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An assessment of sample-based estimators of tree 
species richness in two wet tropical forest compartments 
in Panama and India

S. MAGNUSSEN, R. PÉLISSIER, F. HE and B.R. RAMESH

SuMMARY

We assessed the performance of ten incidence-based estimators of tree species richness in simulated simple random sampling 
with fixed-area plots. Stem diameter-limited tree species and location data came from two species-rich wet tropical forest 
compartments in Panama and India. Lower limits of stem diameter were 1 cm and 30 cm, respectively. Estimators varied 
widely in their estimates of richness and their rankings changed frequently across sites and sample designs. A gamma-
Poisson estimator was overall best according to a performance score of three accuracy statistics and sample size. However, 
until corroborated by further studies, Chao’s 1981 non-parametric estimator is recommended for forest inventories with 
fixed-area plots.
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Una evaluación de indicadores basados en muestras para el análisis de riqueza de especies 
arbóreas en dos zonas de bosque tropical húmedo en Panamá y la India

S. MAGNuSSEN, R. PéLISSIER, F. HE y B.R. RAMESH

Se evaluaron los resultados de diez indicadores de riqueza de especies arbóreas basados en la incidencia, dentro de un proceso de 
muestreo al azar simulado en parcelas de área fija. Los datos sobre los lugares y las especies arbóreas con un diámetro de tallo 
limitado procedieron de dos zonas de bosques tropical húmedo ricas en especies, en Panamá y la India. Los niveles mínimos de 
diámetro del tallo fueron de 1 cm y 30 cm respectivamente. Los indicadores variaron mucho en el cálculo de la riqueza, y sus 
resultados cambiaron a menudo según el lugar y el diseño de la muestra. Según un cálculo de tres estadísticas de exactitud y 
tamaño de la muestra, los mejores resultados fueron los de un indicador gamma-Poisson. Sin embargo, hasta que estos datos sean 
corroborados por estudios ulteriores, se recomienda el indicador no paramétrico de Chao (1981) para inventarios forestales en 
parcelas de área fija. 

Evaluation des outils d’estimation de richesse des espèces d’arbres basés sur des échantillons 
dans deux compartiments de forêts tropicales humides au Panama et en Inde

S.MAGNuSSEN, R.PéLISSIER, F.HE et B.R.RAMESH

Nous avons étudié la performance de dix outils d’estimation de richesse d’espèces d’arbres basés sur incidents, dans un 
échantillonage au hasard simple simulé avec des plantation de zones fixes.  Les espèces d’arbres à diamètre de fût limité et 
les données de location provenaient de deux compartiments de forêts tropicales humides riches en espèces au Panama et en 
Inde. Les limites inférieures de diamètre du fût étaient de 1cm et de 30cm, respectivement.  Les outils d’estimation variaient 
énormément dans leurs estimations de la richesse, et leurs catégories changeaient fréquemment à travers les sites et les 
schémas d’échantillons.  un outil d’estimation Gamma-Poisson s’est avéré être le meilleur, d’après un score de performance 
de trois statistiques de précision, et de taille des échantillons.  Néanmoins, jusqu’à ce qu’il soit corroboré par des études 
futures, l’outil d’estimation non-paramètrique de Chao de 1981 est recommandé pour les inventaires de forêts avec des lots 
de zone fixes. 
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INTRODuCTION

An important indicator of sustainable forest development 
is the conservation of biological diversity (McDonald and 
Lane 2004). The number of tree species (richness) in our 
forests is a key component of this diversity. Obtaining an 
unbiased and precise estimate of the number of forest tree 
species currently growing in a region, state or country 
poses a challenge. Species lists compiled from historic data, 
anecdotal evidence or tree distribution maps may not reflect 
current reality (Guralnick and Van Cleve 2005). It is, of 
course, the rare tree species that pose the challenge. A direct 
monitoring or survey of the status of all rare species in each 
area of interest would provide the needed data but this option 
is rarely realistic (Acharya et al. 2000, Gimaret-Carpentier et 
al. 1998, Green 1993, Venette et al. 2002, Yatracos 1995).

Existing forest surveys would ideally provide an estimate 
of the number of tree species in a population of interest. A 
long history of research on estimation of the number of 
species in an area (Arrhenius 1921, Evans et al. 1955, Fisher 
et al. 1943) has provided us with a plethora of estimators 
and estimation procedures (for examples, Chao and Bunge 
2002, Chazdon et al. 1998, Dorazio and Royle 2003, Skov 
and Lawesson 2000, Tackaberry et al. 1997, and Walther and 
Morand 1998).  Each estimator rests on a set of assumptions 
about the population and the sampling protocol (Bunge 
and Fitzpatrick  1993). It is a common observation that 
estimates obtained from these estimators are sensitive to 
both the structure of the sampled population and the sample 
design (Brose et al. 2003, Colwell et al.  2004, Keating et 
al.  1998). Rare species, easily missed in a survey, exert a 
disproportionate influence on the results (Link 2003, Mao 
and Colwell 2005). Samples with a poor representation of 
rare species cannot be expected to yield reliable estimates 
of richness. It is generally recognized that the estimation 
problem is intransigent and that estimators are biased (Bunge 
and Fitzpatrick 1993).

Can we expect a forest survey - designed to provide 
accurate estimates of the area of different forest cover-
type classes, wood volume, and biomass – to provide a 
reliable estimate of the number of tree species in a forest? 
Apparently the answer will depend both on the forest and 
the sample strategy (sampling design and estimation). 
Experience with sample-based estimation of tree species 
richness is limited. Schreuder, Williams, and Reich (1999) 
assessed 10 modifications of Chao and Lee’s non-parametric  
estimators by sampling two large data sets with 4060 forest 
inventory plots from Missouri and 12260 from Minnesota, 
respectively. Sample sizes in the order of 500 to 700 were 
deemed necessary to keep bias below 15%. Sample sizes of 
80 produced a (negative) bias of about 40%. Palmer (1990 
and 1991) investigated eight estimators in sampling (trees, 
forbs, and herbs) from 30 20 m  20 m plots in the Duke 
Forest (North Carolina, uSA) with 40 circular 2 m2 samples 
taken from each plot. The second-order jackknifed and 
the bootstrap (Smith and van Belle 1984) performed best 
in terms of accuracy and precision. Hellmann and Fowler 
(1999) simulated sampling with 5 m  5 m plots within five 

