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A long-standing problem in ecology is to understand how the species�abundance distribution (SAD) varies with sampling
scale. The problem was first characterized by Preston as the veil line problem. Although theoretical and empirical studies
have now shown the nonexistence of the veil line, this problem has generated much interest in scaling biodiversity
patterns. However, research on scaling SAD has so far exclusively focused on the relationship between the SAD in a
smaller sampling area and a known SAD assumed for a larger area. An unsolved challenge is how one may predict
species�abundance distribution in a large area from that of a smaller area. Although upscaling biodiversity patterns (e.g.
species�area curve) is a major focus of macroecological research, upscaling of SAD across scale is, with few exceptions,
ignored in the literature. Methods that directly predict SAD in a larger area from that of a smaller area have just started
being developed. Here we propose a Bayesian method that directly answers this question. Examples using empirical data
from tropical forests of Malaysia and Panama are employed to demonstrate the use of the method and to examine its
performance with increasing sampling area. The results indicate that only 10-15% of the total census area is needed to
adequately predict species abundance distribution of a region. In addition to species abundance distributions, the method
also predicts well the regional species richness.

One of the oldest problems in ecology is to infer general
properties of a large ecosystem by sampling only a small part
of it. Of this, the most well known example is perhaps
Preston’s veil line. Preston (1948, 1962) hypothesized that
the lognormal species�abundance distribution is a universal
curve that gets progressively revealed with increasing sam-
pling effort. Visually, the veil line ‘shifts rigidly to the right’
of the abundance plot. While the theory of the rigid veil line
has been proven wrong (Dewdney 1998, Williamson and
Gaston 2005), the problem has generated much interest in
search for understanding the dependence of species�abun-
dance distribution (SAD) on spatial scale (Nee et al. 1991,
Gregory 1994, Green and Plotkin 2007).

Dewdney (1998) was the first one to establish a formal
relationship between local SAD and regional SAD through
a hypergeometric sample transformation function. He also
showed that the shape of the SAD is retained for randomly
distributed species. It is important to remember that a
random sample (i.e. a survey on individuals taken at
random over the whole area) and a local sample (i.e. a
survey on individuals inside a specific sub-area) are not the
same since species are generally not distributed randomly
but clustered together due to dispersal limitation or habitat
heterogeneity. Following this observation, Green and
Plotkin (2007) extended the work of Dewdney by correct-
ing for species aggregation. They showed that, as a result of
aggregation, the sample SAD is skewed to both rare and
abundant species. Random sampling (McKane et al. 2004)
and hypergeometric sampling (Etienne and Alonso 2005)

have also been used to construct species�abundance
distributions of local neutral communities coupled with
metacommunity.

The focus of all these studies is to infer species�
abundance distribution across scales. However, it is im-
portant to distinguish two related but fundamentally
different scaling problems: (1) sampling or ‘downscaling’,
and (2) predicting or ‘upscaling’. In the former problem the
species abundance distribution is assumed to be known
for the region of interest. In this context, downscaling is
simply the construction of an SAD for a local area nested
within the known region through sampling. In contrast,
‘upscaling’ assumes that the species-abundance is known
only at a local scale. The goal is to extrapolate the regional
(unknown) SAD from a known local SAD. Therefore, a
downscaling problem involves developing a method to
accurately sample from a known distribution, whereas an
upscaling problem implies predicting a distribution from
where the observed data could have been sampled from.

Upscaling biodiversity patterns lies at the heart of
macroecology (Willis and Whittaker 2002) and advanced
theories and methods are in urgent need for upscaling SAD.
The existing literature has so far mostly focused on the
downscaling problem: either to understand the effect of
sampling intensity on the ‘veil line’ (Nee et al. 1991,
Gregory 1994) or to sample local SAD from a metacom-
munity (McKane et al. 2004, Etienne and Alonso 2005,
Green and Plotkin 2007). An exception is the recent
development of a maximum entropy method used to

Oikos 119: 71�80, 2010

doi: 10.1111/j.1600-0706.2009.17938.x,

# 2009 The Authors. Journal compilation # 2009 Oikos

Subject Editor: Bradford Hawkins. Accepted 23 June 2009

71



extrapolate regional species richness and abundance from
small sampling areas (Harte et al. 2009). By the method, a
logseries SAD is found for a community. Since the logseries
distribution is spatially congruent, the SAD will remain
logseries when extrapolated to a larger area (although the
value of the parameter of the distribution will change).

