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Course Overview

This course is based on the following philosophical principle:

All computing scientists must be able to employ rigorous reasoning to justify
their claims about the behaviour of the programs they produce.

Thus the goal of this course is to introduce you to the logical and mathematical tools for
reasoning about algorithms. Being able to effectively use these tools makes the difference
between being a programming hack and a computing scientist. However, a course such as
this can only examine the elementary material.

We will be covering in depth a small number of essential ideas. The course contains
three main parts:

1. Reasoning about programs. Throughout the course we will be looking at programs
as formal objects. Our goal will be to precisely specify the behaviour we wish our
programs to have, and then to develop programs and prove that they have the desired
behaviour.

2. A formal system for predicate logic. In this part we will introduce and use a formal
system for predicate logic. Unlike previous versions of this course, and many courses
on logic, we will not be using a system that exists only on paper. Instead we will
be writing proofs that can be checked for correctness using the Mizar MSE system.
In much the same way that you write a program, you will be entering your proofs
into files and running them through Mizar. By the end of this part of the course you
should be very comfortable with the idea of a proof, how to read one, and to some
extent, how to write one.

3. Basics: Sets, Relations, Functions, and Induction. This could have been the first part
of the course. We will introduce as required, various concepts such as sets, relations,
functions, types, induction, and basic number theory.

The Format of These Notes

Previous editions of these notes were printed in a somewhat unorthodox way — they were
single sided with the text on the left hand page. This was to encourage students to write
their lecture notes on the right hand blank page beside the material we are discussing in
the lecture. We even apologized to the left-handed students.

To save trees the notes are now printed double sided and three-hole punched. Now you
can insert blank pages wherever you wish.

Many of the examples are preceded with a marginal note which gives the name of the
file containing the actual text of the example. This saves you the trouble of entering in the
example by hand in the event that you want to play with it.
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Section 0: Motivating Problems 1

0 Motivating Problems

Tweedledee (to Alice):
I know what you are thinking about, but it isn’t so, nohow.

Tweedledum:
Contrariwise, if it was so, it might be;

if it were so, it would be;
but as it isn’t, it ain’t.

That’s logic.

0.0 Why?

Many of our students complain that they see no reason for taking this course as part of
the computing science curriculum. And despite our patient1 explanations many students
remain unconvinced2. So we would like to begin with some indirect motivation.

This section presents a number of puzzles, all of them relevant to a problem in computer
science (but you may not see it at first glance). We hope that after taking this course you
will be able to solve these problems to your satisfaction. The answers are not included, but
you can always ask your instructor, or search the library. Each of these problems has been
tackled more than once in the published literature.

The level of difficulty of the problems varies. Some are easy, almost everybody gets
the solution in a couple of minutes. Some are difficult, and unless you know some specific
techniques it is unlikely you will ever solve them. Some problems are actually open, people
still argue what the solution should be. We have deliberately not marked the difficulty
levels — it has been noted by many that knowing that a problem is difficult is a hindrance
in solving it. Also, when someone gives you an easy puzzle, stresses the fact that the puzzle
is really easy, yet you have no idea of how to solve it, this tends to make you nervous. We
tried to avoid such situations.

0.1 Diamond in a box

0.1.0 3-box lottery

A genie (say you are dreaming) presents three boxes to you and states that one of them
contains a diamond. The genie wants to keep the diamond, but says that you can have the
diamond if you correctly guess which box contains it. You make a guess, but before you
open the chosen box, the genie opens one of the remaining boxes that of course is empty.
You are now allowed to change your original choice in order to maximize your chances to
get the diamond. What would you do? Why?

1Well, sometimes impatient.
2To appreciate our perspective, ask yourself how you would convince a group of 6 year old kids that

learning reading and arithmetic is good for them. This kind of explanation is usually not included in the
grade 1 curriculum, although perhaps it should.



2 Section 0.1: Diamond in a box

0.1.1 3-old boxes lottery

Another genie (say you are dreaming again) presents three boxes to you and tells you that
one of them contains a diamond. You can have the diamond if you correctly guess which
box contains it. You decide to have a closer look at the boxes before making a guess. After
a closer examination of the boxes you discover that there is a statement on each of them
printed in a small print as follows:

The diamond is not
here. The diamond is here.

The diamond is not
here.

Which box do you choose?

0.1.2 2 boxes puzzle

This time the genie presents you with 2 boxes, one of which contains the diamond. Before
letting you to make the choice, the genie explains that there are 2 packers who pack boxes:
Jim and Peter. Whenever Jim packs a box he puts a true statement on the box, and
whenever Peter packs a box he puts a false statement on the box. You do not know which
box was packed by whom. Here are the boxes.

The diamond is not
here.

Exactly 1 of the boxes
was packed by Peter.

Where is the diamond?

0.1.3 Weird 2 boxes puzzle

The genie presents 2 boxes to you and tells that one of them contains a diamond.

The diamond is not
here.

Exactly 1 statement
on the boxes is false.

Now you reason this way. If the statement on the right box is true then the statement
on the left box is false therefore the diamond is in the left box. If the statement on the right
box is false then the statements on both boxes are false or both are true. They cannot be
both true as the second is false. So both are false, then again the diamond must be in the
left box. Therefore you choose the left box and open it and to your astonishment the box
is empty. As you are convinced that your reasoning was flawless you feel cheated. But the
genie claims he did not lie to you.

What is wrong?
Remark. The difference between this and the previous puzzle is quite subtle but also

basic and essential for the rigorous treatment of logic.
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0.2 Getting directions

0.2.0 Save your life

In yet another of your dreams you are in a prison on a remote planet. The puzzle-loving ruler
of the planet puts you into a cell with 2 doors, one of which leads back to your spaceship
“Enterprise”, the other one directly to a cage with a beast for which human meat is a much
desired delicacy. There is a guard in front of each door. The guards are able to answer only
“Yes” or “No” to any question you ask. Furthermore, one of them always tells the truth
the other one always lies. Of course, you do not know who is who.

You are allowed to choose one of the guards and ask her exactly one question and then
choose the door to meet your destiny.

What question do you ask?

0.2.1 Albanian food

One Sunday afternoon you develop a craving for Albanian food, and so head off along
Whyte Avenue searching for such a restaurant. To your astonishment, you discover two
of them, one across the street from the other — “The people’s choice”, and “The worker’s
favourite”. You stop a biker standing outside the Princess Theatre and ask them which one
is the better restaurant.

They reply that they do not know, but any of the trendy yuppies on the street does,
since they are famous for their bizarre culinary tastes. But, the person tells you, the yuppies
never tell the truth. Furthermore, do not expect more than a ‘Yes’ or ‘No’ answer from a
yuppie.

You approach a Gucci-clad yuppie and ask them a question. From their answer, you
know which restaurant is better. What question did you ask?

0.2.2 Albanian food II

After some time, the story repeats itself, except that you realize that the reputation of a
restaurant is not fixed forever. You encounter a person who appears to have good taste.
The problem is that you don’t know if they are a biker or a yuppie. Can you determine
which restaurant is better?

0.2.3 Albanian food III

Suppose that the person you talked to originally was not a true biker, but in fact a yuppie
pretending to be a biker. Can you determine which restaurant is better?

0.3 Troubles with existence

0.3.0 Unsocial uncle

An uncle of Peter chooses his friends by the following rule: he does not like people who like
themselves and he likes people who do not like themselves.

Does he like himself?
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Well, if he likes himself then he does not like himself. If he does not, then he likes
himself.

So what should the uncle do?

0.3.1 God exists

(The argument of St. Anselm) God is a supreme being and no being is superior to God.
The atheists, who deny that God exists must be able to conceive of something superior to
God in order to know what they deny. But nothing superior to God can be conceived of.
Therefore God exists.

(The argument of Descartes) By definition God is a being which has all properties.
Hence, by definition, God must also have the property of existence. Therefore God exists.

If you are convinced by the above arguments then consider the following question: If the
tail of a dog was called a leg, how many legs would a dog have? Abraham Lincoln answered
this question: “Four; calling the tail a leg doesn’t mean that it is one.”

0.3.2 Irresistible and Immovable

By an irresistible cannonball we shall mean a cannonball which knocks over everything in
its way. By an immovable post we shall mean a post which cannot be knocked over by
anything.

What happens if an irresistible cannonball hits an immovable post?

0.3.3 Mother Eve

Theorem. There is a woman on Earth such that if she becomes sterile, the whole human
race will die out because all women will become sterile.

Proof. Either all women will become sterile or not. If yes, then any woman satisfies the
theorem. If no, then there is a woman that does not become sterile. She is then the one,
such that if she becomes sterile (but she does not) then the human race will die out.2

Is the above convincing?

0.3.4 Santa Claus exists

You are presented the following piece of paper:

If the statement on this piece of paper is true
then Santa Claus exists.

Clearly, if the statement is true, then it follows that Santa Claus exists. Hence the statement
is true and if the statement is true then Santa Claus exists.

Therefore Santa Claus exists.

Are you convinced? In any case read the following variation of the above argument:

Wife: Santa Claus exists, if I am not mistaken.
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Husband: Well of course Santa Claus exists, if you are not mistaken.
Wife: Hence my statement is true.
Husband: Of course!
Wife: So I was not mistaken — and you admitted that if I am not mistaken, then Santa

Claus exists. Therefore Santa Claus exists.
Such outlandish conversations are often heard among computing scientists.

0.4 Geometric brain teasers

0.4.1 An isosceles triangle

Consider the following triangle:
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Angle measures:
6 ACB = 20◦

6 ABC = 6 BAC = 80◦

6 BAD = 60◦

6 ABE = 50◦

What is the measure of 6 ADE?
Remark. This problem is completely uninteresting if one employs trigonometry.

0.4.0 Another isosceles triangle

Consider the following figure:
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Given:
6 ABC = 6 BCA = 40◦

AD = BC

What is the measure of 6 ADC?
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0.5 What is the colour of your hat?

0.5.0 3 white and 2 black hats

Three men, name them A, B, and C entered a hat shop in which there were 3 white hats
and 2 black hats. The men stood in a row such that C saw both A and B, B saw A but did
not see C, and A saw neither B nor C. The shop assistant put some hats on their heads
while they kept their eyes closed (we assume our men are honest) and the remaining hats
were hidden behind the counter. After they open their eyes they tried to guess the colours
of their hats. Here is what they said.

C: I do not know the colour of my hat. B: I also do not know the colour of my hat. A:
If both of you do not know, then I know the colour of my hat.

What was the colour of A’s hat?

0.5.1 At least one white hat

The same three gentlemen entered another hat shop stocked with a practically infinite
number of white and black hats. They close their eyes and the shop assistant put some hats
on their heads. They knew that at least one of the hats was white. This time they stood
in such a way that everybody could see anybody else’s hat, but not his own.

Now, they open their eyes and the shop assistant asks them the same question, one at a
time in a round-robin fashion, “Do you know the colour of your hat?” keeping the answer
secret. After obtaining the answers from all three of them, the shop assistant reveals that
the answers were:

A: No. B: No. C: No.

Now the shop assistant starts the second round of asking the same question as in the
first round. Again, answers are kept secret until all the answers have been collected and
then the shop assistant announces that the answers were:

A: Yes. B: Yes. C: No.

What were the colours of their hats?

0.5.2 At least one white hat and no questions asked

The same three gentlemen enter yet another hat shop stocked with a practically infinite
number of white and black hats. But this time they came on a practical purpose. They
wanted a job and there was an opening for the shop assistant in the very shop. The shop
owner decided to choose one of them for the job using the following procedure.

The lights were switched off and in complete darkness the owner put a hat on each
of their heads at least one of which was white. The applicants stood in such a way that
everybody could see anybody else’s hat but not his own. The lights were turned on and the
owner said that the first to guess the colour of his hat gets the job.

After a long period of silence B shouted “My hat is white!”.
Did he get the job?
Remark. This puzzle is substantially different from the previous one. It touches on a

quite interesting problem in (computer) communications.



Section 0.6: 1,000,000 7

0.6 1,000,000

Write a program that prints a statement in plain English about a natural number n that is
true for, and only true for, all values of n less than one million.

0.7 Daemon in a pentagon

There is pentagon and at each vertex there is an integer number. The numbers can be
negative but their sum is positive. A daemon living inside the pentagon manipulates the
numbers as follows. If it spots a negative number at some vertex it performs the following
atomic action: it adds the number to the numbers residing at neighbouring vertices and
then negates the number at the original vertex.

Prove that no matter what numbers are given to the devil, after some time the devil
will not be able to change any of the numbers.



Part I

Reasoning about programs
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Promise: When you read these pages at this point of your education, you
my find the material impractical, toyish, and useless. If this is your opinion,
then we would like to ask you to read the stuff again just before you graduate.
If your opinion does not change we will do something to refund your money.

1 (Small) Programming problems

This section presents a sequence of small programming problems. Most of them are
completely solved. Some are not finished and are left as exercises.

The treatment of the examples is far from formal, however, it is rigorous and detailed.
The formal treatment of the same material would require us to use mathematical machinery
that would intimidate a beginner.

The programs are written in a notation that does not have an interpreter implemented
on a computer; therefore you cannot communicate the programs to a machine and as a
consequence you cannot run and test the programs. However, you can use the notation to
write algorithms that you would like to communicate to your friend or just to make a record
of for future use.

1.1 On the programming notation

We assume the reader is familiar with a programming language (preferably Pascal).

1.1.0 Data types

Boolean {false, true},
Int integers,

Nat natural numbers,
Rat rational numbers.

array the array can be of any type, indexed by any finite subrange of integers,
see examples for syntax.

1.1.1 Expressions

Expressions are built of variables and constants with the help of common operators (such as
+ or ·), and are therefore not described here. The syntax of expressions, and the standard
functions used are basically the same as in the programming language Pascal. The notable
difference is that instead of mod we use rem, the difference is discussed in section 1.12.

Evaluating an expression must not have any side effects.
All variables used in expressions must be previously declared.

1.1.2 Formulas

The preconditions, invariants, and postconditions are written as logical formulae using
various species from the zoo of mathematical symbols.
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1.1.3 Commands

Semicolons separate commands, however a semicolon may be skipped after a keyword.

Do nothing command
The command skip does not affect a computation in any way, it is sometimes needed for

syntactic reasons. An empty command could have been used but skip stresses that there
is nothing to do in a particular place of a program.

Assignment
We use := as the assignment operator. The assignment operator is multiple in the

following sense: the assignment

x, y := x+ y, x ∗ y

is executed as follows:
(a) x+ y and x ∗ y are evaluated, let their value be t1 and t2 , respectively,
(b) x and y are assigned the values t1 and t2, respectively.

This ensures that all calculations on the right hand side of := are finished before the values
of the variables on the left hand side are altered.

Alternative command
if

guard1 −→ command1
guard2 −→ command2

. . .
guardn −→ commandn

fi

where each guardi must be a boolean expression, is executed as follows:
(a) All guard expressions are evaluated. If

not (guard1 or guard2 or · · ·or guardn)
then the result of the alternative command is undefined and the execution of a pro-
gram containing such a command would be aborted (but we do not run our programs).
When writing a program you have to prove that this does not happen. Note that this
includes also proving that the values of all guards can be successfully computed (that
is without runtime errors like dividing by 0 or referring to a non-existing element in
an array).

(b) Exactly one command is chosen from among those whose guard expression evaluated
to true, and executed. This completes the execution of the alternative command.
Note: If more than one guard evaluates to true, then an arbitrary choice of which
of the corresponding commands to execute is made. We will discuss the use of
overlapping guards in section 1.3.
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Iterative command
do

Variant: The variant expression
Invariant: The invariant formula

guard1 (
exit−→ | −→ command1 )

guard2 (
exit−→ | −→ command2 )

. . .
guardn (

exit−→ | −→ commandn )
od

It is required that at least one of the guards is followed by
exit−→. The variant expression

must be an expression of type Nat .
The iterative command is executed as follows: First, the variant expression is evaluated

and the value is put into variable ve value which is inaccessible to the programmer. We
must prove that this value is non-negative. Then

(a) If the invariant formula is false the hypothetical execution of the program containing
the iterative construct would be aborted. When writing a program you have to prove
that this does not happen. Otherwise,

(b) All guard expressions are evaluated. If
not (guard1 or guard2 or · · ·or guardn)

then the result of the iterative command is undefined and the execution of a program
containing such a command would be aborted. When writing a program you have to
prove that this does not happen. As in the case of the alternative command, one has
to prove also that the evaluation of all guards terminates without runtime errors.

(c) Of all the guards that evaluated to true, one is chosen non-deterministically (by
flipping a coin, or rolling a dice, or always picking the first, or some other unknown
mechanism) and then

(c1) If the chosen guard is followed by
exit−→, then the execution of the iterative

command is terminated, otherwise
(c2) the corresponding command is executed and then,
(c3) the variant expression is evaluated. If the obtained result is non-negative but

smaller than the current value of ve value, it becomes the new value of the
ve value variable and the iterative command continues its execution at (a) by
examining the invariant, otherwise

(c4) the result of the iterative command is undefined and the execution of a pro-
gram containing such a command would be aborted. When writing a program
you have to prove that this does not happen.
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1.1.4 Specification

Syntactically, a specification is built as follows:

Declarations of variables
Preconditions: The preconditions formula.

?

Postconditions: The postconditions formula.

The syntax of formulae will be given later, but we will use formulae long before all
the details are explained. When writing formulae we make use of common mathematical
notation, which is not explained in these notes.

1.1.5 Program

Syntactically, a program is built as follows:

Declarations of global variables
Preconditions: The preconditions formula.

Declarations of local variables
Code: a sequence of commands
Postconditions: The postconditions formula.
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1.2 swap

Point: Straight line programs are easy to understand.

The following specification calls for a program that swaps the values of integer variables
a and b.

Int a, b;
Preconditions: A = a & B = b

?

Postconditions: a = B & b = A

Note how we used A and B to name the initial values of the variables a and b. The
required program is simple to find:

Int temp;
temp := a;
a := b;
b := temp

How do we argue that the code satisfies the stated specification? We have to know how to
reason about the simple command of assignment and then about a sequence of assignments.
We will do it in a backward fashion. First, we ask the question: under what conditions does
the last assignment establish the desired postconditions?

The assignment b := temp may change the value of b. The final postconditions state
the requirements for the final value of b. So, in order to know something about the value of
b after the assignment, we better know the same thing about temp before the assignment
was made. We express this by the following correct program (declarations of variables are
omitted):

Preconditions-3: a = B & temp = A
b := temp
Postconditions: a = B & b = A

The b := temp command establishes the original postconditions if it is executed in a state
that satisfies the formula labelled Preconditions-3. The question is now, how to establish
these conditions? Answer: these conditions must be established by the previous instruction!
Which preconditions must be met for a := b to establish a = B & temp = A? Since we
have to know something about a after the assignment we better know the same about b
before the assignment is done. We express this by the following correct program:

Preconditions-2: b = B & temp = A
a := b
Postconditions-2: a = B & temp = A

Now, under what conditions does the assignment temp := a establish b = B & temp = A?
For reasons similar to those discussed above we see that the following program is correct:
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Preconditions-1: b = B & a = A
temp := a
Postconditions-1: b = B & temp = A

But our original Preconditions mean the same as the formula labelled Preconditions-1.
Note that:

a = A & b = B iff b = B & a = A

What does it mean altogether?

• The original Preconditions guarantee Preconditions-1.

• The first assignment establishes Postconditions-1.

• As Postconditions-1 mean the same as Preconditions-2, the second assignment
establishes Postconditions-2.

• As Postconditions-2 are identical to Preconditions-3, the third assignment estab-
lishes the original Postconditions.

There is a silly-looking but important question: how would you like to have your program
presented?

Is something that hides all the details of our reasoning satisfactory? Look at this:

Int a, b;
Preconditions: A = a & B = b
Int temp;
temp := a;
a := b;
b := temp
Postconditions: a = B & b = A

Or, should we display our reasoning by talking about a single command at a time, like we
did earlier, displaying all the numbered pre- and post-conditions?

Or, would you prefer that some of our reasoning is shown by stating explicitly the
intermediate conditions during the computation, e. g. like this (read it forward):

Int a, b;
Preconditions: A = a & B = b
Int temp;

Conditions : b = B & a = A
temp := a;

Conditions : b = B & temp = A
a := b;

Conditions : a = B & temp = A
b := temp
Postconditions: a = B & b = A



Section 1.3: min and max 15

1.3 min and max

Point: How to reason about an alternative command?

The following specification calls for a program that assigns the maximum of integers a
and b to r:

Int a, b;
Preconditions:

Int r ;

?

Postconditions: ((r = a or r = b) & r ≥ a & r ≥ b)

The specification strongly suggests that an if instruction be used in order to establish the
postcondition by first deciding which is larger the value of a or the value of b, and then
assigning the larger value to r.

if
a ≥ b −→ r := a
b ≥ a −→ r := b

fi

When the guard is true, then the chosen command establishes the postcondition as can
be seen from the discussion below. The following two pieces of code are correct by the
definition of the := operator:

Piece1:
Preconditions:
r := a
Postconditions: r = a

Piece2:
Preconditions:
r := b
Postconditions: r = b

Let us note that the r := a command with the precondition a ≥ b establishes the following
postconditions:

Preconditions: a ≥ b
r := a
Postconditions: r = a & r ≥ b

In propositional logic with equality we can prove that

r = a & r ≥ b implies ((r = a or r = b) & r ≥ a & r ≥ b)

Combining the last two observations we get:
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Preconditions: a ≥ b
r := a
Postconditions: ((r = a or r = b) & r ≥ a & r ≥ b)

Similar reasoning applies to the Piece2 of code (the reader is encouraged to reconstruct the
reasoning as an exercise) yielding:

Preconditions: b ≥ a
r := b
Postconditions: ((r = a or r = b) & r ≥ a & r ≥ b)

We will now argue that the alternative command establishes the desired postconditions of
the initial specification. Note what follows:

• At least one of the guards is always true, a ≥ b or b ≥ a, and exactly one of the
guarded commands is executed.

• If a guard, a ≥ b or b ≥ a, is true, then the corresponding guarded command—r := a
or r := b, respectively— establishes the postconditions as shown by the above analysis.

Note that when a = b, then the alternative command may behave non-deterministically,
that is, we do not know which of the guarded commands is selected for execution. This
does not matter for correctness: the desired postconditions will be established whichever is
selected.

Problem: Specify, find the program, and argue for the correctness of an analogous code
that finds the minimum of two integers.
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1.4 1-bit adder

Points: Logic relates to hardware.
Do not write alternative commands if you do not have to.

Proficiency in manipulating propositional formulae is important for computation design.
Consider the following specification:

Nat a, b;
Preconditions: a, b ∈ {0, 1};

Nat c, s;

?

Postconditions:
(a = 0 & b = 0 implies c = 0 & s = 0 ) &
(a = 0 & b = 1 implies c = 0 & s = 1 ) &
(a = 1 & b = 0 implies c = 0 & s = 1 ) &
(a = 1 & b = 1 implies c = 1 & s = 0 )

The specification is complete as it specifies the output values for each possible initial setting
of the input parameters. How do we develop the needed program? One may attempt to

write the program by directly interpreting the postconditions. This would replace the ?

with the following if statement:

if
a = 0 & b = 0 −→ c, s := 0 , 0

a = 0 & b = 1 −→ c, s := 0 , 1

a = 1 & b = 0 −→ c, s := 0 , 1

a = 1 & b = 1 −→ c, s := 1 , 0
fi

Such a solution is bad as we test the same thing more than once, which makes the program
long and ugly. We may try to change the program but first let us have a closer look at
the specification. From our postconditions we can infer (among other useless facts) the
following:

not c = 0 iff c = 1 ,
not s = 0 iff s = 1 ,
a = b iff s = 0 ,
a = 1 & b = 1 iff c = 1 .
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This observation suggests setting c and s separately:

if
a = b −→ s := 0
a 6= b −→ s = 1

fi;
if

a = 1 & b = 1 −→ c := 1
a 6= 1 or b 6= 1 −→ c := 0

fi

The above program can be transformed to save on writing and execution time:

if
a = b −→ c, s := a, 0

a 6= b −→ c, s := 0 , 1
fi

Our original problem can be transformed into a more interesting one. All the values
that are used in our problem are 0 or 1 as we are trying to build a 1-bit adder. Consider
four Boolean variables A, B, C, and S which are defined in terms of our integer variables
as follows:

A iff a = 1 ,
B iff b = 1 ,
C iff c = 1 ,
S iff s = 1 .

With this translation we can now rewrite the postconditions as follows:

Postconditions:
( not A & not B implies not C & not S ) &
( not A & B implies not C & S ) &
( A & not B implies not C & S ) &
( A & B implies C & not S )

If we now compare the above with the definitions of the logical connectives conjunction and
equivalence we can observe that:

C iff A & B ,
S iff not (A iff B).

But this effect can be achieved in Pascal by single assignments:

C := A and B ;
S := not (A = B)
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Note how this solution is short and elegant!
How can it help us in solving the original problem? If we are in a Pascal-like envi-

ronment, we will have to do some pre- and post-processing in order to translate first from
integers to Booleans and then back. This backward translation is achieved by employing
the standard Pascal function ord . (Remember that the type Boolean is predefined in Pascal

as (false, true).) The initial ? is replaced by:

Boolean A,B ,C ,S ;
{Translate from integers to Booleans.}

A := a = 1 ; B := b = 1 ;
{Do the work on Booleans.}

C := A and B ;
S := not (A = B);

{Translate from Booleans to integers.}
c := ord(C ); s := ord(S )

Reminder for the C language speakers: in the programming language C, no pre- or
post-processing is required.

Question: If A iff B is expressible in Pascal simply as A = B , how would you express
A implies B?
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1.5 The Coffee Can Problem

Points: Variants are used to demonstrate the termination of iterative processes.
Invariants are used for proving what iterative processes do.

Problem: A coffee can contains some black beans and white beans. The following process
is repeated as long as possible:

Randomly select two beans from the can. If they have the same colour,
throw them out, but put another black bean in. (Enough extra black beans are
available to do this.) If they are different colours, place the white one back into
the can and throw the black one away.

Prove that the process stops with exactly one bean in the can. Specify the colour of the
final bean in terms of the number of white beans and the number of black beans initially
in the can.

Exercise: The above is an informal specification of a process. Are you sure how the
process is run?

Let us write a program that describes the behaviour of a robot that manipulates coffee
beans.

The coffee can
Nat W ,B ,w , b;

Preconditions: W > 0 & B > 0;
Bean bn1 , bn2 ;

w := W ; b := B ;
do

Variant: w + b.
Invariant: w=mod 2 W .

w + b = 1
exit−→

w + b > 1 −→ bn1 := PickaBean; bn2 := PickaBean;
if

bn1 .col = white & bn2 .col = white −→
w := w − 2 ; PlaceBlackBean; b := b + 1

bn1 .col = black & bn2 .col = black −→
PlaceBlackBean; b := b − 1

bn1 .col 6= bn2 .col −→ b := b − 1 ; PlaceWhiteBean
fi

od

Postconditions:
R0: w + b = 1 ,
R1: (W =mod 2 0 implies b = 1 ) & (W =mod 2 1 implies w = 1 ).