forested 0.4 ha plots in Michigan. Bias of estimates obtained 
with jackknifed and bootstrap estimators depended strongly 
on sample size with a switch from negative to positive bias as 
the sampled area surpassed approximately 35% of the total 
area. The second-order jackknifed estimator was the best for 
low-intensity sampling (< 10% of area sampled).  Gimaret-
Carpentier, Pélissier, Pascal et al. (1998) compared the 
behavior of Chaos’ and the generalized jackknifed estimators 
of richness in two wet tropical forests under random and 
systematic sampling with cluster-sizes of 1, 10, 50, and 100 
trees. Chao’s estimator(s) were superior to the generalized 
jackknifed estimator(s) and systematic sampling was more 
efficient than random sampling. Cluster-size effects were 
restricted to designs with less than a total of 400 sampled 
trees.  Krishnamani, Kumar, and Harte (2004) reached a 
realistic estimate of 893 for the number of tree species in 60 
000 km2 of the forests in the Western Ghats (India) from just 
48 (0.25 ha) plots. An index of species similarity between a 
pair of plots was cast as a non-linear function of inter-plot 
distances and used in a plug-in formula for the species-
area relationship. Excellent summaries of techniques and 
methods for assessing species richness have been given by, 
for examples, Chazdon et al. (1998), Condit(1998), Condit et al. (1996) 
and Tackaberry et al. (1997). It is well known that only an 
intensive survey of a population can generate an accurate 
estimate of richness (for example Gimaret-Carpentier et al.  
1998).

The objective of this study is to assess the performance 
(bias, precision, and accuracy) of six non-parametric and 
four model-based richness estimators in the context of a 
forest inventory. Based on the outcome of this assessment 
we discuss the pros and cons of attempting to estimate 
tree species richness from an inventory sample, and we 
make a recommendation for those who decide to produce 
an estimate of forest tree species richness from a forest 
inventory sample. 

A forest inventory typically samples only a small fraction 
of a forest. Sample sizes are sufficient to estimate the mean 
or total of a quantitative trait with a desired accuracy and 
precision.  It is at these low sampling intensities that estimates 
of richness depends most on the chosen estimator and 
estimators are needed the most due to a considerable negative 
bias in the observed richness (Walther and Moore  2005). Our 
assessment of the estimators is based on simulated simple 
random sampling with fixed-area plots in two tree species 
rich wet tropical forest compartments with a high frequency 
of rare tree species. Fixed-area plots are commonplace in 
forest inventories (Köhl 2006). Simple random sampling with 
fixed-area plots affords unbiased estimates of stem inclusion 
probabilities. All information needed for an estimation of 
tree species richness are contained in the species incidence 
statistic (the number of sample plots containing a given 
species). Consequently only incidence-based estimators are 
considered (Fattorini in press, Hurlbert 1971). Estimators 
tailored towards a comparison of independent estimates of 
species richness (rarefaction) or temporal trends are beyond 
the scope of this study.  We also screened out estimators that 
are suitable only for large sample sizes, notably estimators 
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based on species-area and species-accumulation curves (for 
example, ugland, Gray, and Ellingsen 2003, and Dorazio 
and Royle  2005 for a further discussion of this point).

Our final selection of incidence-based estimators of 
species richness has been based on a recent review (Walther 
and Moore 2005) and experience from a preliminary study. 
We anticipate that an estimator that does well on two 
species rich sites will also do well on sites with fewer tree 
species, although species richness can influence estimator 
performance (Walther and Morand 1998).

A good estimator is one that across a range of sample 
sizes and a range of populations consistently produces 
estimates that are closest to the actual richness (Schreuder 
et al. 1999, Walther and Morand 2005). In our assessment 
we take the position that an estimator should have a low risk 
of producing and inflated estimate of richness. This position 
is based on a mix of statistical and practical implications of 
an inflated estimate. Not only does the standard error of a 
richness estimate increase in proportion to the estimate of the 
unseen number of species, but the reliability of this estimates 
declines at an exponential rate (Mao and Colwell 2005).  
Secondly, the credibility of a forest inventory agency can be 
irrevocably damaged if it produces an estimate that later has 
to be retracted as more information becomes available.

MATERIAL AND METHODS

Data

Two stem-mapped stand-level data sets will be used for the 
assessment of sample-based estimators of species richness. 
The first is from the Kadamakal Reserve Forest (Kadagu 
District, Karnatiaka State, India) near the village of uppangala 
in the Western Ghats mountain range (12º 30’ N, 75º 39’ 
W; 500-600 m altitude). The forest type is Dipterocarpus 
indicus-Kingiodendron pinnatum-Humboldtia brunonis 
(Pascal 1982). Within a 28 ha forest compartment five 20 
m wide north-south oriented strips 100 m apart and 180 to 
370 m long were inventoried (Pascal and Pélissier 1996). 
The species and the spatial location were determined for all 
trees with a diameter at breast height larger than 30 cm. In 
the inventoried area of 3.12 ha Pascal and Pélissier (1996) 
found 1981 such trees (635 trees per ha) with a basal area of 
39.7 m2 ha-1. Ninety-three species belonging to 31 families 
were identified in the five strips. An additional 12 species 
were seen in the 28 ha stand but not in the five strips. Figure 
1 lends an impression of the species distribution in the five 
strips. Here the relative number of species is plotted against 
the relative number of 5 m  20 m plots in which they 
occur. The distribution is typical of species rich wet tropical 
forests. Forty-six percent of the species were found in less 
than 1% of the plots and 90% in less than 13%.  On average 
a species was found in just 5% of the plots. One species 
was seen in 62% of the plots. Pascal and Pélissier (1996) 
estimated Simpson’s diversity index at 0.92 (i.e. about 92 
pairs of trees selected at random out of a 100 are composed 
of different species) and that of Shannon’s at 4.56 (compare 

to a maximum value of 6.54). The number of different 
species in a 100 m2 plot varied from a low of 0 in two empty 
plots to a high of 13 with a mean and median of 6 (Figure 
2).  We refer to this site as WGHAT in the results and the 
discussion.

FIGURE 1. 

2

FIGURE 2. 