The importance of the problem has also been well
recognized in the literature as reflected by the closing remark
of Green and Plotkin (2007): ‘‘Our result on sampling may
inform future research aimed at leveraging abundance and
aggregation patterns measured at local scales to predict
biodiversity patterns at larger, regional scales’’. Leveraging
over this knowledge to provide a constructive method of
SAD prediction is the goal of the present article. We show
that the solution to the upscaling problem requires that we
have already solved the downscaling problem, since the
sampling function is needed to proceed correctly to the
extrapolation (see the section ‘Sampling probability’ below).
The downscaling problem aims at finding a sampling
function that explains the data at hand and to construct
the local distribution from the regional one, while the
upscaling problem uses that sampling function to extra-
polate the data at a larger scale from the local scale.

When scaling up, new species that are not present in
smaller areas will appear. A key step in upscaling SAD is to
incorporate those new species to update the SAD for the
larger area. As a result, our method not only leads to the
construction of a regional SAD but also leads to an
estimation of regional richness. Estimating richness itself
has been a challenging problem. Many richness estimation
methods have been developed so far (Chao 1984, Bunge
and Fitzpatrick 1993, Magnussen et al. 2006, Shen and He
2008). Some of them are more sensitive to sample size than
others. An important but not yet answered question is how
much sample is needed for obtaining a reasonable estima-
tion of regional richness. This study will also contribute to
answering this problem.

In this study we propose a Bayesian method to
reconstruct the species abundance of an area A0 from the
species abundance of a smaller area A1 that is nested within
A0. We choose the widely used negative binomial (He and
Gaston 2000, Plotkin and Muller-Landau 2002, He and
Hubbell 2003, Green and Plotkin 2007) as a sampling
function, but the method can be easily generalized to any
sampling probability. The performance of the developed
Bayesian method is evaluated using two large-scale stem-
mapping plots of the tropical forests whose species�
abundance distributions are completely known. With the
increase of A1, we expect that the estimated regional SAD
for A0 would approach the actual regional SAD. We will
also determine the minimum sampling area needed for
predicting the regional SAD.

Material and methods

Statistical framework

Suppose species abundance data are available for a local area
A1 that is nested within a region A0. With the data, a
discrete species�abundance distribution f(n), n�0, can be
constructed for A1. Here f(n) denotes the number of

species with abundance n. In some cases, especially in
theoretical studies, the distribution is generalized to include
n�0, which represents those species that are missing from
the study plot A1 but are present in other part of the region
A0. It is important to realize that f(0) depends on A0,
because changing the reference area will change the number
of the species in A0 that are not in A1, and thus the value of
f(0).

We use P(n) to denote the relative species�abundance
that is a probability mass function obtained by normalizing
the species abundance f(n). If we restrict the abundances to
n�0, then f(n)�SP(n), where S is the number of species
present in A1. If, on the other hand, we want to include the
case n�0, then S becomes the number of species present in
the regional area A0.

Let P(njN, a) be the probability that a species is
represented by n individuals in A1 given that the same
species is represented by N individuals in A0 and that A1 is a
fraction a of A0 (i.e. a�A1/A0). We call P(njN, a) the
sampling probability. Denoting f0(n) as the number of
species with abundance n in A0 and f1(n) as the number
of species with abundance n in A1, we can obtain the
average value of the latter from the former by:

hf1(n)i�
X
N�0

P(njN; a)f0(N) (1)

This relation is linked to the species area relationship by
noting that:
Si�an�0 fi(n); i�0; 1

Equation 1 is precisely the widespread downscaling
formula that links local SAD f1(N) with regional SAD
f0(N) (Dewdney 1998, McKane et al. 2004, Etienne and
Alonso 2005, Green and Plotkin 2007). However, obtain-
ing the species abundance in A1 from the one in A0 is not
really helpful to us, since to measure empirically the species
abundance in A0 we are already forced to sample A1. Our
interest is the inverse: to predict the species abundance in A0

from that of A1. In the next sections, for the sake of
explanation of the reconstruction method, we start by
assuming that the sampling probability P(njN, a) is known
a priori. Later on we will discuss what approach should be
taken when this sampling function is not known.