End of the coffee can
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The robot can perform the following operations:

PickaBean, PlaceBlackBean, PlaceWhiteBean

with obvious meaning. Note that PickaBean is non-deterministic: when executed twice
with the same can contents it may give different results.

The preconditions say that at the start we have at least one white bean and at least one
black bean.

Definition. Let a and b be natural numbers. a=mod 2 b means

∃ z ∈ Int :: a − b = 2 · z .

We will now argue that the program is correct, that is, when the program is run in a
state satisfying the preconditions, it will terminate in a state satisfying the postconditions.

We have to prove a number of properties of our program.

The if command is correct, i.e. it never aborts. We have to prove that all guard
expressions are correct boolean expressions and at least one of them always evaluates to
true. We assume that inspecting the colour of a bean is always successful. Each of the
picked up beans bn1 and bn2 must be either white or black and therefore the following
sentence is always true:

bn1 .col = white & bn2 .col = white
or

bn1 .col = black & bn2 .col = black
or

bn1 .col 6= bn2 .col

The do command is correct. In order to prove this we have to demonstrate that:

• One of the guards of the iterative command is always true.

• The variant expression is always non-negative and decreases with every iteration.

• The invariant is always true.

Each of these three properties requires an inductive reasoning. In order to show induc-
tively that some statement is always true about the iterative command we will prove:

1. First time: The statement is true when the loop is executed for the first time.

2. Once through the loop after an arbitrary number of loop executions: After assum-
ing that the statement is true and the loop does not exit, we demonstrate that the
statement is true when the loop is about to be executed the next time.

We will discuss other details of inductive reasoning later in the course.
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The loop never aborts. We have to prove that

w + b = 1 or w + b > 1

at the moment when the loop guards are evaluated. The above formula can be written as
w + b ≥ 1 .

First time. From the preconditions we know that W > 0 and B > 0 and because they
are natural numbers W ≥ 1 and B ≥ 1 which yields W + B > 1 . When the loop is
executed for the first time we have w + b = W + B , and thus w + b ≥ 1 .

Once through the loop. Let wc and bc be the current values of w and b. Assume the
loop does not exit, i.e.

A: wc + bc > 1 .

After the loop executes its body once, let the next values of w and b be wn and bn . Our
goal is to prove that wn + bn ≥ 1 . How do the next values relate to wc and bc? This can
be answered by considering three cases of the if command.

• Case bn1 .col = white & bn2 .col = white.

wn = wc − 2 and bn = bc + 1 . Then wn + bn = wc + bc − 1 . Because of A we have
wn + bn ≥ 1 .

• Case bn1 .col = black & bn2 .col = black .

wn = wc and bn = bc − 1 . Then wn + bn = wc + bc − 1 . Because of A we have
wn + bn ≥ 1 .

• Case bn1 .col 6= bn2 .col .

wn = wc and bn = bc − 1 . Then wn + bn = wc + bc − 1 . Because of A we have
wn + bn ≥ 1 .

We have proven that no matter which action of the iterative command is executed we have
wn + bn ≥ 1 .

The two steps named First time and Once through the loop demonstrate that w +b ≥ 1 ,
which proves that the loop will never abort due to a failure in evaluating guards.

The loop terminates. This claim is proven with the help of the variant expression.
Recall (page 11) that the variant expression must be a natural (integer, non-negative)
expression which decreases every time the loop is executes. If so, the loop must terminate,
as no natural expression can decrease forever. This is another inductive reasoning.

In our case the variant expression is claimed to be w + b. Without a proof that the
expression is a variant of the loop such a claim is nothing more than a guess. Note also the
a loop may have more than one variant expression (make sure that you understand this).

First time. Here we have to show that w + b is a natural expression. It is easy to see
that this is the case.

Once through the loop. Look to the previous Once through the loop for notation and
assumptions.
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We have to prove that 0 ≤ wn + bn < wc + bc . From the reasoning above we know that
wn + bn = wc + bc − 1 and that 1 ≤ wn + bn . Clearly wc + bc − 1 < wc + bc.

Therefore we have proved that w+b is the sought variant expression and we can conclude
that the loop terminates. (Note: variant expression for a terminating loop is not unique, in
the above case take for example w + b + 31 . It is a variant expression as well.)

The invariant. We now turn to proving that the claimed invariant holds. We will use
the same technique and notation as above.

First time. Because w = W , then w=mod 2 W .
Once through the loop. (Look above for notation.) Assume the invariant holds, i.e.

I: wc=mod 2 W .

and the loop does not exit.
Our goal is to prove that wn=mod 2 W . We consider three cases of the if command.

• Case bn1 .col = white & bn2 .col = white.

wn = wc − 2 and therefore wn=mod 2 W by I and the definition of =mod 2 .

• Case bn1 .col = black & bn2 .col = black .

wn = wc and therefore wn=mod 2 W by I.

• Case bn1 .col 6= bn2 .col .

wn = wc and therefore wn=mod 2 W by I.

Therefore the stated invariant is now proven. The invariant says that the parity of white
beans in the can never changes.

One may ask why we picked this invariant and not another one. The answer is simple:
this invariant helps us in proving the expected postconditions. But indeed, the loop has
many invariants, some of them completely useless as for example the following property
which is always true: 1 = 1. Note that when proving that the loop never aborts, we have
shown that w + b ≥ 1 is an invariant of the loop.

Proving the postconditions. We know that the loop terminates. The question is now:
do the postconditions hold when it does? The answer is yes because of the following
reasoning.

When the loop exits (it must as it terminates) we have

R0: w + b = 1

as there is only one exit guard which says exactly this. We also know that the invariant
holds as it held just before the loop exited.

Inv: w=mod 2 W .

How can we prove the postcondition labelled R1 ? We have to prove two statements
each being an implication. We will closely follow a formalism that we will discuss in detail
later.
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R1a: W =mod 2 0 implies b = 1
proof

assume W =mod 2 0 ;
w ≤ 1 by R0, i.e. w = 0 or w = 1. We know from assumption that W is
even, then w must also be even by Inv. Hence w = 1 is impossible, therefore
w = 0, and because of R0 we conclude

thus b = 1

R1b: W =mod 2 1 implies w = 1 proof
assume W =mod 2 1 ;

w ≤ 1 by R0, i.e. w = 0 or w = 1. We know from assumption that W is
odd, then w must also be odd by Inv. Therefore w = 0 is impossible. And
we conclude

thus w = 1

The postcondition R1 follows from R1a and R1b.

In words we can say: the process of removing beans from the can terminates with one
bean in the can; the remaining bean is white exactly when the initial number of white beans
was odd.
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Consider the following variations of the coffee can problem.

Variation 1 : Change the if statement to the following:

if
bn1 .col = white & bn2 .col = white −→

w := w − 2 ; PlaceBlackBean; b := b + 1

bn1 .col = black & bn2 .col = black −→ PlaceBlackBean; b := b − 1

bn1 .col 6= bn2 .col −→ w := w − 1 ; PlaceBlackBean
fi

State a variant and an invariant of the changed loop. Find out the colour of the remaining
bean by formulating the postcondition. Note: the preconditions have not changed.

Variation 2 : Change the if statement to the following:

if
bn1 .col = white & bn2 .col = white −→ PlaceWhiteBean; w := w − 1

bn1 .col = black & bn2 .col = black −→ PlaceBlackBean; b := b − 1

bn1 .col 6= bn2 .col −→ w := w − 1 ; PlaceBlackBean
fi

State a variant and an invariant of the changed loop. Find out the colour of the remaining
bean by formulating the postcondition. Note: the preconditions have not changed.

Variation 3 : (An ill defined process.)
Change the if statement to the following:

if
bn1 .col = white & bn2 .col = white −→ PlaceWhiteBean; w := w − 1

bn1 .col = black & bn2 .col = black −→ PlaceBlackBean; b := b − 1

bn1 .col = white & bn2 .col = black −→ PlaceBlackBean; w := w − 1

bn1 .col = black & bn2 .col = white −→ PlaceWhiteBean; b := b − 1
fi

State a variant of the changed loop.
In the previous cases it is possible to state the colour of the remaining bean knowing only

the initial values of W and B. This is impossible now. Why? Give the shortest explanation
you can.
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1.6 Multiplication: slow and fast

Points: How to accumulate knowledge?
How to make your programs run faster?

The following program multiplies two integers using only addition. This is the slow
multiplication.

The slow multiplication
Rat X , res;
Nat Y ;

Preconditions:
Nat y ;

y , res := 0 , 0 ;
do Variant: Y − y .

Invariant: X · y = res.

y = Y
exit−→

y < Y −→ y , res := y + 1 , res + X
od

Postconditions: X ·Y = res.
End of the slow multiplication

We will now demonstrate that the claimed invariant of the loop is indeed always true.
We will follow the form of inductive reasoning introduced in the coffee can example.

First time. When the loop body is to be executed for the first time we have: y = 0 and
res = 0 which makes X · y = res true as X · 0 = 0 .

Once through the loop. Assume that after a number of loop executions the current values
of y and res variables are yc and resc , respectively. Assume that the invariant is true, that
is:

A : X · yc = resc .

We prove that if the loop body is executed once more without exiting the loop then the
invariant will be true again. If the loop does not exit, the assignment y , res := y +1 , res +X
is executed and the next values of y and res are yn = yc+1 and resn = resc+X , respectively.
We have:

X · yn = X · (yc + 1)
= X · yc +X · distributes over +
= resc +X by A
= resn

which proves that the claimed invariant is true again.

Using a similar format of reasoning prove that the loop never fails and that it terminates.
Finally, prove the postconditions. Note how the invariant combined with the exit guard
implies the postconditions.
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It is instructive to look at a version of the multiplication in which y decreases instead
of increasing.

The slow multiplication going down
Rat X , res;
Nat Y ;

Preconditions:
Nat y ;

y , res := Y , 0 ;
do Variant: y .

Invariant: X · y + res = X ·Y .

y = 0
exit−→

y > 0 −→ y , res := y − 1 , res + X
od

Postconditions: res = X ·Y .
End of the slow multiplication going down

The multiplication problem admits a much faster solution if we can use some other
operations besides addition. The problem would entirely disappear if we could use the mul-
tiplication operator that can take an arbitrary natural number as its second argument. It
would be too easy. Assume that besides addition and subtraction, we can use also the oper-
ations of multiplying by 2 and integer division by 2. These operations are considered quite
primitive as they correspond to shifting bits in a memory unit, left and right, respectively.
Employing these two operations leads to the so called fast multiplication.

The fast multiplication
Rat X , res;
Nat Y ;

Preconditions:
Rat x ;
Nat y ;

x , y , res := X ,Y , 0 ;
do Variant: y .

Invariant: x · y + res = X ·Y .

y = 0
exit−→

odd(y) −→ y , res := y − 1 , res + x

even(y) & y > 0 −→ y , x := y div 2 , 2 · x
od

Postconditions: res = X ·Y .
End of the fast multiplication

Problem: Try to rewrite the fast multiplication with y going up instead of going down.
Is the obtained solution any better than the program above?
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1.7 Exponentiation: slow and fast

Points: How to accumulate knowledge?
How to make your programs run faster?

The following program may prove useful for you one day as many languages do not
provide a built-in exponentiation operator. On the other hand, most program libraries will
have an exponentiation routine.

It would be instructive for you to compare the multiplication programs from the previous
section with the programs below.

The slow exponentiation
Rat X , res;
Nat Y ;

Preconditions:
Nat y ;

y , res := 0 , 1 ;
do Variant: Y − y .

Invariant: X y = res.

y = Y
exit−→

y < Y −→ y , res := y + 1 , res ·X
od

Postconditions: X Y = res.
End of the slow exponentiation

It is instructive to look at a version of the exponentiation in which y decreases instead
of increasing.

The slow exponentiation going down
Rat X , res;
Nat Y ;

Preconditions:
Nat y ;

y , res := Y , 1 ;
do Variant: y .

Invariant: X y · res = X Y .

y = 0
exit−→

y > 0 −→ y , res := y − 1 , res ·X
od

Postconditions: res = X Y .
End of the slow exponentiation going down

The above programs are slow. In both cases we perform Y − 1 multiplications by X.
We can do much better than that if we employ the operation of integer division by 2 . Any
binary computer can perform this operation really fast.
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The fast exponentiation
Rat X , res;
Nat Y ;

Preconditions:
Rat x ;
Nat y ;

x , y , res := X ,Y , 1 ;
do Variant: y .

Invariant: x y · res = X Y .

y = 0
exit−→

odd(y) −→ y , res := y − 1 , res · x
even(y) & y > 0 −→ y , x := y div 2 , x · x

od

Postconditions: res = X Y .
End of the fast exponentiation

Problem: Try to rewrite the fast exponentiation with y going up instead of going down.
Is the obtained solution any better than the program above?
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1.8 Array summation

Point: Start with knowing nothing and accumulate your knowledge by doing something.

Given an array A[1 ..n] of rational numbers. Assign a rational variable sum to the sum
of the array elements.

Array summation
Nat n;
Rat A[1 ..n];
Rat sum;

Preconditions:
Nat k ;

k , sum := 0 , 0 ;
do

Variant: n − k .
Invariant: (

∑
i : 1 ≤ i ≤ k : A[i ]) = sum.

k = n
exit−→

k < n −→ k := k + 1 ; sum := sum + A[k ]
od

Postconditions: (
∑

i : 1 ≤ i ≤ n : A[i ]) = sum.
End of the array summation

Note: the loop invariant together with the exit guard imply the postconditions.

Exercise: Why cannot the assignment commands k := k + 1 ; sum := sum + A[k ] be
written as a multiple assignment k , sum := k + 1 , sum + A[k ]?
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1.9 Array minimum

Point: Start with knowing nothing and accumulate your knowledge by doing something.

Given an array A[1 ..n] of rational numbers. Assign a rational variable min to the value
of the minimal element of the array. There is no operation available for finding minimum
of two or more numbers.

Array minimum
Nat n;
Rat A[1 ..n];
Rat min;

Preconditions:
Nat k ;

k ,min := 0 ,maxRat ;
do

Variant: n − k .
Invariant: (MIN i : 1 ≤ i ≤ k : A[i ]) = min.

k = n
exit−→

k < n −→ k := k + 1 ;
if

A[k ] < min −→ min := A[k ]

A[k ] ≥ min −→ skip
fi

od

Postconditions: (MIN i : 1 ≤ i ≤ n : A[i ]) = min.
End of the array minimum

Note: the loop invariant together with the exit guard imply the postconditions.
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1.10 Linear search and binary search

Point: Accumulate your knowledge but do not compute things that you can infer.

This problem concerns a one dimensional array of integers A[1..n]. Consider the follow-
ing program that searches the array A for the value of the integer variable x and finds the
smallest k such that A[k] = x.

Linear search
Nat n;
Int A[1 ..n];
Int x ;

Preconditions: ∃ i : 1 ≤ i ≤ n : A[i ] = x .
Nat k ;

k := 1 ;
do

Variant: n − k .
Invariant: (∃ i : k ≤ i ≤ n : A[i ] = x ) & (∀ i : 1 ≤ i < k : A[i ] 6= x ).

A[k ] = x
exit−→

A[k ] 6= x −→ k := k + 1
od

Postconditions: A[k ] = x & (∀ i : 1 ≤ i < k : A[i ] 6= x ).
End of linear search

In the problem above, we have assumed that the integer we searched for is in the array.
How do we solve the problem when we have no such prior knowledge? One approach is to
maintain a boolean flag present that tells us whether or not the search was successful.

Linear search with a flag
Nat n;
Int A[1 ..n];
Int x ;
Boolean present ;

Preconditions: 0 < n.
Nat k ;

k , present := 1 ,A[1 ] = x ;
do

Variant: n − k .
Invariant: (present & A[k ] = x & (∀ i : 1 ≤ i < k : A[i ] 6= x ))

or (not present & (∀ i : 1 ≤ i ≤ k : A[i] 6= x)).

present
exit−→

not present & k < n −→ k := k + 1 ;
if

A[k ] = x −→ present := true

A[k ] 6= x −→ skip
fi
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k = n
exit−→

od

Postconditions: (present & A[k ] = x & (∀ i : 1 ≤ i < k : A[i ] 6= x ))
or (not present & (∀ i : 1 ≤ i ≤ n : A[i] 6= x)).

End of linear search with a flag

Actually, the above program is not liked by anybody. One can think of making it
better by small adjustments. However, serious improvement is achieved by a conceptual
breakthrough. Note the simplicity of the solution when we knew that the element we
searched for was in the array. At very little cost we can get the simplicity even when we
do not know that. We will simply insert the searched for element into the array, at an
additional entry, added to the array.

Linear search with a sentinel
Nat n;
Int A[1 ..n + 1 ];
Int x ;
Boolean present ;

A[n + 1 ] := x ;

Preconditions: ∃ i : 1 ≤ i ≤ n + 1 : A[i ] = x .
Nat k ;

k := 1 ;
do

Variant: n + 1 − k .
Invariant: (∃ i : k ≤ i ≤ n + 1 : A[i ] = x ) & (∀ i : 1 ≤ i < k : A[i ] 6= x ).

A[k ] = x
exit−→

A[k ] 6= x −→ k := k + 1
od
present := k 6= n + 1

Postconditions: (present & A[k ] = x & (∀ i : 1 ≤ i < k : A[i ] 6= x ))
or (not present & (∀ i : 1 ≤ i ≤ n : A[i] 6= x)).

End of linear search with a sentinel
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The search process can be substantially more efficient if we know something more about
the array A, for instance when we know that A is sorted in non-decreasing order. Then we
can apply the so called binary search.

Binary search
Nat n;
Int A[1 ..n];
Int x ;
Boolean present ;

Preconditions: ∀ i : 1 ≤ i < n : A[i ] ≤ A[i + 1 ].
Nat k , l , r ;

l , r , present := 1 ,n + 1 , false;
do

Variant: r − l − ord(present).
Invariant: (present implies A[k ] = x )

& (not present implies (∀ i : 1 ≤ i < l or r ≤ i ≤ n : A[i] 6= x)).

present
exit−→

not present & l < r −→ k := (l + r) div 2 ;
if

A[k ] = x −→ present := true

A[k ] > x −→ r := k

A[k ] < x −→ l := k + 1
fi

l = r
exit−→

od

Postconditions: (present implies A[k ] = x )
& (not present implies (∀ i : 1 ≤ i ≤ n : A[i] 6= x)).

End of binary search

Note: in the first disjunct of the invariant and in the first disjunct of postconditions we
make reference to k which may be undefined in the case when the array is empty. Is this
allowed? Note that present is false in this case.

Note: binary search does not guarantee that if x occurs in A, then k has the smallest
possible value.
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1.11 Selection sort

Point: Start with knowing nothing and accumulate your knowledge by doing something.

Point: How to reason about nested loops?

Given a non-empty array A[1 ..s] of rational numbers. Sort the array in non-decreasing
order.

Selection Sort
Nat s;
Rat A[1 ..s];

Preconditions: s > 0 .
Nat i , j , a;

i := 1 ;
do

Variant: s − i .
Invariant:

∀ k : 1 ≤ k < i : A[k ] ≤ A[k + 1 ] & (∀ l : i ≤ l ≤ s : A[k ] ≤ A[l ]).

i = s
exit−→

i < s −→ a, j := i , i + 1 ;
do

Variant: s − j + 1 .
Invariant: ∀ k : i ≤ k < j : A[a] ≤ A[k ].

j = s + 1
exit−→

j ≤ s −→ if
A[a] ≤ A[j ] −→ skip

A[a] > A[j ] −→ a := j
fi
j := j + 1

od
Conditions: ∀ k : i ≤ k ≤ s : A[a] ≤ A[k ].
A[i ],A[a] := A[a],A[i ];
i := i + 1

od
Postconditions: ∀ i : 1 ≤ i < s : A[i ] ≤ A[i + 1 ].

Selection Sort
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1.12 Quotient and remainder

Point: The winding road from specification to program.

The problem definition (version 0): Given two integer values x and y, find integer
values q (for quotient) and r (for remainder) that satisfy the equation:

x = q · y + r.

A merry hacker may start typing in some code without even noticing that the problem is
ill defined. Namely, given any integer values x and y, the above equation admits numerous
solutions for q and r. (Try to find different solutions for x = 7 and y = 4.) Which solution
are we interested in? Let us impose some restrictions on r.

The problem definition (version 1): Given two integer values x and y, find integer
values q and r such that 0 ≤ r < y and satisfying the following equation:

x = q · y + r.

The situation seems to be much better. But the problem is still ill defined. Namely,
when y ≤ 0, no r satisfies 0 ≤ r < y . If we impose a restriction on y that excludes the
above possibility then we obtain:

The problem definition (version 2): Given two integer values x and y, 0 < y, find
integer values q and r satisfying the following conditions:

0 ≤ r < y,
x = q · y + r.

Exercise: Check that for any x and y satisfying the preconditions, there is unique q and
r satisfying the postconditions. How do you start?

The above is the specification of the Pascal mod operation as given in the language
standard: r is the value returned by x mod y . Note however, that q does not specify
the value returned by Pascal x div y . Needless to say, not all Pascal compilers satisfy
the specification. There is a good reason that the function mod in Pascal is not named
rem. Both these functions mean the same only for nonnegative values of x. Intuitively,
a remainder is what remains of the dividend (our x) after the divisor (our y) has been
divided into it. In this intuitive sense, a non-zero remainder should have the same sign as
the dividend and its absolute value must be smaller than the absolute value of the divisor.
Because of this last restriction the divisor must not be zero.

Definition: Function sign : Int 7→ {−1 , 0 , 1} is defined for integer x as:

sign(x ) =


−1 if x < 0

0 if x = 0
+1 if x > 0
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Definition: Function abs : Int 7→ Int+ ∪ {0} is defined for integer x as:

abs(x ) =

{
−x if x < 0
x if x ≥ 0

The problem definition (version 3): Given two integer values x and y, y 6= 0, find
integer values q and r satisfying the following equation:

r 6= 0 implies sign(r) = sign(x),
0 ≤ abs(r) < abs(y),
x = q · y + r.

This statement can be directly turned into a program specification:

The q/r specification
Int x , y , q , r ;

Preconditions: y 6= 0;

?

Postconditions: r 6= 0 implies sign(r) = sign(x ),
0 ≤ abs(r) < abs(y),
x = q · y + r .

End of the q/r specification

Exercise: Check that the specification is meaningful, that is, for every pair of input
values x and y satisfying the preconditions, there is a unique pair of output values q and r
satisfying the postconditions. Only when the check is successful can we think about devel-
oping a program for the specification.

Let us develop the program assuming that we do not have a function div available to
us. If such a function were available to us, we would have an immediate solution.

Since the postconditions are expressed in terms of sign and abs functions, one may
suspect that we will have to consider 4 cases depending on the signs of the input values.
Fortunately, the task is much easier if we separately compute the sign and the absolute
values of the outputs.

How can we find abs(q) and abs(r)? From the last postcondition we have that x −
r = q · y . Note that abs(q · y) = abs(q) · abs(y). Now, when r = 0 then certainly
abs(x ) = abs(q) · abs(y) + abs(r). When r 6= 0, then sign(x ) = sign(r), and therefore
abs(x − r) = abs(x )− abs(r), thus abs(x ) = abs(q) · abs(y) + abs(r). Note that this implies
abs(x ) ≥ abs(r).

What is sign(q)? Look at the last condition again as x−r = q ·y . Note that sign(x−r) =
0 only when x = r. Otherwise, when x 6= r we have sign(x − r) = sign(x ) because of the
first postcondition and the last observation from the previous paragraph. This means that
when q 6= 0 then sign(x ) = sign(q) · sign(y) and therefore sign(q) = sign(x ) · sign(y).
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To summarize, we know how to find the sign of q and r from just knowing whether
they are 0 or not. With this observation we design the program to compute the abs(q) and
abs(r) first and then we will adjust the signs.

The invariant of the loop is derived from the postconditions.

The q/r specification
Int x , y , q , r ;

Preconditions: y 6= 0;
Nat ax , ay := abs(x ), abs(y);

q , r := 0 , ax ;
do

Variant: r;
Invariant: ax = q · ay + r ;

?

od
Loop postconditions: 0 ≤ r < ay & ax = q · ay + r

?

Postconditions: r 6= 0 implies sign(r) = sign(x ),
0 ≤ abs(r) < abs(y),
x = q · y + r .

End of the q/r specification

Complete the program. The guard for
exit−→ and the loop invariant must imply the loop

postconditions. We hope the commands that turn the loop postconditions into the original
postconditions are easy to find.

Variation 1: Imagine you have the operation of division of integers with rational result
available. How would you write the q/r program? To answer this question you may need the
definitions of the floor , ceiling , and truncate functions (function round is probably useless).
Here are the definitions:

Definition: Let x be a rational and z be an integer. Function floor : Rat 7→ Int is
defined as follows:

floor(x ) = z means z ≤ x & x < z + 1

Definition: Let x be a rational and z be an integer. Function ceil : Rat 7→ Int is defined
as follows (ceil for ceiling):

ceil(x ) = z means z − 1 < x & x ≤ z

Definition: Let x be a rational and z be an integer. Function trunc : Rat 7→ Int is
defined as follows:

trunc(x ) =

{
ceil(x) if x ≤ 0
floor(x) if x > 0
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Definition: Let x be a rational and z be an integer. Function round : Rat 7→ Int is
defined as follows:

round(x ) =

{
ceil(x− 0.5) if x ≤ 0
floor(x+ 0.5) if x > 0

Variation 2: What are the consequences of dropping the first conjunct of the postcondi-
tions?

Variation 3: How can you make the q/r computation faster without using div?
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1.13 Euclid’s algorithm

Note: For historical reasons this should be the first algorithm presented to anybody.

Definition: Given two integer numbers x and y, we say that x divides y, x | y for short,
if there exists an integer z such that z · x = y .

In a slightly different notation, the definition can be stated as follows:

Definition: Given x , y ∈ Int . x | y means (∃ z ∈ Int :: z · x = y).

Definition: Given two natural numbers x and y, at least one of them non-zero, we define
the greatest common divisor of x and y, gcd(x , y) for short, as the largest natural number
that divides both x and y.

In a slightly different notation the definition can be stated as follows:

Definition: Given x , y ∈ Nat such that {x , y} 6= {0}. Let z ∈ Nat . gcd(x , y) = z means

z | x & z | y & (∀ u : u | x & u | y : u ≤ z).

The following ‘recipe’ for computing the greatest common divisor of two numbers is
attributed to Euclid (Greece, ca. 300 B.C.).