3

FIGuRE 2  Histogram of number of WGHAT tree species (S) 
in 100 m2 plots.

FIGuRE 1  Relative number of WGHAT tree species (S%) 
versus relative incidence in plots of 100 m2.

The second data set is from a rich old-growth stem-
mapped wet tropical forest compartment dominated by 
Leguminosae and Bomabcaceae (area 1000 m  500 m = 
50 ha) on the Barro Colorado Island in the Panama Canal 
(Condit, Hubbell, Lafrankie et al.  1996, He and Hubbell 
2003). Data from the 1990 census are used in this study. A 
total of 220 000 trees (4400 ha-1) of all sizes representing 
301 species were identified. Further details are in He and 
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Hubbell (2003). In Figure 3 the relative number of species 
is plotted against the relative number of square 156-m2 plots 
in which they occur. The distribution is similar to that of 
WGHAT and also typical of species rich wet tropical forests. 
Thirty-six percent of the species were found in less than 1% 
of the plots, 50% in less than 2%, and 90% in less than 30% 
of the plots. One species was found in all plots. The number 
of different species in a 156 m2 plot varied from a low of 5 
to a high of 52 with a mean and median of 30 (Figure 4). We 
shall refer to this site as BCI.

FIGURE 3. 

4

FIGURE 4. 

5

FIGuRE 4  Histogram of number of BCI tree species (S) in 
a 156 m2 plot.

FIGuRE 3  Relative number of BCI tree species (S%) versus 
relative incidence in plots of 156 m2.

Estimators of richness

Nine incidence-based estimators of richness are evaluated. 
Only a sketch of the estimators is given here. Details are 
found in the provided references. A software program for the 
estimators has been written in MATHEMATICA® (Wolfram 
Research 2005) and is available upon request to the senior 
author.
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Sampling designs and sample statistics

In WGHAT the five 20 m wide survey lines totaling 1560 m 
in length were subdivided into 312 100 m2 rectangular (5 m 
 20 m) plots. Simple random sampling with sample sizes 
n = 10, 15,..., 30 plots without replacement was simulated. 
Accordingly between 3.2% and 9.6% of the area was 
sampled. In BCI the 50 ha area was tessellated into 3200, 
1250, and 800 square plots with side lengths of 12.5 m, 20 
m, and 25 m, respectively. Simple random sampling with n = 
40, 60,..., 140 plots without replacement was simulated. 
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The generalized jackknifed estimator (JKk)

The generalized jackknifed estimator of richness is a linear 
combination of conventional jackknifed estimators (Sharot 
1976). The order of a generalized jackknifed estimator (k) 
defines the linear combination of conventional jackknifed 
estimators that enters into the generalization. The estimator is

(2)

where is the conventional leave j-out jackknifed 
estimator of richness . Burnham and Overton (1978) 
provided an estimator for the variance of  based on the 
assumption of a multinomial distribution of and 
application of the delta-technique (Kendall and Stuart 1969).

The CHAO1 and CHAO2 estimators

Chao (1981) and later Chao and Lee (1992) proposed the 
following estimator

(3) 

where is an estimate of the missed species,

and is an approximation to the coefficient of variation of 
f
j
 , (j = 1,...., n). Chao and Lee (1992) also suggested the 

alternative in (4) as an improvement over (3) 

(4)
 

where   , and  is a potentially 
better approximation to γ  than .
 are both non-linear functions of
Hence an estimator of their sampling variances can be 
obtained by applying the same assumptions and asymptotic 
approximations as for the jackknifed variance estimators. 
Details are in Chao and Lee (1992).

The CHAO3 estimator

Chao (1989) - in recognizing that f
1
 and f

2
 are the two most 

influential incidence frequencies for estimating richness - 
proposed the following estimator which we have modified 
slightly to make it robust against zero-valued frequencies 

(5)
 

A variance estimator is obtained by the same procedure as 
for the generalized jackknifed estimator.

The Beta-binomial estimator (BBIN)

The observed incidence vector f can be viewed as a 
zero-censored outcome of draws from a beta-binomial 
distribution where the probability of success (incidence of 
a species) varies from plot to plot. Accordingly, Dorazio 
and Royle (2003) proposed a maximum likelihood estimate 
of under this model. By adding this estimate 
to the observed richness one obtains the BBIN estimator 
of richness. The estimated variance of a BBIN estimate of 
richness is obtained by the aforementioned delta-technique. 
Confidence intervals were derived from the profile-log-
likelihood (Lloyd, 1999). 

The mixed-binomial estimator (MBIN)

Mao and Colwell (2005) and  Norris and Pollock (1998) 
viewed the vector f as a zero-censored outcome of sampling 
from a mixture of k binomial distributions where k is 
an unknown parameter to be estimated. As for BBIN, a 
maximum likelihood estimate of  is obtained 
under this model and added to the observed richness to give 
the MBIN estimate of richness.  Procedures for estimating 

Petersen’s capture-recapture estimator (PET)

Petersen’s capture-recapture estimator (see Thompson, 1992 
page 214 EQ 3) of richness is

(1) 

where      denotes the number of species found only in the 
first-half of a random split of the sample plots,     is the 
number of species found only in the second half of the  
random split,      is the number of species found in both 
halves,                               and E stands for the expectation over 
random splits (here 1000).
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The bootstrap estimator (BOOT)

Smith and van Belle (1984) were the first to suggest a 
bootstrap estimation of richness. A bootstrap sample of size 
n is drawn with replacement from the sample records. Let  

be the number of unique species in the rth bootstrap 
sample. The expected difference over all possible 
bootstrap samples is an estimate of the bias in the observed 
richness, and when added to the observed richness it yields 
the bootstrap estimate of richness. Smith and van Belle 
(1984) also detail the estimator we use for the sampling 
variance of the bootstrap estimate.
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and 3) the proportion of estimated 95% confidence intervals 
that includes the true value . The estimator with the 
lowest Mad, the highest , and  closest to 0.95 for 
a given sampling design would be our recommendation to the 
forest inventory community if the achieved levels of these 
statistics were otherwise acceptable. No absolute threshold 
can be given for acceptable but we surmise that an absolute 
error in excess of 25% and an estimate with a confidence 
intervals having less than 70% of the nominal coverage would 
probably be useless as input to a decision making process. 
We use a loss function (L) in (7) to compute a performance 
score for each estimator (M) across all site specific sample 
designs:

(7) 

where d is a design in the set (D) of all site-specific designs, S 
is the true richness, p

d 
is the fraction of the site area sampled 

by design d, and the three accuracy statistics are all design 
specific estimates. Several variants of the above loss function 
was tried (not shown) with next to no consequence on the 
ranking of estimators. A simple average of site-specific 

the sampling variance and confidence intervals of a MBIN 
estimate were similar to those for BBIN.