Bayes’ rule

To achieve upscaling, we need to reverse Eq. 1 to express
the regional SAD in terms of the local SAD. To do that, we
need P(Njn) * the reverse of the previous sampling
probability P(njN). This reverse involves the conditional
probabilities P(Njn) and P(njN) and can be easily for-
mulated by Bayes’ rule:

P(AjB)�
P(A) P(BjA)

P(B)
(2)

where A, B are arbitrary events. To describe the upscaling
problem, the general Bayes’ rule can be rewritten as:

P(Njn; a)�
P(Nja) P(njN; a)

P(nja)
(3)

where the left side is the probability that a species has
abundance N in A0 given n individuals of that species are
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present in A1. On the right side P(njN,a) is the sampling
probability, P(nja)�aNP(Nja) P(njN; a) is the normal-
ization factor, and P(Nja) is the prior probability distribu-
tion for the species abundance in A0 (we will further discuss
this term below).

Equation 3 gives the probability for the abundance in A0

for a single species that has abundance n in A1. Our objective,
however, is not the probability that a single species has
abundance N, but the average number of species with
abundance N in A0. If we suppose that P (Njn) is the same
for all the species, then the number of species with abundance
N is just binomially distributed (since every species has the
same probability to appear in that abundance class) with an
average of SP(Njn), and a standard deviation of SP(Njn)(1�
P(Njn)), where S is the number of species in A1.

However, in reality P(Njn) is different for different
species (either because they have a different abundance n in
A1, or if we consider different sampling probability for
different species). We thus need the mean and variance for a
collection of random events with different probabilities {pi}.
In Section 1 of the Supplementary material Appendix 1 we
show that the mean and variance are respectively aipi and
aipi(1�pi): Our prediction for the average number of
species per abundance class (i.e. the species abundance
distribution) in A0 can then be written as:

f0;pred(N)�
X

n

P(Njn)f1(n) (4)

with P(Njn) from Eq. 3.
However, the problem of Eq. 4 is immediately apparent:

the sum aN�0f0;pred(N) gives S1 (the number of species in
A1), while in reality it should be S0. This means that we
should take into account the species present in A0 but
missing in A1 , otherwise our prediction for the SAD is
biased and underestimates the number of rare species (the
ones most likely to be missing from A1). To solve the
problem, we must have an independent estimation about
the number of missing species (f1(0)) in A1. With this
estimation, we can give, as a prediction for f0(N), the
quantity f0,pred(N)�P(Nj0) f1(0). We will describe an
iterative system to solve the missing species problem after
the next section.

Prior probability

Lets first discuss the prior probability term in Eq. 2 and 3.
In the Bayesian framework, one can choose either a prior
that expresses complete ignorance of any information (an
‘uninformative’ prior) or one that reflects the fact that some
information is available before we proceed to the inference
(an ‘informative’ prior).

In the case of inferring SAD, overwhelming empirical
evidence has shown that widespread of species-abundance
data display a lognormal type of distribution (Hubbell 2001,
Williamson and Gaston 2005, McGill et al. 2007).
It thus appears natural to use an informative lognormal prior:

P(N)�
1ffiffiffiffiffiffi

2p
p

Ns
exp�

(logN � logm)2

2log(s)2

It is essential to note that the values for the parameters
m and s of the lognormal are dependent on sampling area

and they follow an approximate power relationship with area
A as:

m�m0 A�um

s�s0 A�us

The values for m and s at A0 can be estimated as follows: 1)
divide A1 into smaller subareas, 2) fit the above relationships
to the subareas, and 3) obtain the m and s for A0 by
substituting A0 into the fitted models. This procedure,
admittedly not accurate if used alone to predict the species�
abundance at a greater area, nevertheless provides a good
prior for the Bayesian procedure we described above.

The procedure and results when using an uninformative
prior instead of the lognormal one are shown in the
Supplementary material Appendix 1.

Missing species prediction

To solve the problem of missing species, we propose an
iterative method that predicts the total number of species
and the corresponding species abundance distribution. Our
‘zeroth order’ prediction is Eq. 4 that ignores missing
species:

f(0)
0;pred(N)�

X
n

P(Njn)f1(n) (5)

where the superscript denotes the first step of the iterative
process, and we drop the variable a for simplicity of
notation since a is fixed for a given calculation. Starting
from the zeroth order f0

0;pred(N) and pretending that this is
the true species�abundance at the larger area A0, we can
calculate the number of species that are missing in the
smaller area A1:

f(0)
1 (0)�

X
N

P(0jN)f(0)
0;pred(N) (6)

This number allows us to write a new (‘first order’)
prediction for the species�abundance distribution in A0:

f(1)
0;predðNÞ�

X
n�0

P(Njn)f1(n)�P(Nj0)f(0)
1 (0) (7)