Euclid’s recipe
Nat X ,Y ;

read(X ,Y );
Nat x , y ;

x , y := X ,Y ;
do

x = y
exit−→

x > y −→ x := x − y

x < y −→ y := y − x
od

print ( x )
End of Euclid’s recipe

What you see above is not a program. At best, it is an opinion. This opinion is a
puzzle, as long as we do not positively answer the following two questions:

• Does Euclid’s recipe stop? Why?

• Is the output value equal to gcd(X ,Y )? Why?

In trying to answer these questions we will have to appeal to some properties of gcd .
Here is a list of some of them:

(a) gcd(x , y) = gcd(y , x ),
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(b) gcd(x , y) = gcd(x + y , y),
(c) gcd(x , y) = gcd(x − y , y),
(d) gcd(x , y) = gcd(x · y , y), when y 6= 0
(e) gcd(x , x ) = x ,
(f) gcd(x , 0 ) = x ,
(g) gcd(q · x , x ) = x .

Whenever we design a program we better know what the program is supposed to do.
The statement of what the program is supposed to do is called the program specification.
Each program specification defines 3 pieces:

• Material that is manipulated (input and output data).

• Preconditions, which is the statement of the restrictions on the input data.

• Postconditions, which is the statement of the required properties of the output data.

We should have started with the specification of the Euclid’s algorithm before writing
any code. Better late than never, here it is:

Specification of Euclid’s algorithm
Nat X ,Y , r ;

Preconditions: X > 0 & Y > 0.

Postconditions: r = gcd(X ,Y ).
End of the specification of Euclid’s algorithm

Note that we do not mention the read and print commands: the essence of this algorithm
is independent of the way the input parameters are taken and the output parameters are
reported. For this reason we will not mention the input/output commands in our solution.

We give our reasons why the program presented below is correct wrt (read: with respect
to) the specification.

1. That the loop terminates is guaranteed by the expression named Variant. This ex-
pression is strictly positive and its value decreases every time the loop is executed.
Therefore it must stop decreasing at certain point, which means that the loop termi-
nates.

(Remark. The above is equivalent to referring to the least element principle for natural
numbers, which we will look into when we study induction.)

2. That the postconditions are satisfied is demonstrated with the help of the statement
labelled Invariant. Note that:

(a) Before the loop is executed for the first time, the invariant holds.

(b) If the invariant is true and the loop is executed once more, the invariant will still
be true.

(c) Therefore, the invariant is always true.
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(Remark. The above reasoning is an example of inductive reasoning over natural
numbers, which we will study at length.)

3. Since the invariant is always true, it must be then true when the loop terminates (that
it does terminate we know from 1). When the loop terminates we have that x = y,
and we have the invariant gcd(x , y) = gcd(X ,Y ). The properties of gcd tell us that
under such conditions gcd(x , y) = x . Thus, after the r := x assignment is executed,
the postconditions are clearly true.

The way we gave our justification is far from formal. However, without further ado we
claim that it is easy to see3 that the program has the claimed properties.

Euclid’s algorithm
Nat X ,Y , r ;

Preconditions: X > 0 & Y > 0;
Nat x , y ;

x , y := X ,Y ;
do

Variant: x + y .
Invariant: gcd(x , y) = gcd(X ,Y ).

x = y
exit−→

x > y −→ x := x − y

x < y −→ y := y − x
od
r := x

Postconditions: r = gcd(X ,Y ).
End of Euclid’s algorithm

3Whenever they write that it is easy to see that ... it usually means that they do not know how to
explain it any better (like in the case above), or they simply do not know how to explain it at all, or that
the claimed thing is simply false. The poor reader is to figure out which is the case. Reading—if you insist
on understanding what you read—of mathematical texts (or any other meaningful thing) is an activity that
can make you sweat.
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Variation on Euclid’s algorithm

Definition: Given two non-zero natural numbers x and y, the least common multiple of
x and y, lcm(x , y) for short, is the smallest non-zero natural number that is divisible by
both x and y.

In a slightly different notation the definition can be stated as follows:

Definition: Given x , y ∈ Nat \ {0}. Let z ∈ Nat . lcm(x , y) = z means

x | z & y | z & (∀ u : x | u & y | u : z ≤ u).

With the above definitions in mind, consider the following program:

Euclid’s algorithm variation 1
Nat X ,Y , r , l ;

Preconditions: X > 0 & Y > 0;
Nat x , y , u, v ;

x , y , u, v := X ,Y ,Y ,X ;
do

Variant: x + y .
Invariant: gcd(x , y) = gcd(X ,Y ) & xu + yv = 2XY .

x = y
exit−→

x > y −→ x , v := x − y , v + u

x < y −→ y , u := y − x , u + v
od
r , l := x , (u + v) div 2

Postconditions: r = gcd(X ,Y ) & l = lcm(X ,Y ).
End of Euclid’s algorithm variation 1

That the program terminates is clear from the original Euclid’s algorithm. Using the
stated invariant and (the not stated here) properties of gcd and lcm, prove that the above
program is correct wrt the specification.
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Extended Euclid’s algorithm

So far we have been computing the gcd using only subtraction. Here we allow ourselves to
use division and we also solve a more interesting problem. Try to convince yourself that
the program below is correct.

Extended Euclid’s algorithm
Nat X ,Y , r ;
Int a, b, a ′, b′;

Preconditions: X > 0 & Y > 0.
Nat x , y ;

a, b, a ′, b′ := 0 , 1 , 1 , 0 ;
if

X ≥ Y −→ x, y := X,Y

X < Y −→ x, y := Y,X;
a, b, a′, b′ := a′, b′, a, b

fi
Conditions: {x , y} = {X ,Y } & 0 ≤ y ≤ x &

a ·X + b · Y = y & a′ ·X + b′ · Y = x.
do

Variant: y .
Invariant: gcd(x , y) = gcd(X ,Y ) &

0 ≤ y ≤ x &
a ·X + b · Y = y & a′ ·X + b′ · Y = x.

y = 0
exit−→

y 6= 0 −→ a, b, a ′, b′ := a ′ − (x div y) · a, b′ − (x div y) · b, a, b
x , y := y , x rem y ;

od
r := x

Postconditions: r = gcd(X ,Y ) & a ·X + b ·Y = 0 & a ′ ·X + b′ ·Y = r .
End of extended Euclid’s algorithm
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Problem: Replace the question marks below to make the program correct.

Extended slow Euclid’s algorithm
Nat X ,Y , r , a, b;

Preconditions: X > 0 & Y > 0.
Nat x , y , a ′, b′;

a, b, a ′, b′, x , y := 1 , 0 , 0 , 1 ,X ,Y ;
do

Variant: x + y .
Invariant: gcd(x , y) = gcd(X ,Y ) &

a ·X + b · Y = x & a′ ·X + b′ · Y = y.

x = y
exit−→

x > y −→ x , a, b := x − y , ?, ?

x < y −→ y , a, b := y − x , ?, ?
od
r := x

Postconditions: r = gcd(X ,Y ) & a ·X + b ·Y = r .
End of extended slow Euclid’s algorithm
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1.14 The 2, 3 problem

Point: Innocent looking things can be intractable.

The following problem seems to be very hard. The solution is unknown as of this writing.
Can you find a variant for the loop in the code below? If you can, tell us immediately.

The 2, 3 problem
Nat x ;

Preconditions: x > 0 .
do

Variant: ?
Invariant: x > 0 .

x = 1
exit−→

odd(x ) −→ x := 3 · x + 1

even(x ) −→ x := x div 2
od
Postconditions: x = 1 .

End of the 2, 3 problem



Part II

Logic
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2 The Island of Knights and Knaves

We begin our study of logic with a collection of puzzles popularized by the logician
Raymond M. Smullyan in his book What Is the Name of This Book? — The Riddle of
Dracula and Other Logical Puzzles (Prentice-Hall, 1978).

There is an island in which every inhabitant is either a knight or a knave. Knights
always tell the truth, while knaves always lie. As a visitor, you came upon two inhabitants
which we will call A and B. Person A says “I am a knave or B is a knight.”. Can you
determine what A and B are?

Argument:
First of all, we get rid of the self reference, “I” in the statement made
by A and write an equivalent statement:

“A is a knave or B is a knight.”

which we will call S. Thus A says statement S.

Now, by assumption, A is either a knight or a knave. Let’s assume
that A is a knave and see what happens.

Thus in saying “I am a knave or B is a knight.” A has told the truth.
But this is impossible because we have assumed that A is a knave and
so always lies. Therefore statement S must be false. That is, A cannot
be a knave, and B cannot be a knight.

So assuming that A is a knave leads to an absurd situation. Thus A
must not be a knave, and, since there are only knights and knaves, we
conclude that A must be a knight.

Now this means that A is telling the truth and so statement S must
be true. The first part “A is a knave” is clearly false. This means that
the second part “B is a knight” must be true.

Thus, both A and B are knights.

Now most people who solve these kinds of puzzles for recreation would agree that this
is a valid argument, that is, it does not make any logical errors in its reasoning, and comes
to a correct conclusion. They would also agree that there is more to this argument than
just the words above — there is also a large collection of unstated assumptions and rules
involved. Here are just a few that are used in the argument above.

• An argument involves objects or things (e.g. island inhabitants) which may have
names (e.g. A, B). In this particular case, different names name different things. But
this is not required, some things may have many names.

• Things have properties (e.g. being a knight). For a given property, each thing either
has it or not. Things cannot simultaneously have and not have a property.

• An argument contains statements that can be true or false, depending on the context
in which the statements are made.

• It is absurd for a statement to be both true and false in the same context.
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• An argument begins by making some statements that set the context is which the
argument is held. These statements are assumed to be true. Then, each step in the
argument follows from the previous steps by employing some rule of inference.

• Each correct step results in a new true statement, that is, everything we state in an
argument is supposed to be true in the context in which it is stated.

• Arguments may contain sub-arguments.

• Simple statements can be composed into complicated statements by using connectives
like and, or, and not. The meaning of the complicated statement depends on the the
meaning of its constituent simple statements and the connectives used to construct
the statement.

• Statements can be manipulated in ways that preserve their meaning but change their
form.

Our task will be to clarify these and other properties of an argument. In the process
we will be introducing a formal logical system called Mizar MSE. Developing this formal
system requires us to address issues of both syntax and semantics.

Syntax refers to the form of the sentences that we construct, while semantics refers to
the meaning that we assign to the sentences. In general, issues of syntax can be addressed
without introducing semantics. For example, one can determine that an English sentence is
grammatically correct without actually understanding what it says. You simply check that
the sentence does not break any rules of the grammar. In describing the syntax of Mizar
sentences and proofs we will use a special kind of grammar called Backus-Naur Form, or
BNF for short.

Once one has a precise syntax, it is possible to address the issue of semantics — that
is, how do we give meaning to the sentences in the formal system. Usually there are many
possible semantics for a given system, and so we must always be clear about which particular
one is being used.

In general, we can associate two levels of semantics with a system. One level is fixed and
unchanging. It deals with the meaning that we assign to connectives like and and or, and
what it means for something to be a predicate or term. We call this the fixed semantics. The
other level of semantics is variable and subject to differing interpretations. This variable
part of the semantics specifies the kinds of things we want to talk about, and defines the
meaning of each particular term and predicate used.
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To give you some feel for what a formal argument in Mizar looks like, here is a formal
version of the argument above.(kandk01.mse)

environ

given A, B being PERSON;

Opp: for a being PERSON holds Knight[a] iff not Knave[a];

== These two statements form a translation of the sentence, said by A:

== "I am a knave or B is a knight"

A1: Knight[A] implies ( Knave[A] or Knight[B] );

A1’: Knave[A] implies not ( Knave[A] or Knight[B] );

begin

== The question is what are A and B?

== First we argue that A is a knight.

C1: Knight[A]

proof

assume 0: not Knight[A];

1: Knave[A] by 0, Opp;

2: not( Knave[A] or Knight[B]) by 1, A1’;

3: not Knave[A] by 2;

thus contradiction by 1, 3;

end;

== Now we argue what B is.

S1: Knave[A] or Knight[B] by C1, A1;

S2: not Knave[A] by C1, Opp;

Knight[B] by S1, S2;
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3 The Syntax and Fixed Semantics of Mizar MSE

These next sections define the syntax and fixed semantics of the Mizar Multisorted
Predicate Calculus with Equality, abbreviated Mizar MSE.

3.1 Identifiers, Sorts, Constants, Variables, and Terms

One of the first issues that we must grapple with is the problem of identifying the objects
that we wish to talk about. This can be done either directly or indirectly.

The direct way of identifying an object is to give it a name or an object identifier. The
value or denotation of an object identifier is the object currently named by the identifier.
The precise syntactic specification of an object identifier is given by the following BNF
grammar (for the notation see section B.1):

ObjectId ::= Identifier

Identifier ::= { IdentifierChar }+ { ’ }

IdentifierChar ::= A..Z | a..z | 0..9 |

Thus 0, 0’’, 1a2, aa’, Hello and Good bye are all syntactically correct object identifiers.
Instead of simply having objects of only one kind, we divide the universe of discourse

into disjoint collections called sorts. Sorts are given names, just like objects.

SortId ::= Identifier

We often use only capital letters to name sorts. So typically a sort will have an identifier
like THING, or OBJECT. But we will also have sorts with names like Nat or Int.

Sometimes a particular name always refers to one specific object — as in the figure
“7” that names the number seven. In this case we say that the identifier “7” is a constant
(the identifier “7” has constant denotation). But often, as in real life, the same name will
refer to different objects depending on the context in which it is used — such as the name
Fred. In this case we say the the identifier “Fred” is a variable (the denotation of “Fred”
is variable). The use of the word “variable” is not meant to imply that the value of the
object identifier is fuzzy or undefined, only that it can change depending on context. The
relationship between identifiers and objects in a logical system is both analogous to and
different from the relationships between identifiers and objects in programming languages.

Some constant declarations are meant to apply to the entire proof. These are called
global constants, and have the syntax:

GlobalConstantsDeclaration ::= given QualifiedObjects

For example the beginning of this Mizar proof text defines seven constants, three of sort
INTEGER and four of sort PERSON. Such a declaration occurs only in the environment portion
of an argument. Unless these object identifiers are redeclared, their denotations are fixed
for the remainder of the proof.(ex02.mse)

environ

given 1,2,3 being INTEGER;

given Fred, Barney, Wilma, Pebbles being PERSON;
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We can also refer to objects in the universe of discourse by the indirect means of expres-
sions involving other directly identified objects. For example, the object identifier a directly
refers to the object named a, while 1+a is an expression that could refer to the integer that
is the successor of the integer named by a. Expressions, including just an object identifier
by itself, that result in references to objects are called terms.

Each term is an expression that refers to exactly one object. The Mizar MSE logical
system supports only simple terms syntactically consisting of an object identifier.

Term ::= ObjectId

This lets us ignore the various issues associated with expressions, such as the meaning of
the + operator on objects that are not numbers. Thus the precise syntactic specification of
a term is rather simple: Each term refers to a specific object of a certain sort, and in any
given context, a term can belong to only one sort.

3.2 Predicates and Atomic Formulas

The most basic kind of statement that we can make about a thing is that some fact does
or does not hold for it. For example suppose that A and B are two constants of some,
unspecified, sort:

“It is raining.”

“A is a knight.”

“A is taller than B.”

we can read these as, respectively,

The fact “it is raining” is true.

The “knight” characteristic holds for A.

The “taller than” relationship holds between A and B.
Observe that these statements are about things — 0,1, or 2 things in this case. Each of

these statements is an example of a predicate. Each predicate has 0, 1, or more arguments,
and the meaning of the predicate depends on the things named by the arguments. The
predicate is true when the property holds among the given arguments, and it is false when
the property doesn’t hold.

For example we might interpret the predicates Raining, Knight, and Taller in the
obvious way, and then apply them to the objects A and B to obtain three sentences

Raining[]

Knight[A]

Taller[A, B]

which correspond in meaning to the three previous ones. Note how the Raining predicate
has no arguments, and so is applied to the empty list [].

The number of arguments that a predicate has is called its arity. We have special names
for predicates with certain arities. A predicate with one argument is a property. When an
object is fixed in some context, the object either has the property or does not. Properties
are generally used to make statements about individuals.
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A predicate with 2 or more arguments is a relation. Given a number of objects in a
context, and given a specific relation, the relation either holds among the objects or it does
not. Relations are generally used to describe relationships among things.

We do not give a special name to a predicate with no arguments. It is true or false,
depending on the context in which it appears. Such a predicate is generally used as an
abbreviation for a more complex statement about the world that we prefer not to repeatedly
write in long form.

The precise specification of the meaning of a predicate depends in general on the specific
interpretation being used. For example less[A,B] could mean that object A is smaller than
object B, or that object B is smaller than object A. Assigning meaning to the predicates is
accomplished through the interpretation.

However, we have two special predicates whose meaning never changes. They are called
equality and inequality . For example A=B means A and B name the same thing, while the
formula A<>C means that A and C name different things.

All of these simple statements are called atomic formulas. Use of the term “formula”
indicates that we are concerned with the form of the statement, not its content. The term
“atomic” indicates that these objects are the building blocks for more complex formulas.
Here is the BNF grammar for an atomic formula.

AtomicFormula ::= Equality |
Inequality |
PredicativeFormula |
contradiction

Equality ::= Term = Term

Inequality ::= Term <> Term

PredicativeFormula ::= PredicateId [ [ Term { , Term } ] ]

The reserved word contradiction is a formula that is always false. Observe that Knight,
Raining, and Taller are all legal predicate identifiers, and that Knight[], Knight[A], and
Knight[x,y] are all syntactically legal atomic formulas.

3.3 Logical Connectives and Compound Formulas

We can combine atomic formulas into more complex sentences using the connectives & (read
as “and”), or, not and implies. The syntactic rules for constructing sentences from these
connectives are given by the following BNF grammar.

Formula ::= AndOrFormula |
ConditionalFormula |
BiconditionalFormula |
QuantifiedFormula

AndOrFormula ::= ConjunctiveFormula |
DisjunctiveFormula

DisjunctiveFormula ::= ConjunctiveFormula { or ConjunctiveFormula }

ConjunctiveFormula ::= UnitFormula { & UnitFormula }
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UnitFormula ::= { not } ( AtomicFormula | ( Formula ) )

ConditionalFormula ::= AndOrFormula implies AndOrFormula

BiconditionalFormula ::= AndOrFormula iff AndOrFormula

(Quantified formulas are discussed in section 3.5.)
Note that some connectives are treated in different productions with slightly different

forms. This is because we assign a different precedence to each of the operators in order
to save us from writing one pair of parentheses for each connective. The precedence of the
operators, in decreasing order is:

not

&

or

implies, iff

A convenient rule of thumb for remembering the precedence of the operators is to correspond
not with unary minus, & with ×, and or with + in the usual arithmetic expressions. The
logical connectives & and or are associative just like × and +.

Putting parentheses (()) around a subformula has the usual effect of making the en-
closed subformula into a single unit with respect to the remainder of the enclosing formula.
The operators implies and iff have equal priority, but they are not associative. This for-
tunately does not create a problem of ambiguity because the grammar ensures that implies
and iff can appear only between subformulas that do not contain unparenthesized implies

and iff operators. In brief, Mizar logical formulas are evaluated in the same way that
logical expressions in Pascal or C are evaluated.

The grammar tells us how to construct complex sentences from existing ones. We give
them meaning by showing how to obtain the truth of the complex sentence from the meaning
of its individual parts.

Let φ and ψ stand for arbitrary Mizar sentences, except that we assume that the
sentences are enclosed in (). This avoids some technical difficulties caused by operators
having unequal precedence. (Consider the case of placing an & between the formulas P[]

or Q[] and R[] or S[]. If we did not enclose each formula in parentheses, placing an
& between them would result in the formula P[] or Q[] & R[] or S[] instead of our
intended one of (P[] or Q[]) & (R[] or S[]). Users of macro processors are familiar
with this problem.)

The simplest connective is not, and not ψ is true if ψ is false, and false if ψ is true. We
can express this using a truth-table.

φ not φ

F T
T F

The remaining connectives take two arguments, and are defined by the following truth-
table.
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φ ψ φ & ψ φ or ψ φ implies ψ φ iff ψ

F F F F T T
F T F T T F
T F F T F F
T T T T T T

Note how & is true exactly when both propositions are true, and or is true when at least
one proposition is true. This property lets us avoid having to put parentheses about the
subformulas in a conjunctive or disjunctive formula. Thus (P[] & Q[]) & R[] is the same
as P[] & (Q[] & R[]), and (P[] or Q[]) or R[] is the same as P[] or (Q[] or R[]).

Here are some examples of some simple sentences:

not Knight[A] & Knight[B]

This can be read as “A is not a knight, and B is a knight”. This sentence

Knave[A] & (Raining[] or Knight [B])

can be read as “A is a knave, and it is raining or B is a knight”. Note how we use parentheses
to override the basic precedence of the connectives. For example the next sentence has a
different meaning from the previous one

Knave[A] & Raining[] or Knight[B]

but is the same as

(Knave[A] & Raining[]) or Knight[B]

How do we determine the truth value of a complex sentence? If we know the truth value
of the atomic formulas in a complex sentence, then we can determine the truth value of the
complex sentence by simply building up successively more complex subsentences — just as
we do for arithmetic expressions.

Here are some examples. The sentence

A=B & not A=C or A=C & not A=B or B=C & not A=B

is true when exactly two of A, B, C are equal. It is false otherwise. Suppose that we have A=1,
B=2, C=1. How do we determine the truth value of this formula under this interpretation?

First we break it into its three conjunctive subformulas:

A=B & not A=C

A=C & not A=B

B=C & not A=B

Since the subformulas are connected together by or to form the main formula, the main
formula will be true if at least one of its subformulas is true. Next we break each conjunctive
formula into its unit formulas. For the first subformula this is

A=B

not A=C
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This subformula will be true if both of its sub-subformulas are true. From the values of A,
B, C given above we see that A=B is false; and A=C is true, so not A=C is false. Either one
of the sub-subformulas being false is enough to make the subformula false. Thus far we
cannot make any conclusions about the truth value of the main formula.

However, the second conjunctive subformula A=C & not A=B is true, and this makes the
main formula true. Thus we have that the main formula is true under the interpretation
A=1, B=2, C=1.

We can also perform this process on the parse tree for the formula, and simply assign
a logical value to each node. This process can be represented diagrammatically as follows
under the interpretation A=1, B=2, C=1.

A=B & not A=C or A=C & not A=B or B=C & not A=B

--- --- --- --- --- ---

F T T F F F

------- ------- -------

F T T

------------- ------------- -------------

F T F

-----------------------------------------------

T

For our next example, suppose that we have three predicates Odd, Even, and Divides

which we interpret as follows:

Odd[x] – is true exactly when x is an odd integer.

Even[x] – is true exactly when x is an even integer.

Divides[x,y] – is true exactly when x divides into y leaving no remainder.

Under this interpretation we have:

Odd[1] is true, Even[1] is false, Odd[2] is false, Even[2] is true
Divides[2,4] is true, Divides[2,5] is false, Divides[2,1] is false

Now suppose x=3 and y=7. What is its truth value of this sentence?

(Odd[x] or Even[x]) & not(Even[x] & Odd[x]) or not Divides[x,y]

------ ------- ------- ------ ------------

T F F T F

------------------- ------------------ ----------------

T F T

---------------------

T

-------------------------------------------

T

---------------------------------------------------------------

T

In the case x=4 and y=8 the sentence is also true.
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3.4 Conditionals and Biconditionals

One of the more striking aspects of an argument is the frequent repetition of a phrase “If
. . . then . . .”. For example, “If Fred is a herring then Fred is a fish”. This kind of sentence
is called a conditional because it states that a conditional relationship holds between the
antecedent (following the “if”) and the consequent (following the “then”). If the antecedent
is true then the consequent is also true.

All formulas of the form φ implies ψ are conditionals. They can also be read as “if
φ then ψ”. Think of the sentence φ implies ψ in the following way. If φ implies ψ is
true, and we also know that φ is true, then we can conclude that ψ is also true. This is
a direct consequence of the definition of the implication connective. Here is an example of
how conditionals are used in an argument:

Suppose that

Knight[A],
Knight[A] implies Knave[B], and

Knave[B] implies Knight[C]

are all true. Then from the first two we can conclude that Knave[B] is true.
From the third, since Knave[B] is true we can conclude that Knight[C] is true.

The implies connective can be expressed in terms of not and or. Specifically, φ
implies ψ is equivalent to not φ or ψ. You can check to see that these two sentences
have exactly the same truth-table. Remember this equivalence!

A biconditional is the combination of two conditionals. The biconditional φ iff ψ,
read “φ if and only if ψ”, or “φ is equivalent to ψ”, simply means (φ implies ψ) & (ψ
implies φ).

The ability to transform formulas into equivalent ones is important, and you should make
an attempt to become thoroughly familiar with the various techniques that we introduce.

3.5 Quantifiers

In English, we often say things like:

“All mammals have hair.”
“Some mammals have four legs.”

These sentences state facts, not about some specific individual, but about classes of
individuals. We can interpret the first sentence as saying that no matter what mammal you
pick, it will always have hair. This is an example of a universal statement. The property
of having hair applies universally to the class of things we call mammals.

The second sentence can be interpreted as saying that at least one of the members of
the class of mammals has four legs. Possibly more, or even all of the members of the class
do. This is an example of an existential statement, so called, because it asserts the existence
of at least one thing satisfying the stated property.

In Mizar we would translate these two sentences as something like:

for x being MAMMAL holds HasHair[x]

ex x being MAMMAL st FourLegs[x]
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under the obvious interpretation of the predicates HasHair and FourLegs.
The phrases for x being MAMMAL holds and ex x being MAMMAL st are called quan-

tifications. The keyword for is called the universal quantifier, and the keyword ex is called
the existential quantifier. Each quantifier applies to the syntactically complete formula that
follows the holds or st.

In a quantified formula, some object identifiers are associated with a quantifier, while
others are not. Those associated with a quantifier are called bound, and the relationship
between the object identifier and its associated quantifier is called the binding of the object
identifier. Object identifiers not associated with a quantifier are called free. The notions of
bound and free occur with respect to a particular formula. An object identifier that is free
in one formula may be bound in another formula. (Note that in usual logical parlance the
word “variable” is used in a sense similar to the way we use “object identifier”.)

3.6 Scope and Binding

It is important to be able to determine the bindings of the object identifiers in a formula
to the quantifiers in the formula. This is done by determining the scope of each quanti-
fier. When a quantifier introduces an object identifier, then every occurrence of the object
identifier inside the scope of the quantifier is bound to the quantifier.

The scope of each quantifier is determined according to the following rules.