The gamma-mixed Poisson estimator (GPOI)

A zero-truncated gamma-mixed Poisson distribution 
(negative binomial) has been suggested by several as the 
generating distribution for f (Chao and Bunge  2002, Chao 
and Lee  1992, Efron and Thisted  1976, Fisher et al. 1943). 
The probability of ‘missing a species’ is then estimated 
by method of maximum likelihood under this model and  
used to inflate the observed richness by dividing it with a 
f a c t o r . As for the other model-based estimators, 
a variance estimator for a GPOI estimate was obtained by 
application of the delta-technique. We imposed a restriction 
on the location parameter of the implied gamma distribution 
in order to avoid absurdly high estimates of richness. A 
robust estimation procedure proposed by Chao and Bunge 
(2002) was used when either the estimated richness or the 
estimated variance became aberrant.

The mixed-Poisson estimator (MPOI)

Here the assumption is that f arises from draws from a mixture 
of k zero-truncated Poisson distributions otherwise the 
estimation process is in principle the same as for MBIN.

01− P

Evaluating estimator performance

A main objective of our study was to assess the performance 
of estimators of tree species richness in the context of a 
forest inventory with fixed-area plots. Walther and Moore 
(2005) provide a recent review of performance statistics. Our 
assessment is derived from estimates of i) bias (estimated 
value minus the true value) ii) precision (standard error of 
an estimate), and iii) accuracy (overall discrepancy between 
an estimate and a nominal value). We use three statistics 
to quantify accuracy: 1) the mean absolute difference 
between an estimate and the true value (Mad), 2) the 
proportion of estimates within 10% of the true value  

Finite population corrections

Our richness estimators either explicitly or implicitly 
assume an infinite area of the sampled population of trees. 
To account for the finite area of the two compartments, we 
reduced all estimates of richness (except the observed) in the 
following way:

(6)
 

where M stands for one of the nine richness estimators 
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-48 

(3/3)

JKk
-49 

(19/11)
-39 

(20/12)
-32 

(22/13)
-25 

(25/14)
-20 

(24/14)

CHAO1
-47 

(18/17)
-36 

(18/18)
-28 

(17/19)
-20 

(17/20)
-12 

(17/21)

CHAO3
-28 

(39/71)
-21 

(34/70)
-15 

(31/64)
-6 

(35/57)
-2 

(32/62)

BBIN
-2 

(32/25)
10 

26/20)
20 

(24/20)
34 

(23/22)
45 

(23/24)

MBIN
-53 

(16/24)
-42 

(13/36)
-40 

(13/29)
-38 

(13/21)
-34 

(12/18)

GPOI
-10 

(38/26)
-13 

(23/19)
-16 

(17/16)
-17 

(14/14)
-18 

(12/12)

MPOI
-70 

(5/6)
-63 

(5/6)
-57 

(5/5)
-53 

(5/4)
-50 

(5/4)

TABLE 1  Relative bias in estimates of tree species richness 
for WGHAT. Actual and average of estimated relative 
sampling errors are in parentheses (Actual/Estimated). 
Table entries are in % of the true tree species richness of 93
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Plot effects

Plot size effects will depend on the spatial distribution and 
size of the trees of each species, the sampling design and the 
spatial lay-out of a plot. In practical inventory applications 

rankings in terms of the loss computed from (7) was used as 
a measure of overall performance.

the important design issue is the expected effect of a change 
in plot size on estimates of S and whether the expected 
effect is statistically significant when allowing for sampling 
errors. We use Hotelling’s multivariate T2 test to assess the 
significance of plot effects across sample size (Rencher, 
1995). Specifically, we tested the null hypotheses of no 
difference between the results obtained with 156 m2 and 400 
m2 plots and between 400 m2 and 625 m2 plots. A follow-up 

Plot 
area m2

% Area 
Sampled OBS PET BOOT JKk CHAO1 CHAO3 BBIN MBIN GPOI MPOI

40 156 1.2
-43 

(2/2)
-27 

(1/3)
-36 

(3/2)
-20 

(14/7)
-21 

(6/6)
-4 

(14/10)
87 

(15/15)
-31 

(14/9)
4 

(19/7)
-35 

(5/7)

60 156 1.9
-37 

(2/1)
-23 

(1/2)
-31 

(2/2)
-17 

(13/7)
-15 

(5/6)
1 

(13/9)
101 

(16/16)
-31 

(6/6)
10 

(18/7)
-31 

(5/6)

80 156 2.5
-34 

(2/1)
-21 

(1/2)
-28 

(2/1)
-14 

(16/8)
-12 

(5/6)
5 

(13/9)
101 

(8/14)
-27 

(5/7)
9 

(15/6)
-28 

(3/5)

100 156 3.1
-31 

(1/1)
-19 

(1/2)
-26 

(2/1)
-15 

(6/5)
-10 

(4/6)
8 

(12/9)
100 

(9/15)
-21 

(6/13)
10 

(12/6)
-28 

(2/5)

120 156 3.8
-29 

(1/1)
-17 

(1/2)
-24 

(2/1)
-9 

(22/9)
-8 

(4/6)
12 

(14/10)
107 

(11/13)
-21 

(5/8)
10 

(10/6)
-26 

(2/4)

140 156 4.4
-27 

(1/1)
-16 

(1/2)
-22 

(2/1)
-7 

(21/9)
-6 

(4/6)
16 

(16/10)
120 

(37/34)
-12 

(8/30)
11 

(9/5)
-24 

(2/5)

40 400 3.2
-32 

(2/2)
-19 

(1/3)
-26 

(2/2)
-15 

(10/6)
-18 

(4/4)
6 

(14/9)
76 

(10/13)
-26 

(6/3)
-11 

(7/4)
-26 

(4/6)