�f(0)
0;pred(N)�P(Nj0)f(0)

1 (0) (8)

which in turn allows us to write a new prediction for the
number of missing species in A1:

f(1)
1 (0)�

X
N

P(0jN)f(1)
0;pred(N)

This iterative process can be expressed as a system of two
recursive equations for every i�0:

f(i)
0;pred(N)�f(0)

0;pred(N)�P(Nj0)f(i�1)
1 (0) (9)

f(i)
1 (0)�

X
N

P(0jN)f(i)
0;pred(N) (10)

In Section 2 of the Supplementary material Appendix 1
it is shown that for i0� the system approaches a definite
solution:

f(�)
0;pred(N)�f(0)

0;pred(N)�P(Nj0)f(�)
1 (0) (11)
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f(�)
1 (0)�

P
N? P(0jN?)f(0)

0;pred(N?)

1 �
P

N? P(N?j0) P(0jN?)
(12)

Equation 11 is the prediction for the species abundance
distribution that takes into account the missing species.
Equation 12 is the prediction for the number of missing
species, so that the predicted total number of species at A0 is:

S0;pred�S1�f(�)
1 (0) (13)

Sampling probability

The implementation of the above iteration requires a
sampling probability P(njN, a) for a real ecosystem. As
explained in the Introduction, this sampling function is a
key device for investigating sampling effect on species�
abundance distribution. Several functions can be used as
P(njN, a). As a first choice one could simply use a binomial
distribution (random sampling):

P(njN; a)�
N
n

� �
an (1�a)N�n

However, it is well known that ecosystems do not in
general obey a random placement model. Instead, their
sampling probability presents some ‘clustering’. To capture
the nature of the clustering, an appropriate function is the
negative binomial distribution (He and Gaston 2000,
Plotkin and Muller-Landau 2002, Green and Plotkin
2007):

P(njN; a)�
G(k � n)

zG(k)n!

�
aN

aN � k

�n� k

aN � k

�k

n5N

0 n�N

8<
:

where the parameter k is a clustering parameter, and
normalization is ensured by

Z �
X

n5N

G(k � n)

zG(k)n!

aN

aN � k

 !n
k

aN � k

 !k

for upper tail truncation. The truncation is needed for
application because N in the negative binomial distribution
is assumed to be infinite.

It is widely known that k is not scale invariant but depends
on both A0 and A1. Two empirical formula have been derived
to extrapolate k across scale based on the tree distributions
from the 50 ha Pasoh plot of Malaysia and the 50 ha BCI
plot of Panama. The first one given by Plotkin and Muller-
Landau (2002) is k(A1)�0.8604�0.002923A1

0.5450 for
Pasoh plot, where A1 is in square meters. The second is
derived by He and Hubbell (2003) directly in terms of a�
A1/A0: k(A1)�k0 (A1/A0)0.55 for the Pasoh and BCI plots.
These two parameterizations are both obtained with the
assumption that A0 is constant, which differs from our
application in such way that in our case either A1 or a is held
constant but A0 varies. This is because for this study we do
not possess the data of area A0, but only the data at area A1 or
smaller, thus preventing us from estimating the parameters of
these relationships. To overcome the problem, we propose a
new parameterization at fixed a:

k�ka A
�ua

0 (14)

This model fits the k data quite well for BCI and Pasoh
(Fig. 1). This parameterization is needed when applying
the reconstruction method to empirical data.

When extrapolating SAD from A1 to A0, information
about species distribution, thus k, at A0 is not available.
Equation 14 is used to infer k for A0,. This is done by fitting
the equation to subareas of A1 following the steps: 1) choose
a subarea of A1, called it as A?0; 2) choose another subarea
A?1 that is nested within A?0; with the size of A?1�a/A?0; 3)
calculate k by maximum likelihood between A?0 and A?1; 4)
repeat steps 1�3 by varying A?0; and 5) finally fit Eq. 14 to
the k estimated from the maximum likelihood (Fig. 1). The
parameterized Eq. 14 obtained from the last step can then
be used to estimate k for any area.

As a summary, the whole procedure of reconstructing
SAD is outlined as follows:

1. Enumerate species abundances in A1 and count
empirical species-abundance distribution f(n)

1 (0) .
Choose a ‘target’ area A0 for extrapolation.

2. Find the value of the parameter k in the negative
binomial for the given value of a�A1/A0 by fitting
Eq. 14 to the subareas of A1 and extrapolating to A0.

