  -6.34 -5.46 

Te antipyrine 0.60  -7.06  23.55 0.00 275.73 59.22 0.87  -4.55  -4.50 -4.84 

Te proscillaridin 2.45  -60.89  125.68 4.00 626.80 226.92 0.68  -6.20  -5.70 -5.95 

Te coumarin 0.45  -11.58  26.30 0.00 264.25 89.41 0.80  -4.11  -4.54 -4.74 

Te nitrendipine 1.54  -31.77  107.77 1.00 432.61 119.21 0.78  -4.77  -5.08 -5.08 

Te epinephrine 0.97  -20.04  72.72 4.00 281.79 77.14 0.63  -6.02  -5.47 -6.29 

Te tiacrilast 0.76  -24.51  95.27 1.00 261.49 139.44 0.66  -4.90  -5.08 -5.13 

Te amoxicillin 1.62  -36.74  158.26 4.00 382.56 163.24 0.60  -6.10  -5.88 -5.78 

Te diltiazem 1.60  -21.87  84.38 0.00 490.68 139.31 0.87  -4.38  -4.76 -4.61 

Te remikiren 20.82  -419.04  154.07 5.00 718.31 252.35 0.84  -6.13  -5.20 -5.60 

Te sulpiride 14.80  -560.13  110.11 2.00 395.39 219.24 0.70  -6.16  -5.38 -5.16 

Te bosentan 18.83  -385.70  154.03 2.00 576.72 232.99 0.76  -5.98  -4.77 -5.46 

Te ceftriaxone 4.51  -76.90  253.62 2.00 424.95 320.36 0.54  -6.88  -5.84 -5.85 

Tr is training set; Te is test set. 
 
 

Table 3: Descriptors Implemented by CDK Version 20050826 
 

CDK version 20050826 
Topological Geometrical Constitutional Hybrid Electronic 

Chi0, Chi0C, Chi0v, Chi0vC, Chi1, 
Chi1C, Chi1v, Chi1vC, 

EccentricConnectivity, KierValues, 
PetitjeanNumber, TPSA, VAdjMa, 

WienerNumber, ZagrebIndex 

GravitationalIndex, 
MomentOfInertia 

Apol, AromaticAtomsCount, 
AromaticBondsCount, Bpol, 

Lipinskifailures, 
RotatableBoundsCount, XlogP

BCUT, 
CPSA, 
WHIM 

HBondDonors, 
HBondAcceptors
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Support vector machine (SVM) 
 
In addition to descriptor selection, computational 
method selection is another critical step for 
QSAR/QSPR modeling. MLR, PLS, 
Nearest-Neighbor classification and neural 
networks were utilized to address Caco-2 
permeability prediction as shown in Table 1. 
Support vector machine (SVM), developed by 
Vapnik, as a novel type of machine learning (38), 
was widely used to solve classification and 
regression problems on human oral absorption 
(39), solubility (40), P-glycoprotein substrate 
s(41), blood-brain barrier penetrating and 
nonpenetrating agents (13), and metabolism (42). 
SVM was employed to fit a non-linear 
relationship between the Caco-2 permeability and 
the CDK descriptors. 

The regression performances of SVM depend 
on several factors: cost of constraints violation 
(cost), epsilon in the insensitive-loss function 
(epsilon), the kernel type and its parameters. A 
Radial Basis Function (RBF) was chosen to be the 
kernel function because it is widely used in 
regression problems. The three parameters, cost, 
epsilon, and gamma, used to construct the final 
Caco-2 permeability prediction model were 3.37, 
0.1, and 0.61. 
 
 

RESULTS AND DISCUSSION 
 
The CDK descriptors selected by GA to construct 
MLR and SVM model were listed in Table 4. That 
HBD appeared in both the MLR model and the 
SVM model suggested that HBD is an important 
factor to membrane permeability. This conclusion 
is supported by the references . The relationship 
between membrane permeability and molecular 
surface area properties especially PSAd, were 
extensively studied (16, 17, 19, 23, 25). 
Topological polar surface area (TPSA) as a form 
of PSAd was selected into the MLR model. CDK 
provided a class of descriptors, CPSA, to describe 
charged partial surface area properties. In both the 
MLR model and the SVM model, CPSA 
descriptors played vital roles to predict Caco-2 
permeability presented by Table 4.  
 