1. Suppose that φ is a formula with no quantifiers. Then every occurrence of every object
identifier in φ is free.

2. Any free object identifiers in φ and ψ are still free in, and any bound identifiers retain
their bindings in, all of the following formulas

not φ
φ & ψ
φ or ψ

φ implies ψ
φ iff ψ

3. Suppose that you have a formula ψ of the form

for α being τ holds φ

or

ex α being τ st φ

where α is a object identifier, τ is a sort. Then object identifier α is bound in ψ, the
scope of the quantifier for or ex is all of the free occurrences of α in φ, and all of
(and only) the free occurrences of α in φ are bound in ψ to the quantifier for or ex.
All other free occurrences of any object identifier in φ are still free in ψ.
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We now do a couple of examples. The important thing to remember is that determining
the bindings of object identifiers in a logical formula is exactly the same problem as deter-
mining the bindings of variable names in a programming language. Consider the following
formula:

for x,y being THING holds (x=y or P[z] & (ex y being BLOB st B[x,y]))

To determine the binding of each of the object identifiers x,y, and z in this formula we
apply the rules we just introduced. We begin by looking at the lowest level component

B[x,y]

in which x, y are both free by rule 1. This formula is quantified to make a new statement

ex y being BLOB st B[x,y]

in which x is still free, but y is now bound to the ex quantifier by rule 3. Now z is free in
P[z], and so when we apply rule 2 to construct

P[z] & (ex y being BLOB st B[x,y])

we have all occurrences of x and z being free, and all occurrences of y being bound. Since
x and y are free in x=y, when we apply rule 2 to construct

x=y or P[z] & (ex y being BLOB st B[x,y])

we get that all occurrences of x and z are free, the first occurrence of y is free, and the other
occurrences of y are bound. Finally, applying rule 3 we get

for x,y being THING holds (x=y or P[z] & (ex y being BLOB st B[x,y]))

which has all occurrences of x and the first occurrence of y bound to the for universal
quantifier; the second occurrence of y being bound to the ex existential quantifier; and all
occurrences of z being free.

Here is another example. Formulas 1 and 2 have the same bindings, while 3 does not.
(Remember that a quantifier with a list of object identifiers is simply a short form for a
sequence of quantifiers, one for each object identifier.)

1: for x, y, z being THING holds R[x,y,z]

2: for x being THING holds

for y being THING holds

for z being THING holds R[x,y,z]

3: for x, z, y being THING holds R[x, y, z]



60 Section 3.8: BNF Grammar for Quantified Formulas

3.7 The Semantics of Quantified Formulas

What meaning do we give to quantified formulas? Suppose that α is an object identifier, τ
is a sort identifier, and φ is a formula with free occurrences of variable α. Then a universally
quantified formula

for α being τ holds φ

is true exactly when φ is true no matter what object of sort τ is is named by α. If φ fails
to hold for even one such object, the universal formula is false.

An existentially quantified formula

ex α being τ st φ

is true exactly when there is at least one object of sort τ that satisfies statement φ.
Another way of thinking about the universal and existential quantifiers is as general-

izations of the & and or connectives. Suppose that the objects of some sort S could be
completely enumerated as the objects a, b, c, d. Then saying

for x being S holds P[x]

is equivalent to the formula

P[a] & P[b] & P[c] & P[d]

Similarly, saying

ex x being S st Q[x]

is equivalent to the formula

Q[a] or Q[b] or Q[c] or Q[d]

We will do some examples later when we look at translations.

3.8 BNF Grammar for Quantified Formulas

Here is the general syntax for a quantified formula. The first rules are used to specify the
list of object identifiers being quantified along with their sorts. This list is a shorthand
abbreviation of what is to be considered as a number of quantifications, each one applying
to only a single identifier. This will be explained when we begin to do inferences using
quantified formulas.

QualifiedObjects ::= QualifiedSegment { , QualifiedSegement }

QualifiedSegment ::= ObjectId { , ObjectId } ( be | being ) SortId

The actual quantified formula is given by

QuantifiedFormula ::= UniversalFormula | ExistentialFormula

UniversalFormula ::= for QualifiedObjects holds Formula

ExistentialFormula ::= ex QualifiedObjects st Formula
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4 Interpretations

Logical formulas by themselves have no meaning or truth-value. To assign meaning to
a formula we must specify an interpretation. The interpretation must provide sufficient
information for us to determine whether the formula is true or false.

Each interpretation must specify two things:

• For each predicate you must identify the sorts of objects that it can be applied to,
and specify the value of the predicate on all the relevant arguments.

• For each constant object you must specify its sort, and possibly the actual object that
it denotes.

The degree of detail required by an interpretation varies with the formula that you are
trying to interpret. For example the formula

P[] & (Q[] or R[])

only involves predicates of 0 arity. A complete interpretation would require you to only
state whether each atomic formula was true or false. But there are circumstances where
having only a partial specification of the truth-values of the predicates would still permit
you to interpret the formulas. For example if P[] is true and R[] is true we do not need
to know the interpretation of Q[] in order to determine that the formula is true. Another
case would be where P[] was false.

A more complicated situation occurs when the predicates have arguments, but the ar-
guments are all constants. For example

Knight[Fred] iff not Knave[Fred]

To interpret this formula we need to know what the sort of object Fred is, and whether it
is of a sort required by the predicates Knight and Knave. We also need to know whether
Knight[Fred] and Knave[Fred] are true or false. This could be specified explicitly, for
example by saying Knight[Fred] is true, or implicitly, for example by saying that the
Knight predicate is always true.

The more common situation is the case where you have a quantified formula such as

for x being PERSON holds

Likes[Fred,x] & ( ex y being PERSON st not Likes[y,Fred] )

One possible interpretation could be that the Likes predicate is always applied to arguments
of sort PERSON, and that Likes[a,b] is intended to mean that person a likes person b. In
addition, Fred likes everyone, but Wilma does not like Fred. Under this interpretation the
formula is true.

Note how the generality of the interpretation increases as the formulas we want to
interpret become more complex.
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4.1 Satisfiability and Falsifiability

Consider these formulas in which all the predicates are of 0 arity.

1. (P[] & Q[]) or R[]

2. (P[] & Q[]) or not (P[] & Q[])

Under this interpretation

P[] Q[] R[]

T F F

Formula (1) is false and formula (2) is true.
An interpretation that makes a formula φ true is called a satisfying interpretation for

φ. An interpretation that makes a formula φ false is called a falsifying interpretation. Some
formulas are true no matter what interpretation you use. This is the case for formula (2)
above. Such a formula is called a tautology . The sentence P[] or not P[] is an example
of one of the more important tautologies.

Similarly, some formulas are false under any interpretation. Such a formula is called a
contradiction. The formula Knight[x] & not Knight[x] is an example one of the more
important contradictions.

Formulas that have both satisfying and falsifying interpretations are called contingen-
cies. The simplest contingency is a formula like P[].

Mizar has the built-in ability to reason about formulas in which all predicates are either
0-ary or applied to constants. Thus one way to determine if something is a tautology using
Mizar is merely to state it. If Mizar accepts it, then it is a tautology. (If not, it may
still be a tautology but Mizar ran out of resources while trying to prove it.) For example,
Mizar will accept the following facts without any justification.(ex03.mse)

environ

begin == DeMorgan’s Laws

not ( Phi[] & Psi[] ) iff ( not Phi[] or not Psi[] );

not ( Phi[] or Psi[] ) iff ( not Phi[] & not Psi[] );

( Phi[] & Psi[] ) iff not ( not Phi[] or not Psi[] );

( Phi[] or Psi[] ) iff not ( not Phi[] & not Psi[] );

This verifies four very useful equivalences, called DeMorgan’s Laws, which permit you to
change a formula using & into a formula using or and vice-versa.

How do you use Mizar to determine if a formula is a contradiction? If formula φ is
always false, then not φ is always true. Thus, to show that something is a contradiction we
simply verify that its negation is a tautology. For example:(ex04.mse)

environ

begin



Section 4.2: Translations 63

== Verify that Phi[] & not Phi[] is a contradiction.

not ( Phi[] & not Phi[]);

== Verify that Phi[] iff not Phi[] is a contradiction.

not ( Phi[] iff not Phi[] );

When a formula is neither a tautology nor a contradiction, how do you go about finding
a satisfying or falsifying interpretation? One way, which works well for formulas that are
short and contain only 0-ary predicates or predicates applied to constants is to compute
the truth-value of the formula under all possible truth assignments to the predicates of the
formula. For example, the truth-table for not P[] or (P[] implies Q[]) is:

P[] Q[] not P[] or (P[] implies Q[])

F F T T T

F T T T T

T F F F F

T T F T T

Each line of the table corresponds to one possible interpretation. Thus the formula has
three satisfying interpretations and one falsifying.

Since each atomic sentence can be either true or false, the number of possible interpre-
tations for a formula containing n distinct atomic sentences is 2n. Thus the truth-table
method does not work so well when the number of predicates gets much larger than five or
so. The size of the table quickly becomes unmanageable, at least for humans.

4.2 Translations

Closely associated with the notion of an interpretation is the notion of a translation. A
translation is the result of converting an imprecise natural language description of a problem
into a specific collection of formulas with their interpretation. This is exactly the same
process that occurs when you convert a specification of a problem into a computer program
to solve it. Constructing a translation can be a difficult problem requiring much creativity.

4.3 Problems in translation

(trans01.mse)

environ == Examples of Translations to Predicate Calculus Formulas

== We will use the basic sorts

== PERSON -- an inhabitant of the island.

== STATEMENT -- a sentence in the language of the island.

== LOCATION -- a place on the island.

== Some basic constants:

given Fred being PERSON;

given Promise being STATEMENT;

given Bedrock, Edmonton being LOCATION;
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== The following predicates will be used for any x of sort PERSON, s of

== sort STATEMENT, and p of sort LOCATION with the intended meaning:

== Knight[x] means that x is a knight.

== Knave[x] x is a knave.

== Normal[x] x is a normal.

== Tells[x,s] x says the statement s.

== True[s] statement s is true.

== LivesIn[x,p] x lives in location p.

== Now we do some example translations:

== Every person is a knight, knave, or normal. This is not exclusive,

== a person could be one or more.

1: for y being PERSON holds Knight[y] or Knave[y] or Normal[y];

== There is a person called Sam who lives in Edmonton, and the

== only false thing that Sam says is the statement Promise.

given Sam being PERSON;

2: LivesIn[Sam,Edmonton] &

(for s being STATEMENT

holds Tells[Sam,s] & not True[s] implies s=Promise);

== If any knight makes a statement then that statement is true.

== Alternatively, knights always tell the truth.

3: for y being PERSON, s being STATEMENT holds

Knight[y] & Tells[y,s] implies True[s];

== Every normal person tells at least one truth and at least one lie.

4: for x being PERSON holds Normal[x] implies

(ex s,t being STATEMENT st

Tells[x,s] & Tells[x,t] & True[s] & not True[t]);

== There is at least one statement that is both said by some

== resident of Edmonton and not said by some resident of Edmonton.

5: ex s being STATEMENT st

ex y,z being PERSON st LivesIn[y, Edmonton] & LivesIn[z, Edmonton] &

Tells[y,s] & not Tells[z,s];

== Every inhabitant of Bedrock tells the truth.

== Statements 6 and 7 are two ways of saying this.

6: for x being PERSON, s being STATEMENT holds

LivesIn[x, Bedrock] & Tells[x,s] implies True[s];

7: for x being PERSON holds LivesIn[x,Bedrock] implies
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(for s being STATEMENT holds Tells[x,s] implies True[s]);

== No inhabitant of Bedrock lies. This is logically equivalent to both

== of the preceding statements.

7’: not ( ex x being PERSON, s being STATEMENT st

LivesIn[x,Bedrock] & Tells[x,s] & not True[s] );

== Some inhabitants of Edmonton are normal, and some are knights.

8: (ex x being PERSON st LivesIn[x,Edmonton] & Normal[x]) &

(ex x being PERSON st LivesIn[x,Edmonton] & Knight[x]);

== If a normal person always tells the truth then they are also a knight.

9: for x being PERSON holds

Normal[x] &

(for s being STATEMENT holds Tells[x,s] implies True[s])

implies Knight[x];

== Fred tells exactly one lie.

10: ex Lie being STATEMENT st (

Tells[Fred, Lie] & not True[Lie] &

( for Lie2 being STATEMENT holds

(Tells[Fred,Lie2] & not True[Lie2] implies Lie = Lie2)) );

== Some normal persons tell the truth all of the time, and some of the time

== all of the normals tell the truth, but it is not the case that

== all of the normals tell the truth all of the time.

== How to translate the phrases "all of the time" and "some of the time".

== I took this as meaning "every statement they make" and

== "some statement they make". This removes "time" from the translation.

== Another problem is figuring out what "some of the time all of the

== normals tells the truth" means. I took this as meaning that

== at least one sentence was stated truthfully by all normals.

11: ( ex x being PERSON st (Normal[x] &

(for s being STATEMENT holds Tells[x,s] implies True[x]) ))

& ( ex s being STATEMENT st (True[s] &

(for x being PERSON holds Normal[x] implies Tells[x,s]) ))

& not ( for x being PERSON, s being STATEMENT holds

Normal[x] & Tells[x,s] implies True[s] );
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4.3.1 A question

(trans02q.mse)

environ

given 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 being NATURAL;

== The universe of discourse is the set of natural numbers (NATURAL).

== Translate each of the following statements into syntactically correct

== formulas, using the following scheme of abbreviation.

== Even[x] x is an even number

== Odd[x] x is an odd number

== Prime[x] x is a prime number

== Divisible[x,y] x is (evenly) divisible by y

== Examples:

== 1: 2 is an even prime.

1: Even[2] & Prime[2];

== 2: 6 is not a prime because 3 divides it.

2: Divisible[6,3] implies not Prime[6];

== End of examples

== 1: Neither 4 nor 6 is a prime number.

== 2: Neither 8 nor 7 is a prime number.

== 3: If 6 divides 9 then 9 is not a prime.

== 4: 10 is a product of 2 and 5.

== Watch out, the answer is not

== 4: Divisible[10,2] & Divisible[10,5];

== 5: 5 is a prime because it is divisible only by 1 and itself.

== 6: No even number is odd.

== 7: Not all odd numbers are prime.

== 8: There is exactly one even prime.

== 9: No prime is neither even or odd.

== 10: 2 is the only even prime number.
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== 11: Every non-prime is divisible by at least one prime.

== 12: There are non-primes that are not divisible by any odd prime.

== 13: Every prime number is not divisible by any number but 1 and itself.

== Final remark. Run your stuff through Mizar. So long as your translations

== appear in the environment section, and they are syntactically correct,

== they will be accepted by Mizar.
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4.3.2 Its answer

(trans02a.mse)

environ

given 1,2,3,4,5,6,7,8,9,10 being NATURAL;

1: not (Prime[4] or Prime[6]);

2: not (Prime[8] or Prime[7]);

3: Divisible[9,6] implies not Prime[9];

4: Divisible[10,2] & Divisible[10,5] &

(for X being NATURAL

holds Divisible[10,X] implies X=1 or X=2 or X=5 or X=10);

5: Divisible[5,1] & Divisible[5,5] &

(for X being NATURAL holds Divisible[5,X] implies X=1 or X=5)

implies Prime[5];

6: for X being NATURAL holds Even[X] implies not Odd[X];

7: not (for X being NATURAL holds Odd[X] implies Prime[X]);

8: ex X being NATURAL st Even[X] & Prime[X] &

(for Y being NATURAL holds Even[Y] & Prime[Y] implies Y=X);

9: for X being NATURAL holds Prime[X] implies Even[X] or Odd[X];

10: for X being NATURAL holds Even[X] & Prime[X] implies X=2;

11: for X being NATURAL holds not Prime[X]

implies (ex Y being NATURAL st Prime[Y] & Divisible[X,Y]);

12: ex X being NATURAL st not Prime[X] &

(for Y being NATURAL

holds Odd[Y] & Prime[Y] implies not Divisible[X,Y]);

13: for X being NATURAL holds Prime[X] implies

(for Y being NATURAL

holds Y<>X & Y<>1 implies not Divisible[X,Y]);



Section 5: Arguments 69

5 Arguments

An argument is a systematic attempt to convince someone (possibly yourself) that if
certain things are assumed to be true then something else must also be true. The statements
we assume to be true are called assumptions, premises, or hypotheses. The statements that
we wish to justify are called conclusions or theses. In essence, an argument is attempting
to establish that the following sentence is true:

“If the assumptions are true then the conclusion must also be true.”

An argument begins with a number of assumptions. These are sentences that we assume
are true. It then proceeds by a sequence of steps. At each step, a new true sentence is
established by applying an inference rule to one or more of the preceding sentences.

Since every step introduces a true sentence, all sentences in an argument are true —
either by assumption or as a result of an inference (applying an inference rule). There is
one caveat that we must keep in mind — each sentence is true only in the context it was
written. Taken out of context the sentence may be false, or more likely, meaningless.

Arguments, by their very nature, start by assuming that the premises are true. If
not, and one or more are false, it hardly makes sense to continue the argument. This
certainly occurs in real life — how often have you tried to sway the opinion of someone
who doesn’t even agree with your basic assumptions? But an argument can still be correct,
that is its conclusion follows logically from it premises, even if the premises are wrong, and
especially so if the premises are self-contradictory. This is very important to remember.
All a correct argument does is: it expresses a relationship between the premises and the
conclusion, it says nothing at all about the truth of the premises.
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5.1 The Structure of Mizar Arguments

Let us begin by looking at a simple argument that formalizes the one we did in our expla-
nation of implies.(ex06.mse)

environ

== This is where the premises of the argument are placed

== each of these sentences is assumed to be true.

== First we introduce the names of the objects involved

== in the argument. These names are global constants.

given A, B, C being PERSON;

== Then we state the logical relationships between the objects.

P0: Knight[A];

P1: Knight[A] implies Knave[B];

P2: Knave[B] implies Knight[C];

== Now we start the reasoning part of the argument.

begin

S1: Knave[B] by P0, P1;

S2: Knight[C] by S1, P2;

The single most important thing to remember about an argument is that every statement is
true within the context it is written. No consistent proof system ever permits you to write
down a statement that is false in its context.

An argument proceeds in two phases. First you state your premises as a collection of
formulas that are assumed to be true. This sets up the initial environment or context for
the proof. Thus if we are assuming that Fred is a knight, we might include the axiom

A1: Knight[Fred];

in the proof environment. If one of your premises is more naturally stated as a falsehood,
you will have to recast it so that it can be stated as a true assumption. For example if Fred
is not a knave you might include the axiom:

A2: not Knave[Fred];

The next phase of the proof consists of the actual reasoning, broken down into a number
of steps. Each step consists of a proposition and its justification. The proposition is an
assertion that within the current context some specific logical formula is true. The justifi-
cation uses facts already established to support the proposition. Implicit in the justification
is the use of one or more rules of inference.
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The basic structure of a Mizar proof follows this general pattern. In Mizar an argument
is called an Article.

Article ::=
environ

Environment
[ begin

TextProper
]

The Environment contains all of the assumptions and declarations used in the argument
that follows in the TextProper . (Note that the begin TextProper part is optional.)

The environment consists of zero or more global constant declarations and axioms.

Environment ::= {
Axiom ; |
GlobalConstantsDeclaration ;

}
The GlobalConstantsDeclaration introduces names of some objects of specified sorts whose
properties are discussed in the rest of text. Some of these properties are stated as axioms.
An axiom is a named formula which we assume to be true. Grammatically, an axiom looks
like:

Axiom ::= LabelId : Formula

The TextProper consists of one or more Statements separated by semicolons.

TextProper ::= { Statement ; }+

We begin by considering the simplest type of a Statement , which is the CompactStatement
with SimpleJustification and has the following shape.

Proposition SimpleJustification

where a proposition consists of an optional label followed by a formula:

Proposition ::= [ LabelId : ] Formula

Every proposition that we write must be justified. The SimpleJustification directly appeals
to some inference rule and has the form

SimpleJustification ::= [ by Reference { , Reference } ]

Reference ::= LabelId

A simple justification can be empty, in which case its truth is (supposedly) obvious. (The
other kind of justification uses a proof. We leave it till later.)

Note that in Mizar, we need only reference the statements necessary to justify the
proposition. The related inference rule is figured out automatically by the Mizar processor.
Consider the following example:(ex08.mse)
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environ

given x, y, z being THING;

A1: A[x] & B[y];

A2: B[y] & C[z];

begin

1: A[x] by A1;

2: C[z] by A2;

3: A[x] & C[z] by 1,2;

In this proof, we implicitly use two inference rules. One that says if A[x] & B[y] is true,
then A[x] is true. The other says that if A[x] is true, and C[z] is true, then A[x] & C[z]

is true.
We can write the first of these inference rules as:

A[x] & B[y]

A[x], B[y]

and the second as:

A[x], C[z]

A[x] & C[z]

The notation means that if the all of the formulae above the line (called premises) appear
in the proof so far, you can then write in the proof any of the statements that appear
below the line (called conclusions). To illustrate the generality of each inference rule we use
greek letters to refer to arbitrary formulae that have (implicit) parentheses around them.
To reiterate, every inference rule has the form

φ0, φ1, . . . , φm
ψ0, ψ1 . . . , ψn

and is interpreted as saying that if all of the formulae φ0, . . . , φm are true then you can
conclude a conjunction of any number of the statements ψ0, . . . , ψn. In a Mizar text, there
is no need (and there is no way) to specify the name of a rule of inference. The Mizar
processor knows (almost all) the rules. Often, the writer of the proof will add comments
indicating what inference rules were applied. An application of an inference rule in a Mizar
text is built according to the following general pattern.

k0: φ0 ...

k1: φ1 ...

...

...

...

km: φm ...

With all the formulae labelled k0, k1, . . . , km available for reference we can add new lines
to our argument, some of which look like:
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ψ0 by k0, k1, . . . , km; == Name the rule here

or

ψ1 & ψ3 by k0, k1, . . . , km; == Name the rule here

or

ψ0 & ψ1 & . . . & ψn by k0, k1, . . . , km; == Name the rule here

Unfortunately, the notion of context somewhat complicates the use of the inference rules
with regard to referencing premises. To understand context, we have to introduce the notion
of visibility. But first let us look at some basic inference rules.
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5.2 Basic Inference Rules

An argument is constructed one statement at a time, and has the shape of an optionally
labeled formula followed by a justification. Since formulae vary widely in their form, we
would expect to have a number of methods for adding new statements. For each of the
logical connectives we have a rule that under the appropriate conditions lets us add a
formula with that connective as the main one. Such rules are called introduction rules.

Conversely, since we may wish to make a reference to a formula of arbitrary shape in
our argument, we have rules that under the appropriate conditions let us make a reference
to the formula. These rules are called elimination rules.

We will start with a very special rule that is rarely useful.

5.2.1 Rewriting or Repetition, RE

Everyone would agree that once we establish a formula as true in a certain context, there is
no need to repeat the argument in order to get the formula in another place, provided the
context has not been changed.

0

0

Example:

. . .

14: Knave[John] . . .

. . .

17: Knave[John] by 14; == Rule: RE

. . .

Label 14 must be visible when we make the reference (see 6.4). Also, we must be sure that
the person named John at label 14 is the same person mentioned at label 17.

5.2.2 Negation Elimination, NE

This rule is also known as double negation elimination.

not not 0

0

In words: once we have the formula negated twice, we can drop both nots.

The box, 0 , may contain an arbitrary formula provided that

not not 0

has the same structure as

not not ( 0 )

To see this point note that the formula
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not not Knave[John] or Knight[Mary]

cannot be used as a premise for applying NE as the main connective in the formula is or

and not not not.

Example:

. . .

14: not not Knave[John] . . .

. . .

17: Knave[John] by 14; == Rule: NE

. . .

5.2.3 Negation Introduction, NI

This rule is quite complex and will be defined later in section 6.2.

5.2.4 Conjunction Elimination, CE

0 & 1

0 , 1

The premise of this inference rule must have & as the main connective.

Example:

. . .

4: Knave[John] & Knight[Mary] . . .

. . .

5: Knight[Mary] by 4; == Rule: CE

. . .

7: Knave[John] by 4; == Rule: CE

. . .

5.2.5 Conjunction Introduction, CI

0 , 1

0 & 1 , 1 & 0

When this inference rule is applied, the conclusion must have & as the main connective.

Example:

. . .

2: Knave[John] . . .

. . .

9: Knight[Mary] . . .

. . .

24: Knave[John] & Knight[Mary] by 2, 9; == Rule: CI
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. . .

42: Knight[Mary] & Knave[John] by 2, 9; == Rule: CI

. . .

5.2.6 Disjunction Elimination, DE

Version 1:

0 or 1 , not 0

1

Version 2:

0 or 1 , not 1

0

These are two versions of the same rule. Although only one of them suffices, we introduce
both, for convenience. This rule takes two premises, one of them must have or as the main
connective, the other must be the negation of one of the disjuncts.

Example:

. . .

4: Knave[John] or not Knight[Mary] . . .

. . .

5: not not Knight[Mary] . . .

. . .

7: Knave[John] by 4, 5; == Rule: DE

. . .

9: not Knave[John] . . .

. . .

10: not Knight[Mary] by 4, 9; == Rule: DE

. . .

5.2.7 Disjunction Introduction, DI

0

0 or 1 , 1 or 0

The conclusion of this rule must have or as the main connective.

Example:

. . .

5: not Knight[Mary] . . .

. . .

7: Knave[John] or not Knight[Mary] by 5; == Rule: DI

. . .

10: not Knight[Mary] or Loves[John, Mary] by 5; == Rule: DI

. . .
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5.2.8 Implication Elimination, IE, or Modus Ponens, MP

0 , 0 implies 1

1

This is probably the best known rule of inference. It takes two premises, one must have
implies as the main connective, and the other must be the antecedent of the implication.
Then the conclusion is the consequent of the implication.

Example:

. . .

5: Knight[John] . . .

. . .

7: Knight[John] implies Loves[John, Mary] . . .

. . .

10: Loves[John, Mary] by 5, 7; == Rule: IE

. . .

5.2.9 Implication Introduction, II

Unfortunately this rule is quite complex and will be defined later in section 6.1.

5.2.10 Equivalence Elimination, EqE

Version 1:

0 iff 1 , 0

1

Version 2:

0 iff 1 , 1

0

Although only one of this rules suffices, we introduce both for convenience. One of the
premises must be an equivalence, that is, a formula with iff as the main connective.

Example:

. . .

5: Knight[John] . . .

. . .

7: Knight[John] iff Loves[John, Mary] & Knight[Mary] . . .

. . .

10: Loves[John, Mary] & Knight[Mary] by 5, 7; == Rule: EqE

. . .
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5.2.11 Equivalence Introduction, EqI

0 implies 1 , 1 implies 0

0 iff 1

Example:

. . .

3: Loves[John, Mary] & Knight[Mary] implies Knight[John] . . .

. . .