3. Calculate the zeroth-order prediction for the SAD
using Eq. 5, by ignoring the missing species.

4. Calculate the number of missing species f(�)
1 (0) using

Eq. 12.
5. Calculate the prediction for the SAD using Eq. 11 by

including the missing species f(�)
0;pred(N)

Data sets

We applied the Bayesian method to infer tree species-
abundance distribution, respectively, for the 50 ha BCI plot
(1990 census) of Panama and the 50 ha Pasoh plot (1987

Figure 1. Determination of parameter k of the negative binomial
distribution for the BCI plot. The figure shows the values of k for
different samples when a is kept fixed (a�0.3) and A0 varies. The
various points at each value of A0 are the value of k for several
samples of size A1�aA0, calculated by maximum likelihood. The
line is a least squares fit of Eq. 14, with ka�2.1E5 and ua�0.89,
and with r2�0.867. k’s in Table 1 are obtained in this way for
different a for BCI and Pasoh plots. A0 is measured in square
meters.
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census) of Malaysia (/<www.ctfs.si.edu/>). We used the
abundances for all the trees and saplings with diameter at
breast height (dbh)]1 cm. To check that our reconstruc-
tion was working properly, we selected a rectangular region
of area A1�aA0 with a�0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5
located at the center of the whole 50 ha plot and we
pretended that A1 was the only area sampled, with the goal
to use the reconstruction method to predict the species
abundance distribution for A0. The lognormal prior was
used for all reconstruction (results for the uninformative
geometric prior are reported in Section 3 of the Supple-
mentary material Appendix 1 for comparison). The
sampling probability was assumed to be a negative
binomial, and the parameter k was calculated by Eq. 14;
the parameters ka and ua used in Eq. 14 were obtained by
fitting the model to the k estimated by maximum likelihood
method for subareas of A1. The reconstructions were also
performed, for comparison, using the ‘true’ value of k, and
are reported in Section 4 of the Supplementary material
Appendix 1, the result being that the extrapolation of k do
not introduce any significant error.

Due to a considerable interest in surveying entire
1564 ha Barro Colorado Island (Stephen Hubbell pers.
comm.), here we performed an exercise to predict SAD for
A0�100, 150, 200, 300 and 500 ha, based on the 50 ha
BCI plot. Note, as it is shown below, at the present stage
our method cannot give reliable estimates for larger A0, e.g.
1000 ha, of which the 50 ha BCI plot is only 5%.

Measures of goodness of prediction

To asses the goodness of our prediction we calculated the
log likelihood of the prediction against the data, i.e. if we
denote the empirical abundances in A0 with {Ni}, i�1, . . .,
S, and our prediction is f(�)

0;pred(N) from Eq. 11, then the log
likelihood of our prediction is:

Lpred�
XS

i�1

ln f(�)
0;pred(Ni)

� �
(15)

These results are reported in Table 1. Note that there is no
adjustable parameter in the prediction f(�)

0;pred(N) (the
parameter k has already been fixed by fitting Eq. 14 as
explained above).

As a benchmark, we also calculated the log likelihood for
the maximum likelihood lognormal fit to the data:

Llogn�max
m;s

XS

i�1

ln

�
1

Nis
ffiffiffiffiffiffi
2p

p exp

�
�

(ln Ni � m)2

2s2

��
(16)

These results are reported in the caption of Table 1. To
compare the two goodness of fit we used the F statistics and
the x2 asymptotic distribution of the likelihood.

Results

Results for the reconstruction of the species-abundance
distribution for the BCI and Pasoh plots (Eq. 11) are shown
in Fig. 2 and 3 and in Table 1. As a benchmark of the
goodness of the predictions provided by our method, we
fitted a lognormal curve to the species abundance of the
entire 50 ha BCI and Pasoh plots, and calculated the log
likelihood for both the prediction and the lognormal fit. In
both cases the likelihood of the prediction tends to increase
with a, as expected. For the Pasoh plot, the reconstruction
at large A1 (a]0.2) even outperforms the direct fit of
lognormal to the data.

Bayesian methods take account both prior knowledge
and data. If there is little data, the method’s output is
dictated by the prior. The influence of the prior decreases
with the increase of data. As a result, our method tends to
give a prediction close to the prior when the input data are
scarce (i.e. when a is small). This, along with the
unreliability of the extrapolation of the parameters of
the priors for small a’s, explains the poor performance of
the method when a�0.05.