60 400 4.8
-27 

(2/1)
-16 

(1/2)
-22 

(2/2)
-10 

(18/8)
-14 

(3/4)
10 

(14/9)
79 

(8/10)
-22 

(5/4)
-9 

(5/4)
-23 

(3/5)

80 400 6.4
-24 

(2/1)
-14 

(1/2)
-19 

(2/1)
-12 

(6/5)
-12 

(4/4)
13 

(14/9)
90 

(10/12)
-17 

(5/8)
-7 

(6/4)
-20 

(2/5)

100 400 8.0
-22 

(2/1)
-13 

(1/2)
-18 

(2/1)
-11 

(6/4)
-10 

(4/4)
15 

(14/9)
92 

(5/13)
-15 

(6/6)
-6 

(6/3)
-19 

(2/5)

120 400 9.6
-20 

(2/1)
-11 

(1/2)
-16 

(2/1)
-8 

(13/6)
-9 

(4/3)
19 

(16/9)
92 

(7/7)
-13 

(6/5)
-5 

(6/3)
-18 

(2/5)

140 400 11.2
-19 

(2/1)
-10 

(1/2)
-15 

(2/1)
-6 

(8/5)
-7 

(4/4)
20 

(15/11)
31 

(20/2)
-13 

(6/9)
-3 

(6/3)
-17 

(2/5)

40 625 5.0
-27 

(2/1)
-16 

(1/2)
-22 

(2/2)
-11 

(13/7)
-16 

(3/3)
12 

(14/9)
63 

(6/10)
-20 

(7/5)
-13 

(4/3)
-23 

(3/6)

60 625 7.5
-22 

(2/1)
-13 

(1/2)
-18 

(2/1)
-10 

(6/5)
-12 

(3/3)
18 

(15/10)
80 

(7/12)
-15 

(6/4)
-9 

(4/3)
-19 

(2/6)

80 625 10.0
-20 

(1/1)
-10 

(1/2)
-16 

(2/1)
-5 

(13/7)
-10 

(3/3)
21 

(14/11)
73 

(6/10)
-13 

(6/6)
-7 

(3/3)
-16 

(3/5)

100 625 12.5
-18 

(1/1)
-9 

(1/2)
-14 

(2/1)
-4 

(11/6)
-8 

(3/3)
24 

(13/12)
77 

(13/8)
-10 

(6/6)
-5 

(4/3)
-16 

(2/5)

120 625 15.0
-16 

(1/1)
-8 

(1/1)
-12 

(1/1)
-4 

(5/5)
-6 

(2/3)
27 

(12/11)
43 

(24/3)
-9 

(6/11)
-3 

(3/3)
-14 

(2/5)

140 625 17.5
-15 

(1/1)
-7 

(1/1)
-11 

(1/1)
-3 

(7/5)
-5 

(2/3)
27 

(12/12)
35 

(24/2)
-7 

(6/13)
-2 

(3/3)
-13 

(2/5)

TABLE 2  Relative bias of estimates of tree species richness for BCI. Actual and average of estimated relative sampling errors 
are in parentheses (Actual/Estimated). Table entries are in % of true tree species richness of 301.
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Sample size (% Area sampled)

10 
(3.2)

15 
(4.8)

20 
(6.4)

25 
(8.0)

30 
(9.6)

OBS
75 

(0/0)
69 

(0/0)
64 

(0/0)
60 

(0/0)
56 

(0/0)

PET
46 

(2/15)
38 

(3/21)
34 

(3/21)
29 

(5/28)
25 

(8/34)

BOOT
69 

(0/0)
62 

(0/0)
57 

(0/0)
52 

(0/0)
48 

(0/0)

JKk
50 

(4/15)
41 

(5/21)
36 

(8/28)
31 

(11/37)
27 

(16/46)

CHAO1
47 

(4/28)
37 

(5/43)
29 

(12/58)
22 

(21/76)
17 

(33/86)

CHAO3
42 

(8/59)
34 

(12/67)
28 

(18/73)
27 

(19/79)
25 

(23/85)

BBIN
24 

(28/78)
21 

(35/79)
24 

(29/63)
34 

(15/36)
45 

(4/13)

MBIN
56 

(2/14)
53 

(2/18)
47 

(2/11)
41 

(2/9)
37 

(4/10)

GPOI
31 

(23/76)
21 

(28/80)
20 

(26/78)
19 

(27/72)
19 

(24/70)

MPOI
70 

(0/0)
63 

(0/0)
57 

(0/0)
53 

(0/0)
50 

(0/0)

TABLE 3  Relative mean absolute error of tree species 
richness estimates for WGHAT. Per cent of estimates within 
10% of true value (ä

10
) and coverage rates of estimated 

confidence intervals (p
CI

) are in parentheses (ä
10

 / p
CI

).

RESuLTS

Bias

Observed richness was, as expected, downward biased 
(Tables 1 and 2).  For a given fraction of the area sampled the 
bias was two to three times larger in WGHAT than in BCI, 
a reflection of the much higher number of individual trees 
sampled in BCI. With 10% of the area sampled in WGHAT 
the bias was –56% as opposed to –20% in BCI.  It will take a 
sampling of about 18% of the BCI compartment to bring the 
bias below 15%.  The choice of richness estimator is clearly 
important (Tables 1 and 2). The best estimator reduces the 
observation bias to between –1% and –15% in WGHAT and 
to between 1% and –11% in BCI. Even the worst estimator 
produced an estimate with less bias than the observed 
richness.

Estimates of bias varied by more than 40% between the 
best and the worst estimator. Least performing were MPOI, 
BOOT, and MBIN. The only estimates with a positive bias 

T2 test of plot sample size interactions was done for all 
significant plot effects.

came from CHAO3, BBIN, and GPOI. Results for CHAO2 
are not reported; they were almost indistinguishable from 
CHAO1 results. The jackknifed estimates were a mixture of 
first- (23%), second- (53%) and third- (~21%), and fourth-
order (3%) generalized estimates.

 The ranking of several estimators in terms of absolute 
bias varied with sample size. In WGHAT the BBIN estimator 
was best for n  15 whereas CHAO3 was best for n  20. 
The GPOI estimator consistently ranked second or third.  The 
performance of CHAO1 improved with increased sample 
size.  In BCI the estimator with the lowest average bias was 
CHAO3 for sample fractions below 3%, and CHAO1 when 
3% to 5% of the area is sampled.  At higher sample fractions 
GPOI or JKk were best.