7: Knight[John] implies Loves[John, Mary] & Knight[Mary] . . .

. . .

8: Knight[John] iff Loves[John, Mary] & Knight[Mary] by 3, 7;

== Rule: EqI

. . .

5.2.12 Equality Elimination, =E

This rule will be defined later in section 7.3.

5.2.13 Equality Introduction, =I

α = α

for arbitrary object name α. Note that this rule does not have any premise.
Example:(ex07.mse)

environ

given x being aThing;

begin

x = x; == Rule: =I

== Note: There is no ‘by’.

5.2.14 Rules for Quantifiers

The inference rules for quantifiers will be defined in section 7.



Section 5.3: Annotated Proofs 79

5.3 Annotated Proofs

Here is a simple proof in which we have annotated each line with the inference rule under-
lying its justification. This level of detail is unnecessary, and is here simply to illustrate
how various rules can be used. In fact, as is illustrated by the last line, breaking up the
reasoning into such simple pieces is unnecessary as Mizar understands how to reason about
these kinds of formulas.(ex09.mse)

environ

given x being Int;

A1: A[x] or (B[x] implies C[x]);

A2: not A[x] & (D[x] implies B[x]);

A3: D[x];

begin

1: not A[x] by A2; == Rule: CE

2: D[x] implies B[x] by A2; == Rule: CE

3: B[x] by A3, 2; == Rule: MP

4: B[x] implies C[x] by 1,A1; == Rule: DE

5: C[x] by 3,4; == Rule: MP

6: B[x] & C[x] by 3, 5; == Rule: CI

7: B[x] or G[x] by 3; == Rule: DI

6: C[x] by A1, A2, A3; == directly using Mizar’s proof capability
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6 Hypothetical Reasoning

Hypothetical reasoning is a special form of proof in which we start by assuming the truth
of a formula. The formula that we assume need not actually be true, thus the reasoning is
termed hypothetical.

6.1 Implication Introduction, II

To justify a conditional of the form

0 implies 1

we must be able show that 1 can be derived from 0 (and possibly using also

other formulae that are available for reference). The demonstration of this fact takes the
form of a reasoning that starts with now. The basic form of this rule is:

λ: now

assume A: 0 ;

.

.

.

thus 1 Justification
end

0 implies 1 by λ

where, Justification is either simple, using by, or forms a proof (see below). The entire
reasoning may have a label in front of now which is referenced when we apply the II rule.
This rule is named Implication Introduction, as it lets us introduce a formula with implies

as the main connective. Consider the following example:(ex10.mse)

environ

given x being PERSON;

Ax1: P[x] implies Q[x];

Ax2: Q[x] implies R[x];

begin

1: now

assume A: P[x];

a1: Q[x] by A, Ax1; == Rule: IE

thus R[x] by a1, Ax2; == Rule: IE

end;

P[x] implies R[x] by 1; == Rule: II

2: now

assume A: (P[x] implies Q[x]) & (Q[x] implies R[x]) & P[x];

a1: P[x] by A; == CE

a2: P[x] implies Q[x] by A; == CE

a3: Q[x] by a1, a2; == IE
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a4: Q[x] implies R[x] by A; == CE

thus R[x] by a3, a4; == IE

end;

( (P[x] implies Q[x]) & (Q[x] implies R[x]) & P[x] ) implies R[x]

by 2; == II

6.2 Proof by Contradiction

Remember that we stated that only statements that are true in their contexts can appear
in an argument. But what happens when both a statement and its negation are true in
the same context? This is a contradiction, and indicates an internal inconsistency in the
current context. We have a special formula, contradiction, that can be derived using the
following inference rule:

6.2.1 Contradiction Introduction, ContrI

0 , not 0

contradiction

The always false, constant formula contradiction and the ContrI rule of inference are
introduced for convenience, we could work without them.

Example:

. . .

14: Knight[John] . . .

. . .

25: not Knight[John] . . .

. . .

contradiction by 14, 25; == ContrI

. . .

6.2.2 Negation Introduction, NI

It should be impossible to establish contradiction (in any consistent proof system) by
correct reasoning from consistent premises. If you do, you are permitted to conclude that
the assumptions you made which led to contradiction must be false.

This form of argument was illustrated by our knights and knaves example. In this

kind of argument we typically begin by assuming that some statement 0 is true,
and then proceed to reason on the basis of this assumption. If we encounter some kind

of contradiction or absurd situation we stop reasoning and conclude that, since 0

leads to nonsense, 0 cannot be true and so not 0 must be true. This kind of
reasoning is called proof by contradiction and forms the essence of the Negation Introduction
rule.
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λ: now

assume A: 0 ;

.

.

.

thus contradiction Justification
end

not 0 by λ

Now you see why this form of proof is named Negation Introduction; it provides us with the
means to obtain a negated formula (if possible). For example:(ex12.mse)

environ

given glass being CONTAINER;

given juice being DRINK;

A1: Full[glass] implies Fresh[juice];

A2: not Fresh[juice];

begin == We show that: not Full[glass]

S: now

assume A: Full[glass];

1: Fresh[juice] by A, A1; == IE

thus contradiction by 1,A2; == ContrI

end;

not Full[glass] by S; == NI

The next example illustrates how to employ a proof by contradiction when proving a formula
that does not have not as its main connective.(ex14.mse)

environ

given glass being CONTAINER;

begin == We will demonstrate that the following weird formula is always true:

== (not Full[glass] implies Full[glass]) implies Full[glass]

1: now

assume a: not Full[glass] implies Full[glass];

S: now == We prepare for Negation Introduction

assume b: not Full[glass];

c: Full[glass] by a, b; == MP

thus contradiction by c, b; == ContrI

end;

d: not not Full[glass] by S; == NI

thus Full[glass] by d == NE

end;

(not Full[glass] implies Full[glass]) implies Full[glass] by 1; == II
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In the inner now we have showed that not Full[glass] leads to contradiction. From
the reasoning we obtained not not Full[glass] using the NI rule. Then we stripped off
the double negation using the NE rule. To simplify matters, we introduce an alternative
form of proof by contradiction. This alternative form of the NI rule will be named proof by
contradiction with the abbreviation PbyC.

λ: now

assume Contra: not 0 ;

.

.

.

thus contradiction Justification
end

0 by λ

Do you see that this rule is superfluous? The same effect always can be achieved by proving

not not 0 using NI and then stripping off the double negation by NE.
We will conclude this section with an excursion into a non-existing world. It is the

world where contradiction has been assumed as one of the axioms. This would make
contradiction true. But since contradiction is false, it cannot be so; such a world does
not exist, and we can expect a lot of surprising results. (Note that despite the fact that
the world does not exist—false assumptions—we can talk about it. This should not be
surprising at all, the politicians do it all the time, and we do it only in this place.)

We will prove that in such a world every formula can be proven.(ex13.mse)

environ

StrangeWorld: contradiction;

begin

1: now

assume not ArbitraryFormula[];

thus contradiction by StrangeWorld == RE

end;

ArbitraryFormula[] by 1; == PbyC

So, if you manage to get a contradiction in any reasoning then you can prove whatever you
wish. This is the reason we try to avoid contradictory worlds at all cost. In using the NI

rule, the obtained contradiction is usually blamed on the locally made assumption.
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6.3 Derived Rules Of Inference

The basic rules of inference discussed in section 5.2 and the hypothetical reasoning rules
(II and NI) are sufficient for conducting arguments. However, using only this small set of
rules makes arguments quite lengthy. Therefore, we introduce the notion of a derived rule
of inference which we will use instead of the lengthy sequence of basic rules. Look at an
example.(ex16.mse)

environ

given x, cow being THING;

1: Wood[x] implies CanCook[x, cow];

2: CanCook[x, cow] implies Eat[cow];

3: Wood[x];

begin

step1: CanCook[x, cow] by 1, 3; == IE

step2: Eat[cow] by 2, step1; == IE

In any similar situation and using only the basic rules we will have to repeat the two steps
of the Modus Ponens application. However, we will say that by virtue of the above example
we are free to use the following derived rule of inference:

6.3.1 Modus Ponens Twice

0 implies 1 , 1 implies 2 , 0

2

One can certainly think about a number of similar rules, one for each number of repeated
Modus Ponens. Now, do we have to remember all these derived rules? The answer is no.
The Mizar processor does not require us to specify any rule of inference in our arguments.
It is the processor that checks whether any step we made in our reasoning can be obtained
by a sequence of applications of basic inference steps.

Below, we list a number of the more popular derived inference rules. We will require
you to annotate some of your derivations. Understanding the rules of inference is crucial to
learning proof methods.

6.3.2 Double Negation Introduction

0

not not 0

6.3.3 Reverse Implication Elimination or Modus Tollens (MT)

0 implies 1 , not 1

not 0
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The above rule corresponds to the following argument in which we use only basic infer-
ence rules.(ex17.mse)

environ

given 172 being COURSE;

1: Goodmarks[172] implies Pass[172];

2: not Pass[172];

begin

1: now

assume step1: Goodmarks[172];

step2: Pass[172] by step1, 1; == IE

thus step3: contradiction by 2, step2; == ContrI

end;

not Goodmarks[172] by 1; == PbyC

6.3.4 Excluded Middle

0 or not 0

The above rule corresponds to the following argument in which we use only basic rules
of inference:(ex18.mse)

environ

given s being STATEMENT;

== No other premises.

begin

1: now

assume step1: not (True[s] or not True[s]);

step2: now

assume step3: not True[s];

step4: True[s] or not True[s] by step3; == DI

thus step5: contradiction by step1, step4; == ContrI

end;

step6: True[s] by step2; == PbyC

step7: True[s] or not True[s] by step6; == DI

thus contradiction by step1, step7 == ContrI

end;

True[s] or not True[s] by 1 == PbyC
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6.3.5 Chained Implication

0 implies 1 , 1 implies 2

0 implies 2

The same effect as from applying the Chained Implication rule can be obtained using only
basic rules:(ex19.mse)

environ

given x, cow being THING;

1: Wood[x] implies CanCook[x, cow];

2: CanCook[x, cow] implies Eat[cow];

begin

1: now

assume step1: Wood[x];

step2: CanCook[x, cow] by 1, step1; == MP

thus step3: Eat[cow] by 2, step2; == MP

end;

Wood[x] implies Eat[cow] by 1 == II

You are strongly encouraged to demonstrate that the following derived rules of inference
correspond to a sequence of basic inferences. (We do not introduce standard acronyms for
the names of derived rules.)

6.3.6 Reverse Implication

0 implies 1

not 1 implies not 0

not 1 implies not 0

0 implies 1

6.3.7 Case Analysis

0 implies 2 , 1 implies 2

0 or 1 implies 2

0 or 1 , 0 implies 2 , 1 implies 2

2

6.3.8 Equivalence Elimination

0 iff 1

0 implies 1 , 1 implies 0
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0 iff 1

( 0 & 1 ) or (not 0 & not 1 )

6.3.9 Equivalence Introduction

( 0 & 1 ) or (not 0 & not 1 )

0 iff 1

6.3.10 Divergence

0 iff 1 , not 0

not 1

6.3.11 De Morgan’s Laws

See 7.9 for the analogous rules involving quantifiers.

0 & 1

not (not 0 or not 1 )

0 or 1

not (not 0 & not 1 )

not ( 0 & 1 )

not 0 or not 1

not( 0 or 1 )

not 0 & not 1

6.3.12 More Disjunction Elimination

not 0 or 1 , 0

1

0 or not 1 , 1

0
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6.3.13 Another Implication Elimination

0 implies 1

not 0 or 1

6.3.14 More Implication Introduction

not 0 or 1

0 implies 1

1

0 implies 1

not 0

0 implies 1
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6.3.15 Referencing Distributed Statements

The construction DistributedStatement with syntax

[ LabelId : ] now Reasoning end

provides us with an alternative way of recording formulas together with their justification.
Distributed—because pieces of a formula are distributed along the reasoning. We will
discuss the details of this distribution in section 8.4. Here, we would like to point out that
distributed formulas can be referenced in a way similar to the regular ones. Consider a
reasoning:

. . .

1’: now

. . .

. . .

. . .

end;

We can always write a compact sentence

. . .

1’’: . . . by 1’;

. . .

which will be accepted as correct and in the text that follows, it does not matter whether
we make a reference to 1’’ or to 1’—both these labels refer to the same formula. For
reference, a formula need not be recorded in a compact way; the distributed version of the
formula suffices.

We can say that the II rule provides us with the distributed means of recording a
conditional: the connective implies need not be mentioned at all. Analogous remarks
apply for the NI rule.
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6.4 The Notion Of Visibility in a Reasoning

A Mizar text usually contains many statements and reasonings. At every step in a reason-
ing it is important to know what formulas and objects can or cannot be used to establish
the next step. To this end we introduce the notion of visibility of identifiers, for both object
identifiers and formula labels.

Recall that a Mizar Article consists of two parts: the Environment and the TextProper.
The environment contains two main kinds of statements: axioms, which are formulas with
a label, and global constant declarations, which specify objects of a specific sort whose
meaning is fixed throughout the proof. Global constant declarations are signaled by the
keyword given, while axioms are simply stated without justification. Every free object
identifier in an axiom must be a previously declared global constant.

In the text proper we also encounter two main kinds of statements: formulas together
with their justifications and introductions of names for objects. (Introductions of object
identifiers are signified by the keywords let and consider, to be introduced later.) Labels
name formulas. Any identifier can be introduced more than once as a name of an object.
As our creative capabilities when inventing identifiers are usually limited, we tend to repeat
identifiers for different purposes in different places of the text. In Mizar, unlike in many
programming languages, the same identifier can be freely reused to denote two different
things even in the same place. The following text is correct.(ex23.mse)

environ

given A being A;

A: A[A] implies not A[A];

begin

not A[A] by A == Mizar is skillful enough to see it.

The principle is simple: identifiers naming different kinds of objects are never in conflict.
Therefore, in the same place you can use the same identifier, in our case A, to name: a
constant (or a bound variable, but not both), a sort, a formula, and a predicate.

The text encompassed by now and end forms a new scope of identifiers. Any identifier
(say a label) introduced in the reasoning overrides the same identifier introduced outside
the reasoning and renders the original identifier inaccessible in the reasoning. (We hope
that you are comfortable with scoping rules for some programming language.)

Suppose that you are at some line λ in a text. The general method for determining
what formulas and object identifiers are visible at line λ is as follows:

1. The only visible formulas and object identifiers at line λ are those associated with
syntactically complete statements that appear in their entirety before line λ.

2. Of the formulas and object identifiers allowed by 1 above, only the actual formulas
being justified, or the object identifiers being introduced are visible at line λ. Nothing
appearing in the justification of a formula is visible outside the justification.

3. Of the formulas and object identifiers allowed by 2 above, only the most recently
named formula is visible among the formulas with the same label; and only the most
recently introduced occurrence of an object identifier is visible.
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4. Of the formulas allowed by 3 above, if line λ introduces an object identifier α, then
only those formulas that do not have α free in them are properly visible. We put the
qualification—properly—as the formulas may be visible with the confusion between
the two αs completely unclear to the human reader (and the writer as well).

The following example illustrates visibility with respect to formulas:(ex25.mse)

environ

A1: P[] implies Q[];

A2: P[] or not R[];

A3: not R[] implies S[];

begin

== At this point A1, A2, A3 are all visible

1: now

== At this point A1, A2, A3 are all visible, but 1 is not,

== as the statement it labels is not completed yet.

== 2, 3 are not visible because they follow this point

assume 2: not P[];

3: not R[] by A2, 2;

== At this point, 2 and 3 are now visible.

thus S[] by 3,A3;

end;

not P[] implies S[] by 1;

== At this point A1, A2, A3, and 1 are all visible.

== 2, 3 are not because they are inside a justification.

4: now

assume 5: R[];

6: now

assume 7: P[];

thus R[] by 5;

end;

8: now

== A1, A2, A3, 1, 5, and 6 are visible.

== 7 is not because it is inside a justification.

== 4 is not because we are inside the ‘formula‘ it

== labels.

assume 9: not P[];

thus R[] by 5;

end;

thus (P[] implies R[]) & (not P[] implies R[]) by 6,8;

end;

R[] implies (P[] implies R[]) & (not P[] implies R[]) by 4;

== This next statement redefines A1, so the previous

== formula referred to by A1 is no longer visible.

A1: not R[] or R[];
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6.5 Examples

Let us prove that: (P[] implies Q[]) & (not P[] implies Q[]) implies Q[](ex20.mse)

environ == Note the empty environment.

begin

1: now

assume A: (P[] implies Q[]) & (not P[] implies Q[]);

1: P[] or not P[]; == Excluded Middle

2: P[] implies Q[] by A; == CE

3: not P[] implies Q[] by A; == CE

4: (P[] or not P[]) implies Q[] by 1, 2, 3; == Case Analysis

thus Q[] by 1, 4; == MP

end;

( (P[] implies Q[]) & (not P[] implies Q[]) ) implies Q[] by 1 == II

Here is an example that proves that

0 implies 1

always has the same logical value as

not 0 or 1

Thus, we prove that the two formulas are equivalent.(ex15.mse)

environ

given today being DAY;

begin

one_way: now

assume A: Raining[today] implies Cloudy[today];

1: Raining[today] or not Raining[today]; == Excluded Middle

2: now

assume A2: not Raining[today];

thus not Raining[today] or Cloudy[today] by A2; == DI

end;

3: now

assume A3: Raining[today];

3a: Cloudy[today] by A, A3; == MP

thus not Raining[today] or Cloudy[today] by 3a; == DI

end;

thus not Raining[today] or Cloudy[today] by 1,2,3; == Case Analysis

end;

other_way: now

assume B: not Raining[today] or Cloudy[today];
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1’: now

assume B1: Raining[today];

thus Cloudy[today] by B, B1; == More DE

end;

thus Raining[today] implies Cloudy[today] by 1’ == II

end;

(Raining[today] implies Cloudy[today])

iff

not Raining[today] or Cloudy[today]

by one_way, other_way == EqI

Note how we have made references to distributed formulas above. We save space by not
recording the compact versions of the formulas that will be obtained from the reasonings
labelled one way and other way applying the II rule. The compact formula is needed in
a conclusion, thus we have to apply the the II rule at one point.

Here is another example:(ex21.mse)

environ

given S being STUDENT;

given M being Money;

begin

1’: now

assume A:( Need[M] implies Work[S] & Save[M] );

1: now

assume A1: Need[M];

1a: Work[S] & Save[M] by A, A1; == IE

thus Work[S] by 1a; == CE

end; == Do you see what we have demonstrated?

2: now

assume A1: not Save[M];

2a: now

assume A2: Need[M];

2b: Work[S] & Save[M] by A, A2; == IE

thus Save[M] by 2b; == CE

end; == Do you see what we have demonstrated?

thus not Need[M] by A1, 2a; == MT

end; == Do you see what we have demonstrated?

1’: Need[M] implies Work[S] by 1; == II

2’: not Save[M] implies not Need[M] by 2; == II

thus (Need[M] implies Work[S]) & (not Save[M] implies not Need[M])

by 1’, 2’; == CI

end;

(Need[M] implies Work[S] & Save[M])

implies
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(Need[M] implies Work[S]) & (not Save[M] implies not Need[M])

by 1’ == II

Of course Mizar’s knowledge of propositional logic makes all of these example steps un-
necessary, and that is why step 2a in the proof above could be abbreviated. We go into
such detail with these simple proofs only to illustrate how the inference rules work, not to
indicate that this is how you should do a complex proof—it is simply that the details of a
complex proof get in the way of understanding the basic inferences.
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7 Inference Rules for Quantified Formulas and Equality

7.1 Bound Variable Renaming

We have already mentioned that the names of bound variables do not matter. Everybody
agrees that

for x being T holds P[x,y]

is equivalent to

for z being T holds P[z,y]

Sometimes we would like to rename some of the identifiers in a formula in order to make
it easier to read. How do we ensure that our renaming does not change the meaning of the
original formula?

Given a formula φ, we may change the name of a bound variable in φ and obtain a
formula φ′ equivalent to φ provided no occurrence of an object identifier that was free in φ
becomes bound in φ′, and every occurrence of a bound object identifier in φ has the same
binding in φ′. (Note, it is not enough that bound object identifiers remain bound, they
must remain bound to the same quantifier.)

Whenever we rename bound variables we refer to the rule of inference called Bound
Variable Renaming. Bound variable renaming does not require any justification in Mizar
texts.

Let us look at some examples.

1. for z being T holds P[z,y]

is equivalent to

for aaaa being T holds P[aaaa,y]

and is not equivalent to

for y being T holds P[y,y]

as a formerly free object identifier ( the y in P[z,y] ) has become bound.

2. ex z being T st for x being T holds P[x,y,z]

is not equivalent to

ex z being T st for z being T holds P[z,y,z]

as a free object identifier x in for x being T holds P[x,y,z] has become bound in
for z being T holds P[z,y,z].

3. ex z being T st for x being T holds P[x,y,z]

is not equivalent to

ex y being T st for x being T holds P[x,y,y]

as a free object identifier y has become bound.
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7.2 Proper Free Substitution

Inference rules for quantifiers involve renaming of object identifiers and a textual operation
on formulas, called proper free substitution. This is its definition:

We say the formula ψ comes from formula φ by proper free substitution of object
identifier β for object identifier α if

1. ψ is exactly like φ except that wherever φ has free occurrences of α, ψ
has free occurrences of β, and

2. the sort of β is the same as the sort of α.

It is important to remember that proper free substitution is not an inference rule. It is a
rule for editing formulas textually.

For example, the formula

Knave[Fred] & Knight[Wilma] implies (ex Fred being PERSON st Tells[Fred,s])

becomes, under proper free substitution of Wilma for Fred, the formula

Knave[Wilma] & Knight[Wilma] implies (ex Fred being PERSON st

Tells[Fred,s])

This in turn becomes, under proper free substitution of Hello for s, the formula

Knave[Wilma] & Knight[Wilma] implies (ex Fred being PERSON st

Tells[Fred,Hello])

We use the notation α←β to stand for the formula resulting from the proper

free substitution of β for α in formula . Another way to think of this notation is of
replacing every free occurrence of α by β without introducing any new bound occurrences
of β. Note that there is no notation for proper free substitution that is consistently used
by all authors of logic texts, so it is always important to determine the convention used for
each particular work.

This notation lets us define three more inference rules.



Section 7.3: Equality Elimination, =E 97

7.3 Equality Elimination, =E

Equality elimination is the rule that we apply when making a reference to a known equality
between two objects.

α = β, 0

1
provided 0 α←β is identical to 1 α←β

This requires some explanation. The intended meaning of this rule is that we can
exchange some or all free occurrences of α and β in a formula provided α = β. The
condition attached to the formula says just that. It might be easier to understand the
formula if you look at it this way. Knowing that α = β we may think that α is just another
name of the same object named by β. So, let us choose β as the only name that we use, α
is just an alias.

Examples.

1. Equality is symmetric.(ex26.mse)

environ

given a, b being THING;

1: a = b;

begin

b = a by 1; == =E

This example may look cryptic. The two premises needed by the inference rule

are formed by the same formula a=b. And indeed, 0 a=b a←b is identical to

1 b=a a←b as both of them are b=b.

2. Equality is transitive.(ex27.mse)

environ

given a, b, c being THING;

1: a = b;

2: b = c;

begin

a = c by 1, 2; == =E

Here we see that 0 b=c a←b is identical to 1 a=c a←b.

3.(ex28.mse)

environ

given a, b being THING;

1: P[a];

2: not P[b];

begin

R: now

assume step1: a = b;
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step2: not P[a] by step1, 2; == =E

thus step3: contradiction by 1, step2; == ContrI

end;

a <> b by R; == PbyC

4. Mizar automatically processes equality as a reflexive, symmetric and transitive re-
lation. (Reflexivity is expressed by the Equality Introduction (=I) rule introduced
earlier.) Therefore, the following argument requires only one step of inference.(ex29.mse)

environ

given a, b, c being THING;

1: P[a];

2: not P[c];

3: a = b;

begin

b <> c by 1, 2, 3; == No single inference rule suffices.

== Mizar can figure out which basic rules are involved.

It is a worthwhile exercise to write the above using only single inference rules.
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7.4 Universal Elimination, UE

Universal elimination is used to convert a general statement about any object into a specific
statement about a particular object.

for α being τ holds

α←β

where β is any visible object identifier of sort τ .
This rule is sometimes called universal instantiation, or universal specialization, because

it specializes a general statement about any object into a specific statement about a par-
ticular object. It represents our intuition that what holds for everything must hold for any
specific thing. Look at these inferences.(ex30.mse)

environ

given Fred being PERSON;

given Hello being STATEMENT;

KnightSpeak: for y being PERSON holds

for s being STATEMENT holds

Knight[y] & Tells[y,s] implies True[s];

begin

== Specialize the y to Fred.

1: for s being STATEMENT holds

Knight[Fred] & Tells[Fred,s] implies True[s]

by KnightSpeak; == UE

== Further Specialize the s in 1 to Hello.

2: Knight[Fred] & Tells[Fred,Hello] implies True[Hello] by 1; == UE

== You must instantiate in the order that the quantifiers occur

== thus attempting to specify s to Hello will not work.

3: for y being PERSON holds

Knight[y] & Tells[y,Hello] implies True[Hello] by KnightSpeak;

== That is, when you have a list of universal quantifiers, only the

== leading ones can be eliminated.

== In order to achieve the inner universal quantifier elimination you

== have to use Universal Introduction, see below.
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7.5 Existential Introduction, ExI

This next rule corresponds to our intuition that if a formula holds for a particular thing,
then we can discard some information and simply say that the formula holds for some thing.
Using this rule we obtain a weaker formula than the premise and in the process we lose
information.

Suppose that you have the formula A[x] & B[x] in some context, where x is of sort
THING. This means that there is a precise object, named x, which satisfies the formula. We
can then certainly write:

ex y being THING st A[y] & B[y]

This formula is read as “There exists some object y satisfying A[y] & B[y]”. We know
that this is true at least in the case that y denotes the same object as x. There may also
be objects other than the one denoted by x which also satisfy the formula.

But we also know that the following formula is true for exactly the same reasons:

ex y being THING st A[y] & B[x]

Note how only the argument to predicate A was changed.
In general we can do the following kind of inference.

α←β
ex α being τ st

where β is a visible object identifier of sort τ .
This rule is sometimes called Existential Generalization. Note the particular form of

this rule.

• The premise must not have free αs. Note that the formula of the form α←β
does not have free αs.

• By applying the rule to the premise you obtain a new formula in which you may
rename zero or more occurrences of object identifier β to α and then existentially
quantify the αs. (Note not necessarily all!).