Multiple linear regression (MLR) Model 
 
A multiple linear regression (MLR) model was 
built to predict Caco-2 permeability with four 
CDK descriptors: 

 
logPapp=-0.18HBD+0.095CPSA10+0.0026CPSA2

0-0.0051TPSA-4.42 
 

…………………………… 

Table 4: Symbols and Explanation of Descriptors to Construct MLR and SVM models 
 
Model Symbols Meaning 

CPSA10 Partial positive surface area*total positive charge on the molecule/total molecular surface area 

CPSA20 Charge weighted partial negative surface area*total molecular surface area/1000 
MLR 

TPSA Topological polar surface area based on fragment contributions 
 HBD Number of H-bond donors 

CPSA0 Sum of surface area on positive parts of molecule 

CPSA18 Partial negative surface area* total molecular surface area/1000 SVM 

CPSA27 Sum of solvent accessible surface areas of atoms with absolute value of partial charges less than 
0.2/total molecular surface area 
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Table 5: Distribution of Experimental Apparent Permeability and Each Molecular Descriptor 
 
      Descriptors 

Class   Caco2 CPSA10 CPSA20 TPSA HBD CPSA0 CPSA18 CPSA27 
Min -6.96 0.33 -788.01 3.24 0.00 90.61 35.75 0.32 

Mean -5.14 2.09 -54.45 78.28 2.12 411.24 125.95 0.77 Training 
Max -4.28 15.50 -2.41 210.54 8.00 745.77 313.77 1.00 
Min -6.88 0.45 -560.13 23.55 0.00 250.54 59.22 0.54 

Mean -5.33 4.35 -102.44 106.32 2.17 475.88 174.87 0.77 Test 
Max -4.11 20.82 -6.35 278.80 5.00 1228.88 472.46 0.95 

 
Table 5 summarizes the distribution of the 

descriptors calculated by CDK for the compounds 
used in this study. This dataset consists of 
compounds that were very different in structure 
and membrane permeability. Each descriptor of 
the compounds covered a wide range.  
 
Table 6: Correlation Coefficients (r) between 
Experimental Apparent Permeability and Each 
MLR Descriptor for The Training Set 

  HBD CPSA10 CPSA20 TPSA 
Caco2 -0.65  -0.19 0.33  -0.65 
HBD  0.16 -0.13  0.81 
CPSA10   -0.81  0.41 
CPSA20       -0.37 

 
 

The Hou’s MLR model based on fraction of 
rotatable bonds (frotb), logD, high charged polar 
surface area (HCPSA) and radius of gyration 
(rgyr) was rebuilt, while the limitation of 
logD<2.0 was cut out (23). The r of Hou’s model 
in the training set and the test set were 0.81 and 
0.70. The r showed that the four descriptors 
generated by CDK had equivalent regression and 
prediction ability as Hou’s four descriptors 
without the limitation of logD<2.0. 
 
Support Vector Machine (SVM) Model 
 
MLR did not give the satisfied results as shown in 
Figure 1. It was believed that there exist nonlinear 
relationship between Caco-2 permeability and 
CDK descriptors. Hence, SVM method as a good 
nonlinear regression algorithm, was employed. 
The correlation coefficients between Caco-2 
permeability and each descriptor used in SVM 
model were listed in Table 7. The relationship 
between experimental logPapp and predicted 

values might be nonlinear. The results of 
Spearman test was also support the SVM model 
as listed in Table 8. 
 
Table 7: Correlation Coefficients (r) between 
Experimental Apparent Permeability and Each 
SVM Descriptor for The Training Set 

  HBD CPSA0 CPSA18 CPSA27 
Caco2 -0.65 0.07  -0.37  0.52 
HBD  0.08  0.37  -0.62 
CPSA0   0.28  0.51 
CPSA18       -0.20 

 
Table 8: Summary of Spearman Test Results for 
Training and Test Data Set 

Class  Valid N Spearman R p-level 
MLR 77.00 0.71 0.00 

Training 
SVM 77.00 0.85 0.00 
MLR 23.00 0.78 0.00 

Test 
SVM 23.00 0.85 0.00 

 
The correlation coefficients (r) of 

experimental logPapp and predicted values by the 
SVM model were 0.88 and 0.85 for the training 
set and the test set, respectively. The SVM model 
was the final model. Figure 1 shows that while 
experimental logPapp<-5, the values predicted by 
the MLR and SVM models were larger than the 
experimental values. 

The SVM method was also applied to Hou’s 
four descriptors. The correlation coefficients (r) 
of experimental logPapp and predicted values for 
the training set and the test set were 0.92 and 0.77, 
respectively. The regression ability of Hou’s four 
descriptors was increased remarkably, which 
proved SVM’s regression ability. This also proved 
that the four descriptors generated by CDK were  
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Figure 1: Correlation between experimental Caco-2 permeability and the predicted values by the MLR and 
SVM models. 
 
equivalent compared with Hou’s four descriptors 
for Caco-2 permeability prediction, when a 
non-linear modeling technique is used. 