Precision

Estimates of standard error of the richness estimates are in 
Tables 1 and 2. For one group of estimators (OBS, BOOT, 
and MPOI) the estimated error was 8% or less across all 
designs and sites. Richness estimates from JKk, CHAO3, 
and BBIN had the highest estimates of standard error. PET, 
CHAO1, MBIN, and GPOI produced site- and sample size 
dependent estimates of error.

Estimates of error should, ideally, match the actual error 
observed in repeated sampling. For PET the estimates of error 
were conservative (at least 25% too large) whereas estimates 
from BOOT, JKk, and GPOI appear liberal (estimated errors 
are at least 25% too small). Only error estimates from OBS 
and CHAO1 were within 25% of the empirical error observed 
in repeated sampling. The reliability of error estimates from 
CHAO3, BBIN, MBIN, and MPOI appears to depend on 
either site, sample size or both. 

The proposed estimator of error for the observed richness 
appears attractive. In contrast, an error estimate based on 
the assumption of a Poisson distribution of the number of 
observed species would underestimate the empirical error by 
at least 70%.

Accuracy

Mean absolute differences between the estimated and the 
actual tree species richness (Mad, Tables 3 and 4) mirrored, 
by and large, the results on (absolute) bias. Again, the lowest 
values of Mad were obtained with GPOI and CHAO3 in 
WGHAT and with GPOI, CHAO1, and JKk in BCI. Least 
performing on both sites were OBS, BOOT and MPOI. A 
fluctuating performance was noted for CHAO1 in WGHAT 
and CHAO3 in BCI. The performance of BBIN is best 
described as erratic. At comparable fractions of the area 
sampled Mad in WGHAT was about two and a half to three 
times higher than in BCI, a difference attributed, as before, 
to the difference in the number of sample trees.

The proportion of the richness estimates that were within 
10% of the true value varied among estimators, site, and 
sample design (Tables 3 and 4). If one wish to see 80% of 
the estimates within these limits, then no combination of 
estimator and design could meet this standard in WGHAT. 
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n Plot 
area m2

% Area 
Sampled OBS PET BOOT JKk CHAO1 CHAO3 BBIN MBIN GPOI MPOI

40 156 1.2
43 

(0/0)
27 

(0/0)
36 

(0/0)
23 

(11/19)
21 

(3/12)
12 

(48/76)
86 

(0/0)
32 

(4/4)
15 

(48/60)
36 

(0/0)

60 156 1.9
37 

(0/0)
23 

(0/0)
31 

(0/0)
20 

(10/16)
15 

(16/32)
11 

(52/84)
100 
(0/0)

31 
(2/0)

15 
(46/56)

32 
(0/0)

80 156 2.5
34 

(0/0)
21 

(0/0)
28 

(0/0)
19 

(12/20)
12 

(31/47)
11 

(62/84)
101 
(0/0)

27 
(6/6)

13 
(47/60)

28 
(0/0)

100 156 3.1
31 

(0/0)
19 

(0/0)
26 

(0/0)
16 

(12/18)
10 

(54/66)
12 

(49/88)
100 
(0/0)

23 
(6/6)

12 
(54/58)

28 
(0/0)

120 156 3.8
29 

(0/0)
17 

(0/0)
24 

(0/0)
16 

(27/27)
8 

(72/74)
14 

(51/74)
107 
(0/0)

21 
(14/12)

11 
(52/57)

26 
(0/0)

140 156 4.4
27 

(0/0)
16 

(1/0)
22 

(0/0)
16 

(30/41)
6 

(86/90)
17 

(34/66)
120 
(0/0)

20 
(14/12)

12 
(45/50)

24 
(0/1)

40 400 3.2
32 

(0/0)
19 

(0/0)
26 

(0/0)
16 

(15/24)
18 

(4/3)
12 

(54/81)
77 

(0/0)
26 

(0/2)
12 

(37/32)
26 

(0/0)

60 400 4.8
27 

(0/0)
16 

(2/0)
22 

(0/0)
16 

(19/27)
14 

(12/3)
14 

(42/72)
79 

(0/0)
22 

(0/0)
10 

(62/34)
23 

(0/0)

80 400 6.4
24 

(0/0)
14 

(6/0)
19 

(0/0)
13 

(33/33)
12 

(32/19)
15 

(42/64)
90 

(0/0)
17 

(12/12)
8 

(64/46)
20 

(0/0)

100 400 8.0
22 

(0/0)
13 

(16/0)
18 

(0/0)
11 

(36/34)
10 

(49/20)
16 

(38/62)
93 

(0/0)
14 

(24/24)
7 

(72/49)
19 

(0/0)

120 400 9.6
20 

(0/0)
11 

(29/1)
16 

(0/0)
11 

(48/50)
9 

(60/38)
20 

(34/48)
92 

(0/0)
13 

(36/36)
7 

(74/57)
18 

(0/0)

140 400 11.2
19 

(0/0)
10 

(45/1)
15 

(2/0)
9 

(57/51)
7 

(76/50)
20 

(32/46)
30 

(10/0)
15 

(18/18)
5 

(88/64)
17 

(0/0)

40 625 5.0
27 

(0/0)
16 

(1/0)
22 

(0/0)
14 

(26/35)
16 

(3/1)
14 

(47/73)
63 

(0/0)
20 

(2/2)
13 

(26/16)
23 

(0/0)

60 625 7.5
22 

(0/0)
13 

(11/0)
18 

(0/0)
11 

(42/40)
12 

(25/4)
18 

(39/57)
80 

(0/0)
15 

(6/6)
9 

(57/32)
19 

(0/0)

80 625 10.0
20 

(0/0)
11 

(29/0)
16 

(0/0)
10 

(52/48)
10 

(54/14)
20 

(22/55)
73 

(0/0)
13 

(22/22)
7 

(85/44)
16 

(2/2)

100 625 12.5
18 

(0/0)
9 

(57/0)
14 

(2/0)
8 

(72/62)
8 

(79/33)
25 

(10/42)
77 

(0/0)
11 

(36/38)
5 

(91/60)
16 

(3/3)

120 625 15.0
16 

(0/0)
8 

(80/2)
12 

(6/0)
6 

(91/72)
6 

(94/52)
25 

(14/32)
43 

(0/0)
13 

(29/29)
4 

(98/82)
14 

(6/6)

140 625 17.5
15 

(0/0)
7 

(94/4)
11 

(24/0)
6 

(85/63)
5 

(100/67)
26 

(11/30)
35 

(0/0)
13 

(18/28)
4 

(100/84)
13 

(3/4)

TABLE 4  Relative mean absolute error of tree species richness estimates for BCI (in per cent of 301). Per cent of estimates 
within 10% of true value 

 
(ä

10
) and coverage rates of estimated 95% confidence intervals (p

CI
) are in parentheses (ä

10
 / p

CI
).