Our prediction for the number of species is compared in
Table 1 and in Fig. 2 and 3 with the Chao estimator (Chao

Table 1. Reconstruction of the SAD of the 50 ha BCI and Pasoh forest plots starting from a subarea A1�aA0 where A0�50 ha (Fig. 2). k:
predicted value for parameter k of the negative binomial distribution, extrapolated from data at scales smaller than A1. S1: number of
observed species in A1. S0,pred: predicted number of species in A0 (Eq. 13). Chao: Chao’s estimator for the number of species. Likelihood: log
likelihood of the reconstruction curve against the data (Eq. 15), to be confronted with the log likelihood for a lognormal fit to the entire BCI
and Pasoh data (Eq. 16), ln L��2054.5 in BCI and ln L��5404.9 in Pasoh. The boldface likelihood indicates nonsignificant difference
from the lognormal fit; an asterisk indicates that the reconstruction is significantly better than the lognormal fit. Significance is calculated
using F statistic and the x2 asymptotic distribution of the likelihood. The actual number of species in BCI is 305 and 817 in Pasoh.

Plot a ka ua /r2
k k ‘true’ k m s S1 S0,pred Chao likelihood

BCI 0.05 5.4E291.8E2 0.4990.78 0.17 0.91913.6 1.84 8185 2.97 217 219 236 �4500.6
0.1 1.1E190.3E1 0.06290.103 0.13 4.8991.33 2.18 10.0 10.5 233 288 242 �2048.8
0.15 1.0E290.1E2 0.2590.13 0.34 3.7291.35 2.25 19.6 9.90 238 272 246 �2049.8
0.2 9.3E390.01E3 0.6490.22 0.76 2.0691.56 2.44 24.9 9.86 250 284 270 �2049.8
0.3 9.7E490.01E4 0.8290.42 0.80 2.1791.86 3.33 33.0 10.7 261 286 278 �2049.4
0.4 9.8E490.02E4 0.8090.44 0.70 2.7991.72 4.65 47.0 9.43 272 290 281 �2050.4
0.5 2.0E-190.1E-1 �0.3690.59 0.67 25.691.4 7.56 62.2 9.33 277 288 282 �2049.8

Pasoh 0.05 1.4E190.5E1 0.1690.15 0.21 1.6191.75 1.44 3222 1.62 598 598 639 �29848
0.1 1.0E190.3E1 0.0990.09 013 3.1091.31 1.65 8.76 6.15 663 859 688 �5426.3
0.15 2.9E092.8E0 0.0590.09 0.05 6.0091.26 2.08 11.2 8.20 695 808 711 �5400.2
0.2 3.0E190.4E1 0.1490.13 0.22 5.0691.31 2.69 13.6 9.06 720 812 743 �5397.6*
0.3 1.0E390.03E3 0.4190.30 0.48 4.6391.57 4.45 26.0 8.62 751 808 766 �5391.1*
0.4 1.4E490.01E4 0.6190.40 0.59 4.8791.66 7.03 42.7 7.30 768 803 782 �5390.1*
0.5 3.3E690.2E6 1.0591.54 0.88 3.0692.33 10.2 46.4 8.39 781 813 800 �5390.4*
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Figure 2. a�0.05, . . . , 0.5: reconstruction (solid line) with a lognormal prior of the SAD of the 50 ha BCI forest plot starting from a
subarea of extension A1�aA0 with various values of a where A0�50 ha. Thin lines are the 95% Bayesian standard errors for the
reconstruction; dots represent the real species abundance in the 50 ha plot, and the dashed line is a lognormal fit to the SAD at 50 ha.
Abundance classes are logarithmically binned. The actual and predicted number of species are indicated in the legend. For the value of k
and goodness of fit see Table 1. Species: species prediction performance. The horizontal line shows the true number of species at A0�
50 ha. S1 is the true number of species present at A1�aA0, S0, pred is the prediction given by Eq. 13, and Chao’s estimator is plotted for
comparison.
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1984) S0�S1�(f1)2/2f2, where f1 and f2 are the number of
singletons and doubletons in A1, respectively.

The application of our method to predict SADs of Barro
Colorado Island at scales larger than 50 ha results in Fig. 4.
How well our predictions do? The question cannot be
answered before we have species abundance data for the
entire island. However, we may partially assess the goodness
of prediction by examining the species�area curve. From
species checklist, Condit et al. (2005) estimate there are 436
tree/shrub species (dbh]1 cm) in the entire island. Judged
by the species�area curve constructed from the 50 plot and
the 436 species, our predictions seems not to be unreason-
able. The triphasic species�area curve shown in Fig. 4 is
consistent to the observation of Hubbell (2001, p. 199).