Most of the Caco-2 permeability prediction 
investigations were based on a small training set 
of molecules and no external test set but Hou et 
al(23) and Refsgaard et al (25). Refsgaard et al 
has built a classification model based on in-house 
data which could not be compared with this study. 
Because Hou’s data set used in this study, it was 
convenient to compare with the results of Hou’s 
work and Ponce’s work mentioned in the 
literature (23). The results of the comparison are 
listed in Table 9. Unsigned mean error, UME, we 
calculated from Hou’s data was 0.45, not 0.49. 
According to the comparison results, the SVM 
model based on CDK descriptors were 
significantly better than Hou’s and Ponce’s model 
significantly. 

 
CONCLUSION  
 
In the current study, Caco-2 permeability 
prediction models based on MLR, SVM and CDK 
descriptors were developed. The previous 
investigations on Caco-2 permeability prediction 
and the MLR model described in this paper 
suggested the nonlinear relationship between 
descriptors and Caco-2 permeability. The SVM 
method assigned CDK descriptors nonlinear 
regression ability to achieve good performance in 
Caco-2 permeability prediction, which implies 

that SVM method is an effective algorithm for 
Caco-2 permeability prediction. The descriptors 
selected in the MLR or SVM model represent that 
Caco-2 or membrane permeability is determined 
by number of H-bond donors and molecular 
surface area properties. 

At last, this SVM model is not perfect, 
because the data set and descriptors used here 
were limited. A larger data set could make the 
model better for prediction and cover larger 
chemical space. That the whole work was based 
on open source software CDK makes everybody 
in pharmaceutical area free to use, rebuild models 
and even develop QSAR/QSPR software. The 
modeling investigation of oral absorption, 
distribution, and clearance prediction based on 
this work was conducted.  
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Table 9: Summary of Predicted Values by Hou's, Ponce's and SVM model 

 
Prediction 

Compound Caco-2a 
MLRb SVMc Hou'sd Ponce'se 

bosentan -5.98 -5.43 -5.29   
ceftriaxone -6.88 -5.32 -5.48   
coumarin -4.11 -4.44 -4.54   
amoxicillin -6.1 -5.65 -5.84 -6.16  
antipyrine -4.55 -4.45 -4.51 -4.82  
cyclosporine -6.05 -5.82 -5.39 -5.81  
enalapril -5.64 -5.04 -4.89 -5.66  
epinephrine -6.02 -5.56 -5.72 -5.47  
diltiazem -4.38 -4.57 -4.87 -4.84 -3.17 
fleroxacin -4.81 -4.76 -4.87 -5.39 -3.95 
furosemide -6.5 -5.81 -5.67 -5.81 -8.74 
guanabenz -4.5 -5.24 -5.35 -4.63 -6.68 
guanoxan -4.71 -5.27 -5.41 -5.39 -6.69 
lidocaine -4.21 -4.75 -4.67 -4.45 -4.83 
mibefradil -4.87 -4.97 -4.74 -5.06 -4.83 
nitrendipine -4.77 -4.73 -4.93 -5.08 -4.87 
proscillaridin -6.2 -5.77 -5.27 -5.42 -5.63 
remikiren -6.13 -6.17 -5.53 -5.36 -8.33 
saquinavir -6.26 -5.87 -5.55 -5.39 -9.32 
sulpiride -6.16 -5.47 -5.13 -5.81 -7.76 
theophylline -4.35 -4.66 -4.74 -5.06 -4.65 
tiacrilast -4.9 -4.97 -4.9 -5.68 -3.89 
verapamil -4.58 -4.52 -4.84 -4.87 -3.17 
r (Ponce's Set)  0.79 0.84 0.74 0.78 

UME(Ponce's Set)  0.46 0.44 0.52 1.29 

r (Hou's Set)  0.79 0.83 0.78  
UME(Hou's Set)  0.43 0.42 0.45  
r (whole set)  0.76 0.85   
UME (whole set)  0.49 0.46   
a Caco-2, experimental Caco-2 apparent permeability (cm/s), logPapp; bPrediction by the 
MLR model described in this paper. c Prediction by the SVM model described in this 
paper. d Prediction by Hou’s model. e Prediction by Ponce’s model. UME is unsigned 
mean error. 
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