In BCI, however, a combination of 156 m2 plots, a sample 
size greater than 120, and the CHAO1 estimator would. For 
GPOI, PET, and JKk the sample size would need to be about 
three times larger in order to reach the same standard.

Estimated 95% confidence intervals failed in most cases 
to include the true richness (Tables 3 and 4). A coverage 
rate better than 75% was only reached by four estimators 
(CHAO1 and CHAO3 for n  25, BBIN for n   15, and 

GPOI for n  20) in WGHAT, and by three in BCI (CHAO1 
for n = 140 and plot-size 156 m2, CHAO3 for n < 100, and 
GPOI for n  > 120). 

Overall performance ranking

By combining three statistics of accuracy, and the proportion 
of area sampled into a single indicator of performance we 
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WGHAT BCI
Rel. 
loss Rank Rel.  

loss Rank Overall 
Rank

OBS 1.00 10 0.54 9 10
PET 0.59 6 0.34 5 5
BOOT 0.95 8 0.49 7 8
JKk 0.52 5 0.13 2 4
CHAO1 0.20 3 0.14 3 2
CHAO3 0.12 2 0.25 4 3
BBIN 0.28 4 1.00 10 7
MBIN 0.78 7 0.37 6 6
GPOI 0.00 1 0.00 1 1
MPOI 0.96 9 0.50 8 9

TABLE 5  Relative loss function scores (normalized to interval 
[0;1]) and rankings of tree species richness estimators (1 
= best, 10 = worst).  See EQ 7 and text for details on loss 
function.

obtained the estimator ranking in Table 5. The ranking of 
nine estimators was very similar across the two sites; the 
one exception was for BBIN.  GPOI was top-ranked, while 
second and third place was taken by CHAO1 and JKk. 
Bottom ranks were given to MPOI and OBS.

Plot effects

A larger plot contains, on average, more species than a 
smaller plot but the increase will be less than suggested 
by the ratio of areas unless the tree species are distributed 
completely at random throughout the study area. This 

FIGuRE 5  Left: Probability of finding a tree species in a 400 m2 plot (p
400

) plotted against the probability of finding it in a 156 
m2 plot (p

156
). Estimates from data are in black and estimates obtained by a binomial scaling of results from 156 m2 plots are 

in gray. Right: Corresponding estimates for the 625 m2 versus 400 m2 plots.

plot-size effect modifies the probability of finding a 
species in a plot, the vector of observed incidences, 
and consequently, the estimate of richness. Plot effects 
were expected to diminish with increasing sample size. 
In BCI the average number of species in a 156 m2 plot 
was 30 (7). A plot of 400 m2 contained on average 50 
(15) and a 625 m2 plot 65 (10). Hence, the increase 
in the number of species was only 64% viz. 54% of the 
increase expected under complete spatial randomness 
of species specific tree locations. Similarly, estimates 
of the probability of finding a species in a 400 m2 plot 
was as rule less than expected from a direct binomial 
scaling of the probabilities for a 156 m2 plot (Figure 5). 
From the difference between the two probabilities we 
derived an estimate of the intra-plot species correlation 
(clustering) of 0.14 for the 156 m2 plot.  For 400 m2 plots 
this correlation was close to zero.

The number of species found in just one or two plots 
has a disproportionate effect on most estimates of species 
richness. Their numbers declined, as expected, with plot-
size and sample size (Figure 6). Compared to a 400 m2 plot 
there was an addition of about seven species that would 
have been observed only once in sampling with 156 m2 
plots. The corresponding difference for 625 and 400 m2 
plots declined from about four at n = 30 to almost zero 
at n = 140. Trends in the number of species seen only in 
two plots were somewhat similar for n > 30 but otherwise 
less pronounced. However, when the numbers of species 
found in one or two plots are plotted against the fraction 
of area sampled (Figure 6) they appear to fall on a single 
line which suggests that the plot effect, if it exists, must 
be similar in both cases. A T2 -test suggest that the effect 
is not significant at the 5% level of significance).

Plot effects also depend on the estimator. With BBIN 

FIGURE 5 

6

FIGURE 5 

6
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FIGuRE 6  Frequencies of tree species found in only one plot (f
1
) and two plots (f

2
) versus sample size viz. proportion of area 

sampled (%Area). Plot size: 156 m2 (black), 400 m2 (medium gray), and 625 m2 (light gray). The interval of plus/minus one 
standard error of an estimate is indicated by a vertical line.FIGURE 6. 

7

and GPOI the expected reduction in bias with an increase 
in plot size did not materialize. A significant reduction 
in bias of about 10% (P < 0.001) could be achieved with 
OBS, PET, BOOT, and MPOI by increasing plot size 
from 156 m2 to 400 m2. A further increase to 625 m2  had 
only a smaller (5%) effect (only significant for BOOT 
estimates). Figure 7 illustrates typical plot effects for 
three of the four estimators with a significant plot effect. 
Yet, when estimates of richness were plotted against the 
fraction of area sampled they appear to fall on a single 
line which suggests that plot effects are weak or non-
existing.

FIGURE 6. 