For example, here are different existential statements that can be concluded from the
same formula.(ex31.mse)

environ

given x,y being THING;

A: P[x,y,x];

begin

== Generalize with respect to y.

ex a being THING st P[x,a,x] by A; == ExI

== Generalize with respect to x.

ex b being THING st P[b,y,b] by A; == ExI
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== Generalize with respect to the first x.

ex c being THING st P[c,y,x] by A; == ExI

== Generalize with respect to nothing.

ex d being THING st P[x,y,x] by A; == ExI

Here is an example of using universal elimination and existential introduction in an
argument.(ex32.mse)

environ

given Fred being PERSON;

given Hello being STATEMENT;

A1: for x being PERSON holds

ex s being STATEMENT st

(Tells[x,s] & Tells[x,Hello] & s <> Hello & True[s]);

begin

== Here we universally instantiate, substituting Fred for x

== and eliminating the universal quantifier.

1: ex s being STATEMENT st

(Tells[Fred,s] & Tells[Fred,Hello] & s <> Hello & True[s]) by A1; == UE

== Existential generalization, replace all occurrences

== of Hello by t, and add the existential quantifier

2: ex t being STATEMENT st

ex s being STATEMENT st

(Tells[Fred,s] & Tells[Fred,t] & s <> t & True[s]) by 1; == ExI

== Existentially generalize, replace only the first

== of Fred occurrences by y, and add the existential quantifier.

3: ex y being PERSON st

ex t being STATEMENT st

ex s being STATEMENT st

(Tells[y,s] & Tells[Fred,t] & s <> t & True[s]) by 2; == ExI

7.6 Examples of Universal Elimination, and Existential Introduction

(ueandei.mse)

environ

given Fred being PERSON;

given Hello being STATEMENT;

KnightSpeak: for y being PERSON for s being STATEMENT

holds Knight[y] & Tells[y,s] implies True[s];

A1: Knight[Fred];

A2: Tells[Fred, Hello];

begin

== Here is an example of Universal Instantiation.



102 Section 7.6: Examples of Universal Elimination, and Existential Introduction

1: for s being STATEMENT holds

Knight[Fred] & Tells[Fred,s] implies True[s] by KnightSpeak;

== And here is an example of Existential Generalization.

1a: ex s being STATEMENT st Tells[Fred,s] by A2;

1b: ex x being PERSON, s being STATEMENT st Tells[x,s] by A2;

1c: ex x being PERSON st Tells[x,Hello] by A2;

== This is also correct.

1d: ex x being KNIGHT, s being STATEMENT st Tells[Fred,Hello] by A2;

KnightSpeak1: for t being STATEMENT for x being PERSON

holds Knight[x] & Tells[x,t] implies True[t] proof

let t be STATEMENT;

== now we have to show the "for x ..." part

let x be PERSON;

thus Knight[x] & Tells[x,t] implies True[t] by KnightSpeak;

end;

2: for y being PERSON holds

Knight[y] & Tells[y,Hello] implies True[Hello] by KnightSpeak1;

2a: for y being PERSON holds

Knight[y] & Tells[y,Hello] implies True[Hello] proof

let y be PERSON;

1: for s being STATEMENT holds

Knight[y] & Tells[y,s] implies True[s] by KnightSpeak;

thus

Knight[y] & Tells[y,Hello] implies True[Hello] by 1;

end;

3: Knight[Fred] & Tells[Fred,Hello] implies True[Hello] by KnightSpeak;

4: True[Hello] by A1, A2, 3;
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7.7 Universal Introduction, UI

To introduce a universal quantifier we do another kind of hypothetical reasoning, called
universal generalization or universal introduction. The intuition here is that to prove that
some formula holds for all objects we show that it holds for any arbitrarily selected but
fixed object.

λ: now

let β be τ;
.

.

.

thus α←β Justification
end;

for α being τ holds by λ

where α and β are permitted to be identical object identifiers. The formula α←β
must not contain any free occurrences of any object identifier introduced inside the now

other than β.
Remember that any formula visible at line λ which has β free will not be properly visible

inside the reasoning. The ‘value’ of the object identifier β defined outside of the reasoning
is not arbitrary (many things could have already been stated about it), and so any formula
with a free β from outside the proof is actually referring to a different object than the β
inside the proof. (Go back now and reread the definition of visibility).

So for example, the following inference is correct(ex33.mse)

environ

given Fred being PERSON;

A: Knight[Fred];

begin

== We prove that for all persons, Fred is a knight.

== (Do not worry that it does not make much sense.)

1: now

let p be PERSON;

thus Knight[Fred] by A; == RE

end;

for p being PERSON holds Knight[Fred] by 1 == UI

while this one is not:(ex35.mse)

environ

given Fred being PERSON;

A: Knight[Fred];

begin

== This says the same as in the previous example.

== But it tries to prove that all persons are knights!
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1: now

let Fred be PERSON; == You can do it.

== The following does not work as Fred mentioned in axiom A

== is not the same Fred as inside this reasoning.

thus Knight[Fred] by A;

****************************99

**

** 99 Your inference is not accepted by the checker.

**

end;

for p being PERSON holds Knight[Fred] by 1; == UI

********************************************99

**

** 99 Your inference is not accepted by the checker.

**

== Note. The reasoning at 1 was incorrect, still we can make

== a reference to it.

== The above does not work, but the step below does.

for Fred being PERSON holds Knight[Fred] by 1; == UI

We can now complete the example where we wanted to instantiate an inner quantifier.
Note how we do renaming of the quantified object from y in the now, to yy in the concluded
formula 2.(ex34.mse)

environ

given Fred being PERSON;

given Hello being STATEMENT;

KnightSpeak: for y being PERSON holds

for s being STATEMENT holds

Knight[y] & Tells[y,s] implies True[s];

begin

== We want to substitute Hello for s.

1: now

let y be PERSON;

1: for s being STATEMENT holds

Knight[y] & Tells[y,s] implies True[s] by KnightSpeak; == UE

thus Knight[y] & Tells[y,Hello] implies True[Hello] by 1; == UE

end;

2: for yy being PERSON holds

Knight[yy] & Tells[yy,Hello] implies True[Hello] by 1 == UI
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7.8 Existential Elimination, ExE

Our last inference rule is used to convert an existential statement about some object, into
a statement about a specific object. The idea is that if we have

ex α being τ st

then α←β will hold for some specific object β of sort τ . But since we do not know

what that object actually is, the name β that we give it should be different from any other
visible name. Otherwise, unexpectedly, we can give a new meaning to a name that we have
been using. The inference rule looks like

ex α being τ st

consider β being τ such that λ: α←β

Where the formula must not contain any free β.
The consider statement introduces a new object with identifier β and sort τ . This will

hide all prior instances of β and any prior formulas with a free β cannot be used in the
current scope as they contain the now hidden previous β.

Here is a complicated example illustrating this inference rule.(ex37.mse)

environ

given Hello being STATEMENT;

given Fred being PERSON;

== Hello is a true statement.

Fact1: True[Hello];

== Fred always lies.

Fact2: for s being STATEMENT holds Tells[Fred,s] implies not True[s];

== Every person is either a Knight or a Knave, but not both.

Opp: for a being PERSON holds Knight[a] iff not Knave[a];

== A person is a knight if and only if every statement

== they say is true.

Veracity: for a being PERSON holds

Knight[a] iff

(for s being STATEMENT holds Tells[a,s] implies True[s]);

== If at least one of the things you say is false

== then everything you say is false.

Consistency: for a being PERSON holds

(ex s being STATEMENT st Tells[a,s] & not True[s]) implies

(for s being STATEMENT holds Tells[a,s] implies not True[s]);

== Every person says at least one thing.

Verbosity: for p being PERSON holds ex s being STATEMENT st Tells[p,s];

== Some person says everything.

BlabberMouth: ex p being PERSON st for s being STATEMENT holds Tells[p,s];

begin

== We demonstrate that there is some person who says Hello.

== Use the fact that blabber mouth exists.
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consider blabber being PERSON such that

1: for s being STATEMENT holds Tells[blabber,s]

by BlabberMouth; == ExE

== Combine this with the fact that Hello is a statement.

2: Tells[blabber, Hello] by 1; == UE

== Now existentially generalize

ex p being PERSON st Tells[p,Hello] by 2; == ExI

== We prove that there exists some person p such that if they

== are a knight then all statements are true.

== This example should demonstrate to you that the scope of

== an existential quantifier better not be a conditional,

== if it is possible for the antecedent to be false for some

== object.

consider blabber being PERSON such that

1: for s being STATEMENT holds Tells[blabber,s]

by BlabberMouth; == ExE

2’: now

assume A: Knight[blabber];

3: for s being STATEMENT holds

Tells[blabber,s] implies True[s]

by Veracity, A; == UE, EqE

4: now

let s be STATEMENT;

5: Tells[blabber,s] by 1; == UE

thus True[s] by 3, 5; == UE, IE

end;

thus for s being STATEMENT holds True[s] by 4; == UI

end;

2: Knight[blabber] implies

(for s being STATEMENT holds True[s]) by 2’; == II

ex p being PERSON st

(Knight[p] implies (for s being STATEMENT holds True[s]))

by 2; == ExI

== Note that we can reference 2’ directly.

ex p being PERSON st

(Knight[p] implies (for s being STATEMENT holds True[s]))

by 2’; == ExI

In the example above we have indicated the lines where two basic rules of inference have
been used, in the indicated order. Although, we need not doing it to satisfy the Mizar
checker, sometimes it helps to clarify things for ourselves.



Section 7.9: De Morgan’s Laws for Quantifiers 107

7.9 De Morgan’s Laws for Quantifiers

As with derived inference rules for propositional calculus, there are derived inference rules
for quantifiers. Here we mention only the so called De Morgan’s Laws4 and attach the
corresponding argument using only the basic rules of inference.

1.

not (for α being τ holds )

ex α being τ st not

(ex38.mse)

environ

A1: not (for a being T holds PHI[a]);

begin

1: now

assume

step1: not (ex a being T st not PHI[a]);

step2: now

let x be T;

step3’: now assume

step3: not PHI[x];

step4: ex a being T st not PHI[a] by step3; == ExI

thus contradiction by step1, step4; == ContrI

end;

thus PHI[x] by step3’; == PbyC

end; == We have just shown: for a being T holds PHI[a].

thus contradiction by A1, step2; == ContrI

end;

ex a being T st not PHI[a] by 1 == PbyC

2.

not (ex α being τ st )

for α being τ holds not

(ex39.mse)

environ

A1: not (ex a being T st PHI[a]);

begin

4See 6.3.11 for the De Morgan’s laws in their quantifier-free version.
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1: now

let x be T;

step0: now

assume step1: PHI[x];

step2: ex a being T st PHI[a] by step1; == ExI

thus contradiction by A1, step2; == ContrI

end;

thus not PHI[x] by step0 == NI

end;

for a being T holds not PHI[a] by 1; == UI

3.

for α being τ holds not

not (ex α being τ st )

(ex40.mse)

environ

A1: for a being T holds not PHI[a];

begin

1: now

assume step1: ex a being T st PHI[a];

consider x being T such that

step2: PHI[x] by step1; == ExE

step3: not PHI[x] by A1; == UE

thus contradiction by step2, step3; == ContrI

end;

not (ex a being T st PHI[a]) by 1 == PbyC

4.

ex α being τ st not

not (for α being τ holds )

(ex41.mse)

environ

A1: ex a being T st not PHI[a];

begin

1: now

assume step1: for a being T holds PHI[a];

consider x being T such that

step2: not PHI[x] by A1; == ExE

step3: PHI[x] by step1; == UE

thus contradiction by step2, step3; == ContrI

end;

not (for a being T holds PHI[a]) by 1 == PbyC
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8 Proofs

The inference rules that we have covered so far suffice to prove whatever is provable in
a given environment. (The above claim requires a proof but we do not discuss it here. It
falls into the area of metalogic—that is knowledge about logic. Our interest is here about
practical aspects of proving.)

Any justification of a formula in Mizar may take the form of a proof. In essence, proofs
are only a syntactic variation of recording the application of inference rules, which offers
some convenient short cuts in conducting arguments. The syntax of proofs is similar to the
syntax of reasonings.

CompactStatement ::= [ then ] Proposition SimpleJustification |
Proposition Proof

Proof ::= proof Reasoning end

8.1 II, NI, PbyC, UI Rules Revisited

Using examples, we show how the proof syntax is used for recording the II, NI, PbyC, and
UI rules.

8.1.1 Proof of an Implication

The proof form of the II rule is identical to the now version of the II rule, see 6.1. Indeed,
what goes between now and end now goes between proof and end, and altogether save a
label and a by reference.

0 implies 1 proof

assume A: 0

.

.

.
thus 1 Justification

end

Let us look at the proof form of the example from p. 80. (Note the place where we announce
the rule name.)(ex43.mse)

environ

given x being PERSON;

Ax1: P[x] implies Q[x];

Ax2: Q[x] implies R[x];

begin

P[x] implies R[x] proof == Rule: II

assume A: P[x];

1a: Q[x] by A, Ax1; == Rule: IE

thus R[x] by 1a, Ax2 == Rule: IE

end
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Whatever we can prove with a proof we can also justify using the now reasoning. There is a
psychological difference though. To use a proof we have to state first what we are proving,
while in case of the now reasoning we can do it later, if we wish, when we state explicitly
what has been proven. (Certainly, in both cases the Mizar checker will tell us whether our
statements are justified.)

For example, let us prove this theorem about a PERSON called x.

( (P[x] implies Q[x]) & (Q[x] implies R[x]) & P[x] ) implies R[x]

We do it both ways, presenting the proof first.(ex44.mse)

environ

given x being PERSON;

begin

== The proof version

( (P[x] implies Q[x]) & (Q[x] implies R[x]) & P[x] ) implies R[x]

proof == Rule: II

assume A: (P[x] implies Q[x]) & (Q[x] implies R[x]) & P[x];

1: P[x] by A; == CE

2: P[x] implies Q[x] by A; == CE

3: Q[x] by 1, 2; == IE

4: Q[x] implies R[x] by A; == CE

thus R[x] by 3,4; == IE

end;

== The now version

1: now

assume A: (P[x] implies Q[x]) & (Q[x] implies R[x]) & P[x];

1: P[x] by A; == CE

2: P[x] implies Q[x] by A; == CE

3: Q[x] by 1, 2; == IE

4: Q[x] implies R[x] by A; == CE

thus R[x] by 3,4; == IE

end;

( (P[x] implies Q[x]) & (Q[x] implies R[x]) & P[x] ) implies R[x]

by 1; == II

The justification of the main proposition is in both cases via hypothetical reasoning (Im-
plication Introduction).
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8.1.2 Proof of a Negation

Instead of applying the NI rule as presented on page 82 we may present the following proof:

not 0 proof

assume Contra: 0 ;

.

.

.
thus contradiction Justification

end

Compare the proof and the now versions of the example from page 82.(ex45.mse)

environ

given glass being CONTAINER;

given juice being DRINK;

A1: Full[glass] implies Fresh[juice];

A2: not Fresh[juice];

begin == We show that: not Full[glass]

== The proof version

not Full[glass] proof == NI

assume A: Full[glass];

1: Fresh[juice] by A, A1; == IE

thus contradiction by 1,A2; == ContrI

end;

== The now version

S: now

assume A: Full[glass];

1: Fresh[juice] by A, A1; == IE

thus contradiction by 1,A2; == ContrI

end;

not Full[glass] by S == NI

8.1.3 Proof by Contradiction

There is also a full correspondence between the PbyC rule and the proof version of reasoning
by contradiction.

0 proof

assume Contra: not 0 ;

.

.

.
thus contradiction Justification
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end

The example from page 82 takes the following proof form.(ex46.mse)

environ

given glass being CONTAINER;

begin

(not Full[glass] implies Full[glass]) implies Full[glass]

proof == II

assume a: not Full[glass] implies Full[glass];

S: now == NI

assume b: not Full[glass];

1: Full[glass] by a,b; == MP

thus contradiction by 1,b; == ContrI

end;

T: not not Full[glass] by S; == NI

thus Full[glass] by T == NE

end;

8.1.4 Universal Introduction

The following proof schema is fully analogous to the UI rule.

λ: for α being τ holds proof

let β be τ;
.
.
.
thus α←β Justification

end

And now, employing a proof, the example from page 104 looks as follows:(ex47.mse)

environ

given Fred being PERSON;

given Hello being STATEMENT;

KnightSpeak: for y being PERSON holds

for s being STATEMENT holds

Knight[y] & Tells[y,s] implies True[s];

begin

for y being PERSON holds

Knight[y] & Tells[y,Hello] implies True[Hello] == UI

proof

let y be PERSON;

1: for s being STATEMENT holds

Knight[y] & Tells[y,s] implies True[s] by KnightSpeak; == UE

thus Knight[y] & Tells[y,Hello] implies True[Hello] by 1; == UE
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end
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8.2 Proof Structures

We have seen above how the hypothetical reasoning (II), Negation Introduction NI, and
Universal Introduction UI rules take on the a shape of a proof. Thus we know how to write
a proof for a formula with an implication, negation, or a universal quantifier as the main
connective. We also know how to prove an arbitrary formula by contradiction. Mizar
allows us to write a proof for an arbitrary formula, even if its structure is suitable to use a
SimpleJustification on a basis of some rule of inference.

8.2.1 Conjunction

In order to prove a conjunction (directly) we have to demonstrate the truth of all its con-
juncts. One can always use the CI rule. But one can employ the following proof structure.

0 & 1 & . . . & n proof

.
thus 0 Justification ;

.
thus 1 Justification ;

.

.

.
thus n Justification

end

Usually, there is no point in employing this proof structure—applying the CI rule results in
a shorter text.

8.2.2 Implication

The hypothetical reasoning forms the direct proof structure for a conditional formula. At
this point we would like to mention the idea of indirect proof. You may note the affinity
of the II rule and the Modus Ponens rule. One can wonder whether there is a similar proof
structure corresponding to the Modus Tollens rule. We would like to permit the following,
indirect, structure for a proof of a conditional:

0 implies 1 proof

assume not 1 ;

.

.

.
thus not 0 Justification

end

From the Modus Tollens rule we can feel that such a structure is right. And this is the
case. Unfortunately, Mizar does not recognize it as a proper structure for proving a
conditional. Too bad! But we can always find our way around the problem and do the
indirect proof with the now reasoning as follows:
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A: now

assume not 1 ;

.

.

.
thus not 0 Justification

end;

B: not 1 implies not 0 by A;

0 implies 1 by B == Reverse Implication
== Mizar will accept the following as well:

0 implies 1 by A == No single rule suffices

All proofs that are not by contradiction and are not indirect, are called direct proofs.

8.2.3 Disjunction

The direct proof of a single disjunction looks quite ‘indirect’, although it is not. We already
know (from the example on page 92) which conditional formula is equivalent to a given
disjunction. Mizar permits the following as a proof of a disjunction.

0 or 1 proof

assume not 0 ;

.

.

.
thus 1 Justification

end

Unfortunately, we cannot start with the negation of the second disjunct. But always we
can call on the now reasoning for help.

8.2.4 Equivalence

The direct proof of an equivalence must take the following form:

0 iff 1 proof

. . .
thus 0 implies 1 Justification ; .
.
.
thus 1 implies 0 Justification ;

end

Unfortunately for Mizar, the order of these thus’es is important.
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8.3 Omitting Proofs

The correctness of a formula may be established by SimpleJustification without writing
an explicit proof for it. Whenever we get the Mizar processor to accept

by References

then we can also justify using the following proof structure:

proof

.

.

.
thus by References

end

Since the latter is longer we will prefer the former way of justification. Note how the above
proof structure is similar to the one we discussed for conjunction in 8.2.1. Indeed, any
formula can be seen as a conjunction with exactly one conjunct, no matter how strange it
sounds.
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8.4 Incorporating proofs

A proof nested within another proof can be incorporated directly into the encompassing
proof. We start with the example, which is a variation of one of the proofs from page 93.(ex24.mse)

environ

given S being STUDENT;

given M being Money;

begin

(Need[M] implies Work[S] & Save[M])

implies

(Need[M] implies Work[S]) & (not Save[M] implies not Need[M])

proof == II

assume A:( Need[M] implies Work[S] & Save[M] );

== At this point we have to prove the consequent of the original formula.

== Since it is a conjunction, we do it in two separate thus’es.

thus Need[M] implies Work[S] proof == II

assume A1: Need[M];

1a: Work[S] & Save[M] by A, A1; == IE

thus Work[S] by 1a; == CE

end;

thus not Save[M] implies not Need[M] proof == II

assume A1: not Save[M];

2a: Need[M] implies Save[M] proof == II

assume A2: Need[M];

2b: Work[S] & Save[M] by A, A2; == IE

thus Save[M] by 2b; == CE

end;

thus not Need[M] by A1, 2a; == MT

end;

end;

This proof can still be refined by incorporating the last part of the conclusion into the main
proof.(ex22.mse)

environ

given S being STUDENT;

given M being Money;

begin

(Need[M] implies Work[S] & Save[M])

implies

(Need[M] implies Work[S]) & (not Save[M] implies not Need[M])

proof == II

assume A:( Need[M] implies Work[S] & Save[M] );

== At this point we have to prove the consequent of the original formula.

== It is a conjunction. The first conjunct is concluded by a thus.



118 Section 8.4: Incorporating proofs

thus Need[M] implies Work[S] proof == II

assume A1: Need[M];

1a: Work[S] & Save[M] by A, A1; == IE

thus Work[S] by 1a; == CE

end;

== At this point the second conjunct has to be concluded.

== Since it is an implication we incorporate the proof of the implication

== into the main proof.

== We are really doing the implication introduction from here on.

assume A1: not Save[M];

== What remains to be proven at this point is: not Need[M]

2a: now == II

assume A2: Need[M];

2b: Work[S] & Save[M] by A, A2; == IE

thus Save[M] by 2b; == CE

end;

thus not Need[M] by A1, 2a; == MT

end;

The key point to understanding all this is the question: What remains to be proven in a
proof? It is a formula. Let us introduce a name for it. That which still remains to be proven
in a proof we call the current thesis. Initially, right after the proof, the current thesis is the
original formula that we are proving. Each assumption (assume) and conclusion (thus) that
we make affects the thesis. The precise explanation of What is the current thesis? is pretty
obscure. Therefore, we will rely more on your intuition. Assume we are at the beginning of
a proof. The current thesis is the original formula. If we go through an assumption assume

then it looks like we are applying hypothetical reasoning and the current thesis better be
an implication. After the assumption the current thesis is the consequent of the previous
thesis. And now, if the current thesis is an implication we may expect another assumption;
if not we have to conclude (thus) whatever remains to be proven. At any point in a proof
you can assume the negation of the current thesis, which means that you are switching to
a proof by contradiction.

Mizar has been equipped with a special contraption to talk about the current thesis.
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8.5 thesis

We know the fundamental proof structures for propositional formulas. We know also we
can use a proof by contradiction. For a conditional formula we can present an indirect
reasoning. We know how to structure a proof to get a universally quantified formula.

The previous example will be used to introduce the special formula named thesis. In a
proof, thesis denotes the current thesis, which is the formula that remains to be concluded
in order to complete the innermost proof. The proof that can always be omitted (page 116)
can be then rewritten (although there is no need to write it in the first place) as:

proof

.

.

.
thus thesis by References

end

Outside of a proof thesis must not be used as it is meaningless. It is quite natural to
use thesis in hypothetical reasoning.

0 implies 1 proof

. == thesis is here 0 implies 1

assume 0 ;

. == thesis is here 1

.

.
thus thesis Justification
. == thesis is here not contradiction

. == which does not have to be concluded by a thus

end

It is quite convenient to use thesis in a proof by contradiction, it may shorten our proofs.

0 proof

. == thesis is here 0

assume not thesis;

. == thesis is here contradiction

.

.
thus thesis Justification
. == thesis is here not contradiction

. == which does not have to be concluded by a thus

end
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It is interesting to see the behaviour of thesis when doing universal introduction. Let
us look at an example.(ex42.mse)

environ

1: for p being Person holds Knight[p] implies Wise[p];

2: for p being Person holds Wise[p] implies Rich[p];

begin

for p being Person holds Knight[p] implies Rich[p] proof == UI

let P be Person;

== thesis <=> Knight[P] implies Rich[P]

thus thesis proof == II

== thesis <=> Knight[P] implies Rich[P]

assume a: Knight[P];

== thesis <=> Rich[P]

b: Wise[P] by 1, a; == UE, IE

c: Rich[P] by 2, b; == UE, IE

thus thesis by c == RE

== thesis <=> not contradiction

end; == thesis <=> not contradiction

end;

== The inner proof can be shortened.

for p being Person holds Knight[p] implies Rich[p] proof == UI

let P be Person;

== thesis <=> Knight[P] implies Rich[P]

thus thesis proof == II

== thesis <=> Knight[P] implies Rich[P]

assume a: Knight[P];

== thesis <=> Rich[P]

b: Wise[P] by 1, a; == UE, IE

thus thesis by 2, b; == UE, IE

== thesis <=> not contradiction

end; == thesis <=> not contradiction

end;

== The inner proof can be incorporated entirely.

for p being Person holds Knight[p] implies Rich[p] proof == UI

let P be Person;

== thesis <=> Knight[P] implies Rich[P]

== Since the thesis is a conditional we can use

== hypothetical reasoning to get it.

assume a: Knight[P]; == II

== thesis <=> Rich[P]

b: Wise[P] by 1, a; == UE, IE

thus thesis by 2, b

== thesis <=> not contradiction

end;
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8.6 Mizar Problems on Knights and Knaves

8.6.1 Puzzle 1

(kandk02.mse)

environ

given A, B being PERSON;

Opp: for a being PERSON holds Knight[a] iff not Knave[a];

== These two statements are a translation of the sentence, said by A,

== " I am a knave or B is a knight"

A1: Knight[A] implies ( Knave[A] or Knight[B] );

A1’: Knave[A] implies not ( Knave[A] or Knight[B] );

begin

== The question is what are A and B?

== First we argue that A must be a knight.

C1: Knight[A]

proof

assume Contra: not Knight[A];

C1: Knave[A] by Contra, Opp;

C2: not ( Knave[A] or Knight[B] ) by C1, A1’;

C3: not Knave[A] by C2;

C4: Knight[A] by C3, Opp;

thus contradiction by C4, Contra;

end;

== Now we determine what B is.

D1: Knight[B]

proof

S1: Knave[A] or Knight[B] by C1, A1;

S2: not Knave[A] by C1, Opp;

thus thesis by S1, S2;

end;
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8.6.2 Puzzle 2

(kandk03.mse)

environ

given A, B, C being PERSON;

Opp: for a being PERSON holds Knight[a] iff not Knave[a];

== These two are a translation of the sentence, said by A,

== "All of us are knaves."

A1: Knight[A] implies ( Knave[A] & Knave[B] & Knave[C] );

A1’: Knave[A] implies not ( Knave[A] & Knave[B] & Knave[C] );

== These two are a translation of the sentence, said by B,

== "Exactly one of us is a knight."