Discussion

With few exceptions, information on biodiversity of a
region has to be inferred from samples. The essence of the
problem is to predict diversity across scales. Numerous
methods have been developed to estimate population sizes
(Seber 1982), species richness of animals and plants (Bunge
and Fitzpatrick 1993, Colwell and Codington 1994), and
species composition (Condit et al. 2002, Chao et al. 2005)
at varying scales. Surprisingly, methods to explicitly extra-
polate the species abundance distribution across scales are
absent from the literature, although SAD is indisputably the
most well studied diversity pattern and it has long been
recognized to vary with sampling scale, both theoretically
and empirically (Preston 1948, Nee et al. 1991, Gregory
1994, Dewdney 1998, Williamson and Gaston 2005,
Green and Plotkin 2007). To the best of our knowledge,
the only exception to this last statement is Harte et al.
(2009) who proposes a method to upscale the species
richness based on the maximum entropy framework that
also predicts the SAD. Because Harte et al. method is
parametric, they can only predict logseries-shaped SADs.
Our method, on the other hand, is non-parametric and can
predict SADs of arbitrary shape.

For the first time, we have proposed a non-parametric
method for upscaling regional SAD from smaller samples.
The Bayesian method takes a reasonable prior (lognormal)
and assumes a negative binomial spatial distribution of
species. Both these choices are guided by the information
already available on the system at hand. The method works
very well as shown by the predictions of BCI and Pasoh
SAD’s (Fig. 2, 3). With as small as 10�15% of sampling
area, we can adequately predict the SAD’s of both plots.
With a larger (20% or higher) sampling area, our method
can capture the detailed shape of the SAD and reconstructs
the full SAD data. In Pasoh plot, the prediction works even
more accurately than a direct lognormal fit. This is a
conservative statement since the lognormal is fitted by
maximum likelihood, so we in fact give some advantage to
the fit in the comparison. This is remarkable if we mention
that many richness estimators require 60% or even more
samples to obtain a reasonable estimate of the true species
richness for BCI and Pasoh plots (Shen and He 2008); keep
in mind richness is a single number, not a spectrum of
distribution like SAD which is much more difficult to
predict. As shown in Fig. 4, our method also does a very

good job in estimating richness. With the increase of
sampling area, the estimated richness converges to true
richness very quickly. Only 15�20% of sampling area is
needed for a reasonable estimation of richness. These results
are not surprising if one notices that, for instance, the 15%
sample plot contains 78% of the total species in BCI and
85% species in Pasoh, thus providing enough information
to reconstruct the whole species abundance. Since it is not
guaranteed that the situation is the same in other cases, it is
possible that when our method is applied to a different
ecosystem the threshold of 15% sample won’t hold.

Unlike other richness estimators (jackknifing, bootstrap-
ping, Chao 1984, Chao et al. 2005 and Shen and He
2008), our current method can only handle data from single
quadrat due to the computational requirement of the
method. This means we likely missed some very rare species
with sample size smaller than 50%. That is why the
estimated richness is somewhat smaller than the actual
richness. This problem can only be solved by increasing
sample size.

The major shift in our reconstructions occurs between 5
and 10% sample due to the property of the Bayesian
method: the method is dictated by prior probability when
only a little data is available but the importance of prior
reduces with the increase of data. Here the prior probability
is a lognormal whose parameters have been extrapolated as
was explained above. Therefore, the Bayesian method is
bound to give imprecise results when the sample is small.

Although the method remains to be tested for other
ecosystems than tropical forests, there are good reasons to
be confident because species are widely discovered to be
aggregated for the negative binomial sampling function to
hold (He and Gaston 2003). What needs to be readjusted is
perhaps the lognormal prior probability because not every
ecosystem is known to follow lognormal distribution
(Williamson and Gaston 2005, McGill et al. 2007). An
uninformative prior can also be used, at the expense of
accuracy in the reconstruction of the rare species part of the
SAD (Supplementary material Appendix 1).