7

DISCuSSION

Estimating the number of tree species in a forest community 
is a first step towards quantifying an important component 
of forest biodiversity. The statistical estimation problem 
and choice of estimator remains a challenge (Walther 
and Moore 2005). As we saw, estimators differ widely in 
their estimates and their differences depend on the forest 
community and on sample design. To paraphrase Bunge 
and Fitzpatrick (1993): “the problem is quite resistant to 
a statistical solution, essentially because no matter how 
many species have been observed one cannot refute the 
possibility of a large number of rare species”. Link (2003) 
states it this way: “… even with very large samples, the 
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9

FIGuRE 7  Estimates of tree species richness versus sample size (left column) and proportion of area sampled (%Area). Plot 
size: 156 m2 (black), 400 m2 (medium gray), and 625 m2 (light gray). The interval of plus/minus one standard error of an 
estimate is indicated by a vertical line.

9
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analysts will not be able to distinguish among reasonable 
models of heterogeneity, even though these yield quite 
distinct inferences about the number of species…”. Stark 
differences between estimates from related and similar 
models (e.g. GPOI, MPOI, BBIN, and MBIN) mirror this 
statement. Nayak (1996) and Starr (1979) call the problem 
‘non-standard’ due to the dependency of the estimate on 
the unknown parameter and the data. A negative correlation 
between the estimate and the true value is another statistical 
anomaly (Starr 1979). Mao and Colwell (2005) recently 
demonstrated the essence of the estimation challenge: An 
artificial enriching of real data sets with a few individuals 
representing rare species significantly changed estimates 
of richness and their confidence intervals. O’Hara (2005) 
echoes these observations.

Since our study sites had many rare and just a few 
common tree species we cannot a priori expect to obtain 
very good estimates of tree species richness from a forest 
inventory.  Without a universally best estimator of richness 
the choice must be based on expected performance. We 
adopted a somewhat conservative approach to gauge the 
performance of richness estimators by combining three 
statistics of accuracy and sample size into an index of loss. 
These statistics are suggestive only, not ultimate judgments 
(Walter and Moore 2005). Our assumption that an inflated 
estimate of richness is harmful to credibility (Schreuder et 
al. 1999) is, of course, arguable. Both inflated and deflated 
estimates of tree species richness can lead to complacency 
in the management and protection of forest tree species 
diversity, albeit for very different reasons.

Palmer (1990, 1991) confirmed high rates of positive 
bias in JK1 (26%) and JK2 (70%) in a mixed hardwood 
stand in the Duke Forest in North Carolina (u.S.A.). As 
in our study, the bootstrap estimator did not produce any 
positive bias.  Hellmann and Fowler (1999) assessed JK1, 
JK2, and BOOT in five different forest communities in 
Michigan. Their results are in many ways parallel to ours. 
While JK1 and JK2 consistently outperformed BOOT in 
terms of bias the high variability of their estimates and 
especially those of JK2 generated non-trivial rates of 
overestimation. Schreuder, Williams, and Reich (1999) also 
assessed the three CHAO estimators. No positive bias was 
reported for sample sizes of 20 to 700 in eleven populations 
representing two states (Missouri and Minnesota) and an 
assembly of Loblolly pine plantations in the south-eastern 
united States. In their study CHAO3 was at par with 
CHAO1 viz. CHAO2, in contrast to the large differences 
reported here. We surmise that differences in the ratio f

1 
/ 

f
2 

and its distribution are the cause for these discrepancies. 
In tree species rich wet tropical forests (He and Hubbell  
2003, Pascal and Pélissier  1996) the ratio  f

1 
/ f

2 
is not only 

much higher but also more variable than in sub-tropical 
and temperate forests (Liermann et al. 2004). 

We only studied incidence-based estimators in our 
assessment. Estimators based on extrapolation of either 
species-area curves or species accumulation curves have 
a long history in applied ecology (Engen, 1978) but have 
increasingly been criticized for the lack of a sample-

based framework (Bunge and Fitzpatrick 1993). A 
species accumulation curve derived from a conventional 
forest inventory will, in most cases, not lend itself to 
extrapolation. Krishnamani et al. (2004), however, obtained 
a surprisingly realistic estimate of 893 for the number of 
tree species in the Western Ghats of India from just 48 
conventional inventory sample plots. A strong relationship 
between plot similarities (absence/presence of a species) 
and inter-plot distances was exploited. Cao et al.  (2004) 
also used estimators based on plot dissimilarities for 
estimating bird and fish species richness in two regions of 
the united States of America and found them to perform 
reasonably well. Condit et al. (1996), however, found that 
the relationship between dissimilarity and distance to vary 
across a population. 

Our study reiterated the importance of choosing a 
richness estimator and a sample design (Brose et al. 2003, 
Bunge and Fitzpatrick  1993, Colwell et al. 2004, Gimaret-
Carpentier et al. 1998, Keating et al.  1998). Estimators 
based on a mixture of truncated distributions of the 
probability of species incidence do not seem to justify the 
added computational burden and complexity of estimation 
(Lindsay and Roeder 1992, Mao and Colwell 2005). At 
least not if the sole purpose is for an estimation of tree 
species richness. The promising performance of GPOI 
needs corroboration by additional studies since it has not 
previously been used for the purpose of estimating tree 
species richness, nor has it been widely used elsewhere. 
The runner-up  CHAO1 (Bunge and Fitzpatrick  1993, 
Bunge et al. 1995, Keating et al. 1998, Lee S.-M. and Chao  
1994, Walther and Martin  2001) has a solid track record 
which should make it the estimator of choice until further 
studies corroborate our GPOI results. Petersen’s estimator 
might be favoured by agencies opposed to any risk of an 
inflated estimate. 

Forest inventories are generally conducted with fixed-
area plots. Plot-size and shape is generally determined by 
considerations of cost, logistics, and statistical efficiency. 
It appears that for small to moderate sample sizes the 
sampling variation in GPOI and CHAO1 estimates of 
tree species richness swamps the importance of plot-size 
and shape (Schreuder et al. 1999, Schreuder et al. 2000). 
Plot-size effects are otherwise manifest due to a clustering 
of tree species (Condit et al. 1996), especially if a fixed 
number of trees are selected at each sample location 
(Gimaret-Carpentier et al.  1998). 

CONCLuSIONS

In tree species rich forests, with many rare, a few common 
species, and a weak spatial clustering of tree species at small 
spatial scales, a conventional forest inventory with fixed-area 
plots can produce reasonable incidence-based estimates of 
tree species richness when the estimator is carefully chosen. 
A gamma-Poisson estimator appears most promising but, 
until corroborated by other studies, Chao’s 1981 estimator 
is recommended.
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