B1: Knight[B] implies ( (Knight[A] & Knave[B] & Knave[C]) or

(Knave[A] & Knight[B] & Knave[C]) or

(Knave[A] & Knave[B] & Knight[C]) );

B1’: Knave[B] implies not ( (Knight[A] & Knave[B] & Knave[C]) or

(Knave[A] & Knight[B] & Knave[C]) or

(Knave[A] & Knave[B] & Knight[C]) );

begin

== The question is what are A, B and C?

== First we argue that A must be a knave.

A2: Knave[A]

proof

assume Contra: not Knave[A];

1: Knight[A] by Contra, Opp;

2: Knave[A] by 1, A1;

thus contradiction by 2, Contra;

end;

== A useful sentence:

B2: ( (Knight[A] & Knave[B] & Knave[C]) or

(Knave[A] & Knight[B] & Knave[C]) or

(Knave[A] & Knave[B] & Knight[C]) )

implies not Knave[B] by B1’;

== Then we argue that if C is a knight then B must be a knight.

C2: Knight[C] implies Knight[B]

proof

assume S1: Knight[C];

S2: Knave[A] & Knight[C] by S1, A2;

S3: not Knave[B]

proof
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assume Contra: Knave[B];

31: Knave[A] & Knave[B] & Knight[C]

by S2, Contra;

32: not Knave[B] by B2, 31;

thus contradiction by Contra, 32;

end;

thus Knight[B] by Opp, S3;

end;

== Then we argue that if C is a knave then B must still be a knight.

C3: Knave[C] implies Knight[B]

proof

assume S1: Knave[C];

thus Knight[B]

proof

assume Contra: not Knight[B];

1: Knave[B] by Opp, Contra;

2: Knave[A] & Knave[B] & Knave[C] by A2, S1, 1;

3: not Knave[A] by A1’, 2;

thus contradiction by A2, 3;

end;

end;

== A tautology:

C4: Knight[C] or not Knight[C];

C5: Knight[C] or Knave[C] by C4, Opp;

== No matter what C is, B is a Knight.

B3: Knight[B] by C2, C3, C5;

C6: Knave[C] by A1, A1’, B1, B1’, B3, C5;

Conclusion: Knave[A] & Knight[B] & Knave[C] by A2, B3, C6;
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8.6.3 A theorem about Knights and Knaves

(kandk04.mse)

environ

== Opp says that every person is either a Knight or a Knave, but

== not both

Opp: for a being PERSON holds Knight[a] iff not Knave[a];

== Veracity says that a person is a knight if and only if every statement

== they say is true.

Veracity: for a being PERSON holds

Knight[a] iff ( for s being STATEMENT holds

Tells[a,s] implies True[s] )

begin

== Theorem1 says that if some person, p, is a knave then there is at

== least one statement s, uttered by p, that is not true

== But it does not say that every statement of p is false. Can this

== latter assertion be proven with the above environment?

Theorem1: for p being PERSON holds

Knave[p] implies ( ex s being STATEMENT st

Tells[p,s] & not True[s] )

proof

let p be PERSON;

== We have to prove the implication.

assume A1: Knave[p];

== Now we have to prove the consequent.

C0: not Knight[p] by A1, Opp;

C1: Knight[p] iff ( for s being STATEMENT holds

Tells[p,s] implies True[s] ) by Veracity;

C2: not ( for s being STATEMENT holds

Tells[p,s] implies True[s] ) by C1, C0;

C3: ex s being STATEMENT st not

( Tells[p,s] implies True[s] ) by C2;

consider t being STATEMENT such that

C4: not ( Tells[p,t] implies True[t] ) by C3;

C5: Tells[p,t] & not True[t] by C4;

thus thesis by C5;

end;
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8.6.4 Three more theorems

(kandk05.mse)

environ

given Hello being STATEMENT;

given Fred being PERSON;

== Hello is a true statement.

Fact1: True[Hello];

== Fred always lies.

Fact2: for s being STATEMENT holds Tells[Fred,s] implies not True[s];

== Opp says that every person is either a Knight or a Knave, but

== not both.

Opp: for a being PERSON holds Knight[a] iff not Knave[a];

== Veracity says that a person is a knight if and only if every statement

== they say is true

Veracity: for a being PERSON holds

Knight[a] iff ( for s being STATEMENT holds

Tells[a,s] implies True[s] );

== Consistency says that if at least one of the things a person says is

== false then everything they say is false.

Consistency: for a being PERSON holds (

(ex s being STATEMENT st Tells[a,s] & not True[s]) implies

(for s being STATEMENT holds Tells[a,s] implies not True[s]) );

begin

== Theorem2 says that Fred cannot say hello.

Theorem2: not Tells[Fred,Hello] proof

== Specialize Fact2 to the statement Hello.

C0: Tells[Fred, Hello] implies not True[Hello] by Fact2;

thus thesis by C0, Fact1;

end;

== Theorem3 says that if Fred says nothing at all, then he is a knight!

Theorem3: (for s being STATEMENT holds not Tells[Fred,s])

implies Knight[Fred] proof

assume A1: (for s being STATEMENT holds not Tells[Fred,s]);

C0: for s being STATEMENT holds Tells[Fred,s] implies True[s]

proof

let s be STATEMENT;

C1: not Tells[Fred,s] by A1;
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thus thesis by C1;

end;

C2: Knight[Fred] iff ( for s being STATEMENT holds

Tells[Fred,s] implies True[s] ) by Veracity;

thus thesis by C0, C2;

end;

== Theorem4 says that if some person, a, is a knave then every

== statement s uttered by a is false.

Theorem4: for p being PERSON holds

Knave[p] implies ( for s being STATEMENT holds

Tells[p,s] implies not True[s] )

proof

let p be PERSON;

== Now we have to prove the implication.

assume A1: Knave[p];

== Now we have to prove the consequent.

C0: not Knight[p] by A1, Opp;

C1: Knight[p] iff ( for s being STATEMENT holds

Tells[p,s] implies True[s] ) by Veracity;

C2: not ( for s being STATEMENT holds

Tells[p,s] implies True[s] ) by C1, C0;

C3: ex s being STATEMENT st not

( Tells[p,s] implies True[s] ) by C2;

consider t being STATEMENT such that

C4: not ( Tells[p,t] implies True[t] ) by C3;

C5: Tells[p,t] & not True[t] by C4;

C6: ex s being STATEMENT st Tells[p,s] & not True[s] by C5;

C7: (ex s being STATEMENT st Tells[p,s] & not True[s]) implies

(for s being STATEMENT holds Tells[p,s] implies not True[s])

by Consistency;

thus thesis by C6,C7;

end;
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8.6.5 And even more theorems

(kandk06.mse)

== Here is the intended interpretation of the predicates Tells, Likes, and

== Conspire.

== Tells[Person, Statement] - Tells[a,s] means person a tells statement s.

== Likes[Person, Person] - Likes[a,b] means person a likes person b.

== Conspire[Person, Person, Person] - Conspire[x,y,z] means both x and y

== do not like z.

environ

== These reserve statements save us the trouble of specifying

== the sort of the variables being quantified.

reserve x, y, z for Person;

reserve r, s, t for Statement;

given A, B, C, D, E, F, G being Person;

given Lie, Promise, Blabla, Insult, Prayer being Statement;

a1: for x holds Knave[x] or Knight[x] or Normal[x];

a1’: for x holds Knave[x] implies not (Knight[x] or Normal[x]);

a1’’: for x holds Knight[x] implies not (Knave[x] or Normal[x]);

a1’’’: for x holds Normal[x] implies not (Knight[x] or Knave[x]);

a2: for x, y holds Likes[x, y] & Knight[x] implies Knave[y];

a2’: for x, y holds Likes[x, y] & Knave[x] implies not Normal[y];

a2’’: for x, y holds not Likes[x, y] & Normal[x] implies Knight[y];

a3: for x, y, z holds Conspire[x, y, z] implies

not (Likes[x, z] or Likes[y, z]);

a3’: for x, y, z holds

not Likes[x, z] & not Likes[y, z] &

not (Likes[z, x] or Likes[z, y])

implies Conspire[x, y, z];

a4: for x, s holds Knight[x] & Tells[x, s] implies True[s] & s <> Insult;

a4’: for x, s holds Knave[x] & Tells[x, s] implies False[s] or s = Blabla;

a4’’: for x holds Normal[x] implies Tells[x, Promise];

a5: for x being Person holds Likes[x, D];

a5’: not False[Prayer];

a5’’: Prayer <> Blabla & Promise <> Blabla;

a5’’’: for x holds Knave[x] implies not Likes[E, x];

a6: Likes[F, G] & Likes[G, F];

a6’: Normal[F];

begin
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Exercise1:

not Knave[G] proof

1: Normal[F] by a6’;

2: Likes[G, F] & Knave[G] implies not Normal[F] by a2’;

3: not ( Likes[G, F] & Knave[G] ) by 1, 2;

4: not Likes[G, F] or not Knave[G] by 3;

thus not Knave[G] by a6, 4;

end;

Exercise2:

not Conspire[F, F, G] proof

1: Likes[F, G] by a6;

2: Conspire[F, F, G] implies not (Likes[F, G] or Likes[F, G]) by a3;

thus thesis by 1,2;

end;

Exercise3:

not Conspire[A, E, D] proof

1: Likes[A, D] by a5;

2: Conspire[A, E, D] implies not (Likes[A, D] or Likes[E, D]) by a3;

thus thesis by 1,2;

end;

Exercise4:

not Normal[C] & Tells[C, Promise]

implies True[Promise] or False[Promise] proof

assume A: not Normal[C] & Tells[C, Promise];

1: Knave[C] or Knight[C] by A, a1;

2: Knight[C] implies True[Promise] by A, a4;

3: Knave[C] implies False[Promise] by A, a4’, a5’’;

thus thesis by 1,2,3;

end;

Exercise5:

(Likes[E, A] iff Likes[E, B]) & Knave[B] & Normal[E] & Tells[A, Promise]

implies True[Promise] proof

assume A: (Likes[E, A] iff Likes[E, B]) & Knave[B] & Normal[E] &

Tells[A, Promise];

1: Knave[B] implies not Likes[E, B] by a5’’’;

2: not Likes[E, B] by A, 1;

3: not Likes[E, A] by A, 2;
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4: Knight[A] by 3, A, a2’’;

5: Knight[A] implies True[Promise] by a4, A, a5’’;

thus thesis by 5, 4;

end;

Exercise6:

Likes[B, A] & Knight[B] & Tells[A, Promise]

implies False[Promise] proof

1: Likes[B, A] & Knight[B] implies Knave[A] by a2;

2: Knave[A] & Tells[A, Promise] implies False[Promise] by a4’, a5’’;

thus thesis by 1,2;

end;

Exercise7:

not Tells[D, Promise] implies Knight[D] proof

assume A: not Tells[D, Promise];

1: not Normal[D] by a4’’, A;

2: Likes[E, D] by a5;

3: Knave[D] implies not Likes[E,D] by a5’’’;

4: not Knave[D] by 2, 3;

thus thesis by 1, 4, a1;

end;

Exercise8:

Knave[B] & Knave[C] & Conspire[A, B, E] & Conspire[A, C, E]

implies Conspire[B, C, E] proof

assume A: Knave[B] & Knave[C] & Conspire[A, B, E] & Conspire[A, C, E];

1: not Likes[E, B] & not Likes[E, C] by A, a5’’’;

2: not Likes[B, E] by a3, A;

3: not Likes[C, E] by a3, A;

thus thesis by 1, 2, 3, a3’;

end;

Exercise9:

Conspire[D, A, E] & Tells[E, Insult]

implies not (Normal[D] & Normal[A]) proof

assume A: Conspire[D, A, E] & Tells[E, Insult];

1: not Likes[D, E] & not Likes [A, E] by A, a3;

2: Knight[E] implies Insult <> Insult by A, a4;

3: not Knight[E] by 2;

4: not Normal[A] by a2’’, 1, 3;



130 Section 8.6: Mizar Problems on Knights and Knaves

5: not Normal[D] by a2’’, 1, 3;

thus thesis by 4, 5;

end;

Exercise10:

Tells[A, Prayer] & not Tells[A, Blabla] & not Tells[A, Promise]

implies Knight[A] proof

assume A: Tells[A, Prayer] & not Tells[A, Blabla] & not Tells[A, Promise];

1: not False[Prayer] & not ( Prayer = Blabla )

implies not (Knave[A] & Tells[A,Prayer]) by a4’;

2: not Knave[A] or not Tells[A, Prayer] by 1, a5’, a5’’;

3: not Knave[A] by 2, A;

4: not Normal[A] by a4’’, A;

thus thesis by 3, 4, a1;

end;
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9 Interpretations Revisited

The truth value of tautologies and contradictions does not depend on the current inter-
pretation. However, if a formula is a contingency, we should be able to find an interpretation
that satisfies the formula, and one that falsifies it. Here is an example:(ex48.mse)

environ == Examples of satisfying and falsifying interpretations

reserve t, x, y, z, w for THING;

== We will consider three different interpretations of Blob and

== the universe of discourse (sort THING).

I1: for x, y holds (Blob[x, y] iff x=y);

I1’: ex x, y st x <> y;

I2: for x, y holds (Blob[x, y] iff x=y);

I2’: not (ex x, y st x <> y);

I3: for x, y holds (Blob[x, y] iff not contradiction);

begin

== The following is always true, but requires a proof.

Tfor: for x holds x=x proof let x be THING; thus x=x; end;

== In Mizar, each sort always contains at least one member.

== Thus we can always prove the following.

Tex: ex x st x=x proof consider t; 1: t = t; thus thesis by 1; end;

== Mizar does not need the above proof.

consider t;

Tex: ex x st x=x;

== Statement T0 is true no matter what interpretation we give to Blob,

== but Mizar is not able to prove it itself.

T0: (ex x st for y holds Blob[x, y]) implies (for y ex x st Blob[x, y])

proof assume A1: ex x st for y holds Blob[x, y];

let z be THING;

consider t such that

1: for y holds Blob[t, y] by A1;

2: Blob[t, z] by 1;

thus thesis by 2;

end;

== Note how in proving T0 we did not make any reference to the

== interpretation axioms.
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== But the converse of T0 is not always true.

== Under interpretation I1 it is false.

T1: not ((for y ex x st Blob[x, y]) implies (ex x st for y holds Blob[x, y]))

proof

assume A1: (for y ex x st Blob[x, y]) implies

(ex x st for y holds Blob[x, y]);

== The antecedent is true using interpretation I1

1: for y ex x st Blob[x, y] proof

let y be THING;

2: y=y;

3: Blob[y, y] by I1;

thus ex x st Blob[x, y] by 3;

end;

4: ex x st for y holds Blob[x, y] by 1, A1;

== Now get a contradiction

consider t such that

5: for y holds Blob[t, y] by 4;

consider w, z such that

6: w<>z by I1’;

7: Blob[t, w] & Blob[t, z] by 5;

8: t=w by 7, I1;

8’: t=z by 7, I1;

9: z=w by 8, 8’;

thus contradiction by 6, 9;

end;

== But under interpretation I2 it is true.

T2: (for y ex x st Blob[x, y]) implies (ex x st for y holds Blob[x, y])

proof

assume A1: for y ex x st Blob[x, y];

consider t;

consider w such that

2: Blob[w, t] by A1;

3: for y holds Blob[w, y] proof

let y be THING;

4: y=t by I2’;

5: Blob[w, y] by 2, 4;

thus thesis by 5;

end;

thus ex x st for y holds Blob[x, y] by 3;

end;

== Interpretation I3 is an even easier way to make it true.

T3: (for y ex x st Blob[x, y]) implies (ex x st for y holds Blob[x, y])

proof

assume A1: for y ex x st Blob[x, y];
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consider t;

A2: for y holds Blob[t, y] proof

let y be THING;

thus Blob[t, y] by I3;

end;

thus ex x st for y holds Blob[x, y] by A2;

end;
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9.1 Premises

A formal proof of a formula by itself is just a string of characters. It has no intrinsic
meaning. To give the proof meaning we must use the axioms in the environment to provide
an interpretation for the predicates and constants in the proof. Arriving at suitable premises
for an argument can be very difficult, because it requires one to thoroughly understand the
problem at hand. But choosing your premises wisely is most important, for a correct proof
means nothing if it is based on inappropriate premises.

Consider the following example:(ex49.mse)

environ

== We interpret the predicates Div and Mult as follows:

== Div[x,y,z] iff x / y = z

== Mult[x,y,z] iff x * y = z

reserve x,y,z,t,p for Real;

A1: for x,y,z holds Div[x, y, z] iff Mult[z, y, x];

A2: for x,y,z,t holds Div[z, t, x] & Div[z, t, y] implies x=y;

A3: ex p st for x holds Mult[x, p, p];

begin

absurd: for x, y holds x=y proof

let x, y be Real;

consider p such that

B1: for t holds Mult[t, p, p] by A3;

1: Mult[x, p, p] & Mult[y, p, p] by B1;

2: Div[p, p, x] & Div[p, p, y] by 1, A1;

3: x=y by 2, A2;

thus thesis by 3;

end;

Although the proof is perfectly correct, it has a conclusion that is blatantly silly

for x,y being Real holds x=y

which says that there is only one real number!
The problem with this proof is that one of the premises is inappropriate, and does not

accurately describe a property of the real numbers. Specifically, axiom A1 does not prohibit
division by 0. As a result we do not have a faithful interpretation of the real numbers.
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Let us consider another case where the above glitch has been fixed but another has been
introduced.

(ex50.mse)

environ

== We interpret the predicates Div and Mult as follows:

== Div[x,y,z] iff x / y = z

== Mult[x,y,z] iff x * y = z

reserve x,y,z,t,p for Real;

given 0 being Real;

A1: for x,y,z st y <> 0 holds Div[x, y, z] iff Mult[z, y, x];

A2: for x,y,z,t holds Div[z, t, x] & Div[z, t, y] iff x=y;

A3: ex p st for x holds Mult[x, p, p];

given 1 being Real;

A4: 1<>0;

A5: for x holds Mult[x, 1, x];

begin

absurd: for x holds Mult[0,1,x] proof

let x be Real;

a1: 0 = 0;

a2: Div[x,1,0] by a1, A2;

thus thesis by A1, a2, A4;

end;
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Here is still another example with a similar problem. What is the problem?

(ex51.mse)

environ

== We interpret the predicates Neg and Square as follows:

== Neg[x,y] iff y = -x

== Square[x,z] iff x * x = z

reserve x,y,z,t,p for Real;

A1: for x ex z st Neg[x,z];

A2: for x ex z st Square[x,z];

A3: for x, y, z st Neg[x,y] holds Square[x,z] iff Square[y,z];

A4: for x, y, z st Square[x,z] & Square[y,z] holds x = y;

begin

absurd: for x holds Neg[x,x] proof

let x be Real;

consider p such that

B1: Neg[x,p] by A1;

consider t such that

B2: Square[x,t] by A2;

1: Square[x,t] iff Square[p,t] by B1, A3;

2: Square[x,t] & Square[p,t] by B2, 1;

3: x=p by 2, A4;

thus thesis by B1, 3;

end;



Part III

Basics: Sets, Relations, Functions,
Induction
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10 Simple Set Theory

What is a set? It is simply an unordered collection of things taken from some universe.
The notion of set is based on our intuitions about collections of objects, and there are many
possible formalizations of this notion.

We will give just one. In our formalization, the universe consists of exactly one sort,
called THING, of objects. Every object of sort THING is a set, and the members or elements
of a set are also of sort THING. Thus an object can be a viewed as a set or an element of a
set depending on your situation.

10.1 Membership

We use one basic predicate In[THING, THING]. We interpret In[x, Y] as being true if and
only if x is an element of set Y. When not using Mizar, we often use the more common
notation x ∈ Y.

Example: Suppose X is the set {1, 2, 3, 4}. Then In[1, X] is true, and In[5, X] is false.
Also In[X, 1] is false, as is In[X, X].

Sets can contain sets. For example the set {{1}, {2, 3}, {3, 5}} contains 3 elements, each
of which is a set.

The size of a set X is called its cardinality, which we denote in many ways: |X|, card(X),
or #(X). We say a set is finite if its cardinality is a natural number.

10.2 Defining sets

There are many ways to define a set. Some of the more important means are:

1. Enumeration — just list the elements of the set you are defining, as we did above.

2. Specification — give a specific property for elements of another set and choose these
that have the property. For example, to specify the set of all persons who are knights
we could write

Knights = {p | p is a Person and Knight[p] holds}
This can be read as saying that the set Knights contains all things all those members
of the set Person which satisfy the Knight property. In Mizar we could write this as
follows

given Person, Knights being THING;

for p being THING holds

In[p, Knights] iff In[p, Person] & Knight[p]

Note how we use a predicate Knight to further select those things from the set Person
that are knights.

3. Construction — use set operations to construct new sets from other sets.

4. Induction — see section 12.
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10.3 Equality

Two sets are equal if they contain exactly the same elements. This is expressed formally
by the axiom:

EqualDef: for A, B being THING holds A=B iff

(for x being THING holds In[x, A] iff In[x, B]).

10.4 The Empty Set

Here is the definition of an important set, called Empty, which contains no elements.
EmptyDef: given Empty being THING;

for x being THING holds not In[x, Empty];

That is, there are no elements in the empty set. We often write Ø or {} for the empty set,
but we lack this notation in Mizar.

Here is a slightly more complicated set: {Ø} or {{}} which we can define by
given SetOfEmpty being THING;

SetOfEmptyDef: for x being THING holds In[x, SetOfEmpty] iff x=Empty;

10.5 Subsets

Consider the set B = {1, 2, 3, 4, 5} and the set A = {1, 2, 3}. A has a special relationship to
B — all of A’s elements are also elements of B. We say that A is a subset of B, and write
A ⊆ B.

The Mizar definition of the subset predicate can be expressed formally by
SubsetDef: for A, B being THING holds Subset[A, B] iff

(for x being THING holds In[x, A] implies In[x, B]);

That is, A ⊆ B if and only if for all x, x ∈ A implies x ∈ B.

10.6 Power Set

If you have a set A, you can make many different subsets. The set of all such subsets is
called the power set of A. We write this as P(A). Formally we can give the definition

PowerSetDef: for A, B being THING holds PowerSet[A, B] iff

(for x being THING holds Subset[x, A] iff In[x, B]);

This is saying that B is the power set of A iff every subset of A is an element of B. For
example

P({1, 2, 3}) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

For a finite set X we have that card(P(X)) = 2card(X). This will be proven in 12.2.6.

10.7 Union and Intersection

Two important operations on sets are union and intersection. The union of A and B,
written A ∪ B, is the set consisting of elements that come from A,B, or both.

UnionDef: for A, B, C being THING holds Union[A, B, C] iff

(for x being THING holds In[x, A] or In[x, B] iff In[x, C]);
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Note how the logical operation or is used to define union.
The intersection A ∩ B of sets A and B consists of all those elements common to both

A and B. Its definition looks exactly like union except or is changed to &.
InterDef: for A, B, C being THING holds Inter[A, B, C] iff

(for x being THING holds In[x, A] & In[x, B] iff In[x, C]);

10.8 Difference and Complement

The difference between a set A and a set B is the set of all elements of A that are not in B.
DiffDef: for A, B, C being THING holds Diff[A, B, C] iff

(for x being THING holds In[x, A] & not In[x,B] iff In[x, C]);

Notationally we write A−B or A \B.
Note that according to this definition B could contain elements not in A. A more

restricted version of difference is called the complement, or relative complement.
CompDef: for A, B, C being THING holds

Comp[A, B, C] iff Subset[A, C] & Subset[B, C] & Diff[C, B, A];

That is, B is the complement of A with respect to C.
When the universe of discourse is fixed, the complement of a set A with respect to the

universe is often denoted Ac or Ā.

10.9 Cartesian Products

The Cartesian product of set A with set B, denoted A × B is the set of all ordered pairs
〈a, b〉 where a is a member of A and b is a member of B.

For example if A = {i, j, k} and B = {0, 1} then

A×B = {〈i, 0〉, 〈i, 1〉, 〈j, 0〉, 〈j, 1〉, 〈k, 0〉, 〈k, 1〉}
B ×A = {〈0, i〉, 〈1, i〉, 〈0, j〉, 〈1, j〉, 〈0, k〉, 〈1, k〉}

= {〈0, i〉, 〈0, j〉, 〈0, k〉, 〈1, i〉, 〈1, j〉, 〈1, k〉}

Using an extended Mizar notation we could define a Cartesian product by
for A, B, C being THING holds

CarProd[A, B, C] iff (for a, b being THING holds

In[a, A] & In[b, B] iff In[a, b, C])

Cartesian products can be among more than two sets, thus we have the generalized
notion of a k-tuple 〈x1, x2, . . . , xk〉 which contains k objects. These tuples are members of
a Cartesian product A1 × A2 × . . . × Ak among k sets. It contains all k-tuples where the
i-th element of the k-tuple comes from set Ai.

Order is important in a Cartesian product, as is parenthesization. There is a difference
between A×B × C, A× C ×B, and A× (B × C). For example:

{0, 1} × {a, b} × {1, b}
= {〈0, a, 1〉, 〈0, a, b〉, 〈0, b, 1〉, 〈0, b, b〉, 〈1, a, 1〉, 〈1, a, b〉, 〈1, b, 1〉, 〈1, b, b〉}

while

{0, 1} × ({a, b} × {1, b})
= {〈0, 〈a, 1〉〉, 〈0, 〈a, b〉〉, 〈0, 〈b, 1〉〉, 〈0, 〈b, b〉〉, 〈1, 〈a, 1〉〉, 〈1, 〈a, b〉〉, 〈1, 〈b, 1〉〉, 〈1, 〈b, b〉〉}
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The projection operator | is used to break k-tuples apart. In general, if you have a
k-tuple t = 〈x1, x2, . . . , xk〉 then t|i = xi. That is t|i projects out the i-th component of the
k-tuple t.

Of course, we must have 1 ≤ i ≤ k. For example 〈〈a, b〉|2, 〈a, b〉|1〉 = 〈b, a〉. Often we
want to use zero-origin indexing, in which case t|0 would be the first component of the
tuple. (That is, we often want to alter our interpretation of the notation T |i. This causes
no end of problems.)

10.10 A Puzzle

Here is an interesting set:
given U being THING;

for x being THING holds In[x, U];

This is the set of everything. Does this set contain itself? Does this even make sense?
Consider the set R which is the set of all sets in U that do not contain themselves as

members. We can define R as follows:
given R being THING;

for x being THING holds In[x, R] iff In[x, U] & not In[x, x];

This is a perfectly reasonable definition.
Now by definition of U , R is a member of U . Furthermore, R ∈ R or R 6∈ R. But by

definition of R, if R ∈ R then R 6∈ R, and if R 6∈ R then R ∈ R. Either way we have a
contradiction, which means that such a set as U cannot exist.