If in case the negative binomial sampling is not an
appropriate choice, how one may find an appropriate
sampling function? A common feature of Bayesian methods
is that their performance improves with the available input
information (in our case, with the value of a) only if their
underlying assumptions are correct (or at least approximately
correct). If the underlying assumptions are not correct,
increasing a will actually sway the predictions away from the
desired result. In our case the monotonic increase of the
likelihood with a is a testimony that the negative binomial
sampling is a good choice. If the same reconstructions were
attempted with a different sampling (e.g. assuming random
sampling) the likelihood will decrease with increasing a (not
shown here). Thus in systems other than tropical forests one
should set up a reconstruction scheme like the one we
performed in Fig. 2 and 3, i.e. with the results known a priori,
and test different sampling assumptions to gauge their
validity by their response to varying a.

In this study we proposed an approximated parameter-
ization, Eq. 14, for extrapolating k using data at areas
smaller than A1. Theoretically, k should be proportionally
(not as a power law) increased with sampling area (Johnson
and Kotz 1969). However, this relationship has rarely
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Figure 3. a�0.05, . . . , 0.5: reconstruction (solid line) with a lognormal prior of the SAD of the 50 ha Pasoh forest plot starting from a
subarea of extension A1�aA0 with various value of a where A0�50 ha. Thin lines are the 95% Bayesian standard errors for the
reconstruction, dots represent the real species abundance in the 50 ha plot, and the dashed line is a lognormal fit to the SAD at 50 ha.
Abundance classes are logarithmically binned. The actual and predicted number of species are indicated in the legend. For the value of k
and goodness of fit see Table 1. Species: species prediction performance. The horizontal line shows the true number of species at A0�
50 ha. S1 is the number of species present at A1�aA0, S0,pred is the prediction given by Eq. 13, and Chao’s estimator is plotted for
comparison.
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found to describe empirical distributions well. Empirical
studies instead have shown that the power law is a
reasonable model for parameterizing the relationship
between k and sampling area (Plotkin and Muller-Landau
2002, He and Hubbell 2003). These power law models
assume A0 fixed with varying A1, while our Eq. 14 was
proposed to deal with the situation that keeps either a or A1

fixed with varying A0. The results show that the method
works well (Fig. 2, 3), and the extrapolation of the correct
value of k is not a major source of error due to the relative
insensitivity of our method to k, as seen by performing the
reconstructions using the ‘true’ value of k. By all means,
when the value of k becomes larger than about 5, the
resulting negative binomial is almost indistinguishable
from the random Poisson distribution (theoretically, when
k0� the negative binomial converges to Poisson). This
means that the higher the value of k, the less sensitive the
model is to the inaccuracy in the determination of k.

As a first approximation, we assumed that k was the
same for all the species in a given community. In reality,
however, k has different values across species even at the
same scale, depending on the level of aggregation or
‘clustering’ of each species. This is likely a source of
inaccuracy in our prediction. Because an enormous addi-
tional computational load is required to perform extrapola-
tion with a different sampling probability for every species,
we currently are unable to show how much more improve-
ment we may gain on the prediction (Fig. 2, 3) we have
already achieved by considering different k for different
species. Although in principle this can be done, the
computation involved will be very complicated (in parti-
cular, Eq. 4 will not be valid any more because different
P(Njn,a) is needed for different species, and the results the
section ‘Missing species prediction’ need to be generalized
to different sampling probabilities). In this study, the
computational time spent on the calculation of the

Figure 4. A0�100, . . . , 500 ha: Species�abundance prediction (solid line) with a lognormal prior for BCI for areas greater than the the
area actually sampled (50 ha). Dots represent the data of the 50 ha plot. Species�area: the dots are the observed species�area within
the 50 ha plot (S), the triangles are the predictions from our algorithm (S0,pred ) and the square is the total number of species present on
the whole island. The smooth curve is the fit of a third-order polynomial.
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sampling probability for various values of n and N was
already heavy; when this probability is the same for every
species, the results can be stored in a vector and recycled for
every species. This approach is not possible with a different
value of k for every species. At present this is the major
limitation of our method and the one that is most likely to
give an improvement in prediction if solved. As a caveat, it
is worthwhile to note that although k is assumed to be the
same across species in a plot, k is not assumed scale-
invariant in our study. Instead, Eq. 14 and its estimation
procedure reveal that k varies with both A0 and A1 (not just
a function of a). What we assume is that at a given scale k is
the same for every species.

In addition to considering different k for different
species, another future improvement can be to consider
data from multiple samples rather than a single sample as
formulated in this study, taking into account the species
similarity decay with distance between samples. While we
recognize the limitations of the current method, this first
ever effort for predicting regional SAD from local data
works reasonably well. More importantly, our formulation
offers a useful approach for sampling species-abundance
distribution.
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