10.11 DeMorgan’s Laws for Sets

Let us fix a set U and consider two subsets A and B of U , along with their complements
with respect to U .

If one thinks of ∩ as &, ∪ as or, and complement as not then DeMorgan’s laws can be
translated into versions that apply to sets. For example, from the logical relationship

not ( A[] & B[] ) iff ( not A[] or not B[] )

comes the set relationship
(A ∩B)c = Ac ∪Bc

which expressed using set difference is

(U − (A ∩B)) = (U −A) ∪ (U −B)

How would you prove such a law in Mizar? It is tedious even to state the relationship
between the sets. We must somehow represent the formula involving set operations as a
logical formula. One way to do it is to introduce a variable for each piece of the formula as
follows:

for A, B, U being THING holds ex L, R, S1, T1, T2 being THING st

Inter[A, B, S1] & Diff[U, S1, L] &

Diff[U, A, T1] & Diff[U, B, T2] & Union[T1, T2, R] &

L = R
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All this is necessary just to say that the left hand side equals the right hand side in the set
formula above.

One would think that we could now proceed to prove De Morgan’s Law. But we can’t
with just the set theory axioms we have so far, at least not directly.

For example, we know what it means to be a subset or difference from the definitions
SubsetDef and DiffDef. But how do we know that such objects even exist? We need to
add some existence axioms in order to permit existential instantiation. For example:

for U, A being THING ex B being THING st Diff[U, A, B].

Then we will be able to say things like “consider B being the difference of U and A”.
The other problem we encounter if we try to prove De Morgan’s Law is that at some

point we will need to conclude something like
Diff[U, A, X]

Diff[U, A, Y]

thus
X = Y

But in general this is not true. It is only true if we know that the difference of a set is
unique. So we will need to prove things like

for U, A, B, C being THING holds

Diff[U, A, B] & Diff[U, A, C] implies B = C.
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10.12 Mizar Axioms and Examples for Simple Set Theory

(sets.mse)

environ == axioms for simple set theory

== set membership

== In[THING, THING] - where In[x, A] means x is an element of set A

== equality

== A=B - two sets are equal if they have the same elements

EqualDef: for A, B being THING holds A=B iff

(for x being THING holds In[x, A] iff In[x, B]);

== the empty set and its definition

given Empty being THING;

EmptyDef: for x being THING holds not In[x, Empty];

== subsets

== Subset[THING, THING] - where Subset[A, B] means A is a subset of B

SubsetDef: for A, B being THING holds Subset[A, B] iff

(for x being THING holds In[x, A] implies In[x, B]);

== PowerSet[THING, THING] - where PowerSet[A, B] means B is the power set

== of A

PowerSetDef: for A, B being THING holds PowerSet[A, B] iff

(for x being THING holds Subset[x, A] iff In[x, B]);

== set operations

== union

== Union[THING, THING, THING] - where Union[A, B, C] means C is the

== union of A and B

UnionDef: for A, B, C being THING holds Union[A, B, C] iff

(for x being THING holds In[x, A] or In[x, B] iff In[x, C]);

== intersection

== Inter[THING, THING, THING] - where Inter[A, B, C] means C is the

== intersection of A and B

InterDef: for A, B, C being THING holds Inter[A, B, C] iff

(for x being THING holds In[x, A] & In[x, B] iff In[x, C]);
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== difference

== Diff[THING, THING, THING] - where Diff[A, B, C] means C is the set

== difference of A with B

DiffDef: for A, B, C being THING holds Diff[A, B, C] iff

(for x being THING holds In[x, C] iff In[x, A] & not In[x, B]);

== Symmetric difference

== SymDiff[THING, THING, THING] - where SymDiff[A,B,C] means C is

== the symmetric difference of A and B

SymDiffDef: for A,B,C being THING holds SymDiff[A,B,C] iff

(for x being THING holds In[x,C] iff

(In[x,A] or In[x,B]) & not (In[x,A] & In[x,B]));

== complement

== Comp[THING, THING, THING] - where Comp[A, B, U] means B is the

== complement of A with respect to U

CompDef: for A, B, U being THING holds

Comp[A, B, U] iff Subset[A, U] & Subset[B, U] & Diff[U, A, B];

reserve A, B, C, D, E, U, V, W for THING;

reserve x, y, z for THING;

begin

== Show that Empty is a subset of every set.

for A being THING holds Subset[Empty, A] proof

let A be THING;

== we need to use the definition of subset

1: Subset[Empty, A] iff

(for x being THING holds In[x, Empty] implies In[x, A]) by SubsetDef;

== now work with the individual elements of Empty

2: for x being THING holds In[x, Empty] implies In[x, A] proof

let x be THING;

assume A1: In[x, Empty];

3: not In[x, Empty] by EmptyDef;

== A1 and 3 contradict each other, so now everything follows

thus thesis by A1, 3;

end;

thus Subset[Empty, A] by 1, 2;

end;

== Show that A is a subset of itself (a similar proof to the previous one).

for A being THING holds Subset[A, A] proof
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let A be THING;

== we need to use the definition of subset

1: Subset[A, A] iff

(for x being THING holds In[x, A] implies In[x, A]) by SubsetDef;

== now work with the individual elements of A

2: for x being THING holds In[x, A] implies In[x, A] proof

let x be THING;

thus In[x, A] implies In[x, A];

end;

thus Subset[A, A] by 1, 2;

end;

== Show that if x is a member of A, and A is a subset of B then

== x is a member of B.

for x, A, B being THING holds In[x, A] & Subset[A, B] implies In[x, B] proof

let x, A, B be THING;

assume A1: In[x, A] & Subset[A, B];

thus In[x, B] by A1, SubsetDef;

end;

== Show that when A and B are both subsets of U, then difference behaves

== like subtraction.

for A, B, U being THING holds Subset[A, U] & Subset[B, U]

implies (Diff[U, A, B] iff Diff[U, B, A]) proof

let A, B, U be THING;

assume A1: Subset[A, U] & Subset[B, U];

Tlr: Diff[U, A, B] implies Diff[U, B, A] proof

assume A2: Diff[U, A, B];

1: for x being THING holds In[x, B] iff In[x, U] & not In[x, A]

by A2, DiffDef;

2: for x being THING holds In[x, A] iff In[x, U] & not In[x, B] proof

let x be THING;

3: In[x, B] iff In[x, U] & not In[x, A] by 1;

4: In[x, B] implies In[x, U] by A1, SubsetDef;

5: In[x, A] implies In[x, U] by A1, SubsetDef;

thus thesis by 3, 4, 5;

end;

thus Diff[U, B, A] by 2, DiffDef;

end;

Trl: Diff[U, B, A] implies Diff[U, A, B] proof

assume A2: Diff[U, B, A];

1: for x being THING holds In[x, A] iff In[x, U] & not In[x, B]

by A2, DiffDef;

2: for x being THING holds In[x, B] iff In[x, U] & not In[x, A] proof

let x be THING;

3: In[x, A] iff In[x, U] & not In[x, B] by 1;
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4: In[x, A] implies In[x, U] by A1, SubsetDef;

5: In[x, B] implies In[x, U] by A1, SubsetDef;

thus thesis by 3, 4, 5;

end;

thus Diff[U, A, B] by 2, DiffDef;

end;

thus thesis by Tlr, Trl;

end;

Exercise1: == Intersection of two sets is contained in their union.

for A, B, C, D st Inter[A,B,C] & Union[A,B,D] holds Subset[C,D] proof

let A,B,C,D be THING;

thus Inter[A,B,C] & Union[A,B,D] implies Subset[C,D] proof

assume 1: Inter[A,B,C] & Union[A,B,D];

2: for x being THING holds In[x,C] implies In[x,D] proof

let y be THING;

thus In[y,C] implies In[y,D] proof

assume 3: In[y,C];

4: In[y,A] & In[y,B] by 3,1,InterDef;

5: In[y,A] or In[y,B] by 4;

thus thesis by 5,1,UnionDef;

end;

end;

thus Subset[C,D] by SubsetDef,2;

end;

end;

Exercise2: == What is the intersection of the empty set with a set?

for A holds Inter[A, Empty, Empty] proof

let A be THING;

0: for x being THING holds In[x,A] & In[x,Empty] iff In[x,Empty] proof

let y be THING;

thus In[y,A] & In[y,Empty] implies In[y,Empty];

thus In[y,Empty] implies In[y,A] & In[y,Empty] proof

1: not In[y,Empty] proof

assume 2: In[y,Empty];

3: y<>y by EmptyDef,2;

thus contradiction by 3;

end;

thus thesis by 1;

end;

end;

thus thesis by InterDef,0;

end;

Exercise3: == What is the union of the empty set with a set?

for A holds Union[A, Empty, A] proof
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let A be THING;

0: for x being THING holds In[x,A] or In[x,Empty] iff In[x,A] proof

let y be THING;

thus In[y,A] or In[y,Empty] iff In[y,A] proof

1: In[y,A] or In[y,Empty] implies In[y,A] proof

assume 2: In[y,A] or In[y,Empty];

thus In[y,A] proof

assume 3: not In[y,A];

4: In[y,Empty] by 2,3;

5: y<>y by 4, EmptyDef;

thus contradiction by 5;

end;

end;

2: In[y,A] implies In[y,A] or In[y,Empty];

thus thesis by 1,2;

end;

end;

thus thesis by UnionDef,0;

end;

Exercise4: == The subset relation is transitive.

for A, B, C st Subset[A,B] & Subset[B,C] holds Subset[A,C] proof

let A,B,C be THING;

thus Subset[A,B] & Subset[B,C] implies Subset[A,C] proof

assume 1: Subset[A,B] & Subset[B,C];

2: for x being THING holds In[x,A] implies In[x,C] proof

let y be THING;

thus In[y,A] implies In[y,C] proof

assume 3: In[y,A];

4: In[y,B] by 1,3,SubsetDef;

thus In[y,C] by 1,4,SubsetDef;

end;

end;

thus thesis by 2,SubsetDef;

end;

end;

Exercise5: == How are the set difference and symmetric difference related?

for A, B, C, D, E st Diff[A,B,C] & Diff[B,A,D] & SymDiff[A,B,E]

holds Union[C,D,E] proof

let A,B,C,D,E be THING;

assume 1: Diff[A,B,C] & Diff[B,A,D] & SymDiff[A,B,E];

2: for x being THING holds In[x,C] or In[x,D] iff In[x,E] proof

let y be THING;

thus In[y,C] or In[y,D] iff In[y,E] proof

thus

In[y,C] or In[y,D] implies In[y,E] proof

assume 3: In[y,C] or In[y,D];
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4: In[y,A] & not In[y,B] or In[y,B] & not In[y,A]

by 1,3,DiffDef;

5: (In[y,A] or In[y,B]) & not (In[y,A] & In[y,B])

by 4;

thus thesis by 1,SymDiffDef,5;

end;

thus

In[y,E] implies In[y,C] or In[y,D] proof

assume 6: In[y,E];

7: (In[y,A] or In[y,B]) & not (In[y,A] & In[y,B])

by 1,6,SymDiffDef;

8: In[y,A] & not In[y,B] or In[y,B] & not In[y,A]

by 7;

thus thesis by 1,DiffDef,8;

end;

end;

end;

thus Union[C,D,E] by UnionDef,2;

end;

Exercise6: == Union is commutative.

for A, B, C, D st Union[A,B,C] & Union[B,A,D] holds C = D proof

let A,B,C,D be THING;

thus Union[A,B,C] & Union[B,A,D] implies C=D proof

assume 1: Union[A,B,C] & Union[B,A,D];

2: for x being THING holds In[x,C] iff In[x,D] proof

let y be THING;

thus In[y,C] implies In[y,D] proof

assume 3: In[y,C];

4: In[y,A] or In[y,B] by 1,3,UnionDef;

thus In[y,D] by 1,4,UnionDef;

end;

thus In[y,D] implies In[y,C] proof

assume 5: In[y,D];

6: In[y,B] or In[y,A] by 1,5,UnionDef;

thus In[y,C] by 1,6,UnionDef;

end;

end;

thus thesis by 2,EqualDef;

end;

end;

Exercise7: == The set difference of two sets is unique.

for A, B, C, D st Diff[A,B,C] & Diff[A,B,D] holds C = D proof

let A,B,C,D be THING;

thus Diff[A,B,C] & Diff[A,B,D] implies C=D proof

assume 1: Diff[A,B,C] & Diff[A,B,D];

2: for x being THING holds In[x,C] iff In[x,D] proof

let y be THING;
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thus In[y,C] iff In[y,D] proof

thus In[y,C] implies In[y,D] proof

assume 3: In[y,C];

4: In[y,A] & not In[y,B] by 1,3,DiffDef;

thus In[y,D] by 1,4,DiffDef;

end;

thus In[y,D] implies In[y,C] proof

assume 5: In[y,D];

6: In[y,A] & not In[y,B] by 1,5,DiffDef;

thus In[y,C] by 1,6,DiffDef;

end;

end;

end;

thus thesis by 2,EqualDef;

end;

end;

Exercise8: == A relationship between intersection and union.

for A, B, C, D st Inter[A,B,C] & Union[A,B,D] & C = D holds A = B proof

let A,B,C,D be THING;

thus Inter[A,B,C] & Union[A,B,D] & C = D implies A = B proof

assume 1: Inter[A,B,C] & Union[A,B,D] & C = D;

2: for x being THING holds In[x,A] iff In[x,B] proof

let y be THING;

thus In[y,A] iff In[y,B] proof

thus In[y,A] implies In[y,B] proof

assume 3: In[y,A];

4: In[y,C] by 1,3,UnionDef;

thus In[y,B] by 1,4,InterDef;

end;

thus In[y,B] implies In[y,A] proof

assume 5: In[y,B];

6: In[y,C] by 1,5,UnionDef;

thus In[y,A] by 1,6,InterDef;

end;

end;

end;

thus A=B by 2,EqualDef;

end;

end;

Exercise9: == If a set has at least two elements then for every element

== in the set there exists an element in the set different

== than the first one.

for A st (ex x, y st x<>y & In[x,A] & In[y,A])

holds for z st In[z,A] holds ex u being THING st In[u,A] & u<>z proof

let A be THING;

thus (ex x, y st x<>y & In[x,A] & In[y,A]) implies

(for z st In[z,A] holds ex u being THING st In[u,A] & u<>z) proof
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assume 1: ex x, y st x<>y & In[x,A] & In[y,A];

thus for z st In[z,A] holds ex u being THING st In[u,A] & u<>z proof

let z be THING;

thus In[z,A] implies (ex u being THING st In[u,A] & u<>z) proof

assume 2: In[z,A];

consider x,y being THING such that

3: x<>y & In[x,A] & In[y,A] by 1;

4: x=z implies thesis proof

assume 41: x=z;

42: In[y,A] & y<>z by 3,41;

thus ex u being THING st In[u,A] & u<>z by 42;

end;

5: x<>z implies thesis proof

assume 51: x<>z;

52: In[x,A] & x<>z by 3,51;

thus ex u being THING st In[u,A] & u<>z by 52;

end;

thus thesis by 4,5;

end;

end;

end;

end;

Exercise10: == For any two sets, if there is an element that is in one

== set but not in the other, then their symmetric difference

== is not empty.

for A, B st ex x st In[x,A] & not In[x,B] holds

for C st SymDiff[A,B,C] holds C <> Empty

proof

let A,B be THING;

thus (ex x st In[x,A] & not In[x,B]) implies

(for C st SymDiff[A,B,C] holds C <> Empty)

proof

assume 1: ex x st In[x,A] & not In[x,B];

thus for C st SymDiff[A,B,C] holds C <> Empty

proof

let C be THING;

thus SymDiff[A,B,C] implies C <> Empty

proof

assume 2: SymDiff[A,B,C];

thus C <> Empty proof

assume 3: C=Empty;

consider y being THING such that

4: In[y,A] & not In[y,B] by 1;

5: not In[y,C] by 3,EmptyDef;

6: not((In[y,A] or In[y,B]) & not(In[y,A] & In[y,B]))

by SymDiffDef,2,5;

7: not (In[y,A] or In[y,B]) or (In[y,A] & In[y,B]) by 6;

8: In[y,A] or In[y,B] by 4;

9: In[y,A] & In[y,B] by 7,8;
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thus contradiction by 4,9;

end;

end;

end;

end;

end;
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11 Functions and Relations

11.1 Functions

One of the key notions of computing is that of taking an input and transforming it into some
sort of output. Often the transformation has the important property that it is functional
— if the transformation is applied to a particular input and it results in some output, then
doing the transformation again at a later time on the same particular input results in the
same output.

A function is a mapping from one set of objects called the domain type, to another set
of objects called the range type. The specification of the mapping is via a set of ordered
pairs called the graph of the function.

We formally specify a function f as a 3-tuple f = 〈Df , Rf , Gf 〉 where Df is the set that
gives the domain type of f , Rf is the set that gives the range type of f , and Gf is a subset
of Df × Rf that specifies the graph of f . The set Gf consists of ordered pairs of the form
〈x, y〉 with the special functional property that no two ordered pairs have the same x value.

To define a function we must provide all three components: the domain type, the range
type, and the graph. One way of doing this is by explicitly listing all three sets, as in the
following definition of the logical not function:

Not = 〈Boolean,Boolean, {〈true, false〉, 〈false, true〉}〉

In a simple case like this it is often easier to supply the graph in a tabular form:

GNot : x Not(x)
true false
false true

Here is the formal definition of the function that returns the sign of a real number:

Sgn = 〈real, integer,GSgn〉

where
GSgn = {〈x,−1〉 | x < 0} ∪ {〈0, 0〉} ∪ {〈x, 1〉 | x > 0}

Here is a definition of division in terms of multiplication:

Divide = 〈real × real, real,GDivide〉

where
GDivide = {〈〈x, y〉, z〉 | x = y ∗ z}

The preceding definitions simply stated the input/output relationship of the function,
they gave no explicit instructions for how to compute the function. On the other hand,
the following functions are given by providing a rule, in this case a Pascal program, for
computing a member of the graph of the function given the first component. We have to
deduce the formal definition of the functions from our knowledge of Pascal.
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function Square(x : integer) : integer;
begin

Square := x ∗ x;
end;

function Mult(x : integer; y : integer) : integer;
begin

Mult := x ∗ y;
end;

function Inverse(x : real) : real;
begin

Inverse := 1.0/x;
end;

function Cube(x : real) : real;
begin

Cube := x ∗ x ∗ x;
end;

Note how the Pascal type declaration provides the definition of the domain type and range
type of each of the functions.

Function Domain Type Range type

Not Boolean Boolean
Sgn real integer

Divide real × real real
Square integer integer
Mult integer × integer integer

Inverse real real
Cube real real

A function is intended to be applied only to objects from its domain type, and is guar-
anteed to return only objects of its range type. Specifying the domain and range type of a
function enables one to do static type checking.

As one knows from everyday programming, just because a function is applied to an
argument of the correct type, it does not mean that the function will actually return a
value. For example, Inverse(0.0) will generate a divide by 0 error. The subset of the
domain type on which the function is defined is called its domain.

Similarly, just because a function can return a value of some type, it does not mean that
it will do so for each value in the type. That is, each element of the range type may not
necessarily be associated with an element of the domain that transforms to it. For example,
no value x of the domain type of Square can be found such that Square(x) = 2. The subset
of the range type which can actually be produced by a function is called its range.
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The domain of f , written domain(f), is a subset of the domain type Df and given by:

domain(f) = {x ∈ Df | ∃ y : y ∈ Rf : 〈x, y〉 ∈ Gf}

The range of f , written range(f), is a subset of the range type Rf and given by

range(f) = {y ∈ Rf | ∃ x : x ∈ Df : 〈x, y〉 ∈ Gf}

A function maps elements in the domain to elements in the range. If 〈x, y〉 ∈ Gf we say
that x is mapped to y, and we write f(x) = y. Remember, for every x ∈ domain(f) there
exists exactly one y such that 〈x, y〉 ∈ Gf .

A function is itself an object, and it could be the argument to a function. For this reason
we often find it useful to specify the type of the function f using the notation f : Df 7→ Rf .
This can be read as “f is a map from Df to Rf”.

All functions are partial . That is, they are not necessarily defined on all members of
their domain type. If f(x) is defined on every element in the domain type then we say that
function f is total . That is, domain(f) = Df . Note that partial is a superset of total, and
does not mean not-total. The functions Square, Mult , and Cube are total, while Inverse is
not total.

A function is one-to-one (or 1–1, or an injection) iff no two elements of domain(f) are
mapped to the same element of range(f). That is, f is 1–1 iff for any x1, x2 ∈ domain(f),
whenever f(x1) = f(x2) then x1 = x2. Generally functions are many-to-one. Note that
many-to-one is a superset of 1–1, and does not mean not-1–1. The functions Inverse and
Cube are 1-1, while the functions Square and Mult are not 1-1.

A function is onto (or a surjection) iff range(f) = Rf . That is, if every element of the
range type is mapped to by some element of domain(f). The functions Mult and Cube are
onto, while Square and Inverse are not.

A function f is invertible iff it is total, 1–1, and onto. An invertible function is also
called a bijection or a 1–1 correspondence. The function Cube is invertible. None of Square,
Mult , or Inverse are invertible.

The properties of the functions we have just introduced are summarized below:

Function Total Onto 1-1 Invertible
(surjection) (injection) (bijection)

Not Y Y Y Y
Sgn Y N N N

Divide N Y N N
Square Y N N N
Mult Y Y N N

Inverse N N Y N
Cube Y Y Y Y
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As an exercise, determine the domain type, range type, domain, and range of the fol-
lowing function:

function h(〈i, j〉) : Int× Int 7→ Int× Int
u, v : Int;
u← i; v ← j;
while (u > 0) do

v ← v + u;
u← u− 1;

end;
return 〈u, v〉;

end;

11.2 Equality of Functions

The formal definition of a function gives us a precise way of stating when two functions are
equal — when they have the same formal definition. That is, two functions are equal when
they have the same domain type, same range type, and identical graphs. For example if
f = 〈Df , Rf , Gf 〉 and g = 〈Dg, Rg, Gg〉 then f = g exactly when Df = Dg, Rf = Rg and
Gf = Gg.

Often we talk about functions with the same domain and range types, for example we
may have f : X 7→ Y and g : X 7→ Y . In this situation we have that f = g when they are
equal pointwise. That is,

f = g iff (∀ x : x ∈ X : f(x) = g(x))

What does the above mean if f and g are not total functions?

11.3 Function Composition

Often one wishes to do a sequence of transformations where the output of one transformation
is input to the next. For example, one might attempt to compute Inverse(Mult(x, y)) for
arbitrary x and y.

A similar example is a sequence of statements in a program:

t := x ∗ y;
u := 1.0/t;

where x, y are integers and t, u are reals.
Frequently, we want to talk about the effect of the sequence of transformations inde-

pendently from the context that they occur. That is, without knowing what values x and y
have. The net effect of the sequence of transformations can itself be expressed as a function.

This function results from composing each of the individual functions. Composition is
an operation that takes two functions and produces a new one.

In direct analogy to the use of “;” in Pascal, we express the new function created by
composing f and g by the notation (f ; g), which we can read as “f followed by g”.

The composition of two functions is not always possible. For the composition f followed
by g to make sense, the range type of f must be “compatible” with the domain type of
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g in that the values returned by f must be acceptable inputs to the function g. This
compatibility can take many forms depending on our goals.

One form of compatibility occurs when we have only simple static type checking. Then
we usually require that

range type of f = domain type of g

A less restrictive form can be used when we have subtypes. Then we can relax the static
type conditions to

range type of f ⊆ domain type of g

For example, integers can be a subtype of the reals so we can compose Mult followed by
Inverse to obtain (Mult ; Inverse).

If we want to ensure that the function (f ; g) has the same domain as f , then we need
to have

range(f) ⊆ domain(g)

In general, the composition (f ; g) has the following properties:

domain type of (f ; g) = domain type of f

and
range type of (f ; g) = range type of g

The domain of (f ; g) is given by

domain(f ; g) = {x ∈ domain(f) | f(x) ∈ domain(g)}

The range of (f ; g) is given by

range(f ; g) = {y ∈ range(g) | ∃ x : x ∈ domain(f ; g) & y = g(f(x))}

The composition operation is defined exactly by:

∀ x : x ∈ domain((f ; g)) : (f ; g)(x) = g(f(x))
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11.4 Relations

Every predicate can be thought of as a function from the Cartesian product of the sorts of
its arguments to the set Boolean. For example, suppose there is a predicate Tells, where
Tells[p,s] means that p, of sort Person, says s, of sort Statement. Then Tells can be
thought of as a function from Person × Statement to {T, F}. As a function Tells[p,s]

returns true when the predicate holds, and false when it does not.
Now assuming that the predicate is always defined, the predicate can return only two

values, and so it can be described in a very simple way — just identify the subset of possible
arguments that cause the predicate to return true. Any inputs not in this subset must cause
the predicate to return false.

For example, in the case of the Tells predicate, the possible inputs come from the set
D = Person × Statement. We could define the set G, with G ⊆ D, of ordered pairs for
which the predicate holds, say

G = {〈Fred,Hello〉, 〈Bart,OhNo〉, . . .}

The predicate Tells is then fully described by the pair of sets 〈D,G〉.
This approach to describing predicates works whether the predicate has 0, 1, or more

arguments. (Note the difference between the set {〈〉} containing the empty tuple, and the
empty set {}.) All that is needed to fully describe the predicate is to give the set D of
possible inputs, and the subset G of satisfying inputs. Any given pair from G describes
values that are related by the fact that they satisfy the predicate. This leads us to the
general notion of a relation.

A k-ary relation on sets A1, A2, . . . , Ak is a subset of A1 × A2 × . . .× Ak. We say that
the domain of the relation is A1 × . . .×Ak. To be precise we specify a k-ary relation R as
an ordered pair:

R = 〈D,G〉

where D = A1 × . . . × Ak and G ⊆ D. This notation emphasizes that to fully describe a
relation you need to specify both the domain and the subset which gives the related tuples.

For example the set {〈0, a, 1〉, 〈1, a, b〉} is a 3-ary relation on the domain {0, 1}×{a, b}×
{1, b}. The set {〈0, 〈a, 1〉〉, 〈1, 〈a, b〉〉} is a binary relation on the domain {0, 1} × ({a, b} ×
{1, b}). The input/output relation of a program is the binary relation that pairs each input
to a program with the possible outputs that can be generated by that input.

11.5 Mizar Axioms and Examples for Binary Relations

(binrels.mse)

environ

== All binary relations we talk about here are defined on a

== certain, fixed, but otherwise unknown Set of THINGs.

reserve r, r’, r’’ for BinRelation;

reserve x, x’, x’’, y, y’, y’’, z, z’,z’’ for THING;
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given 1, 2, 3, 4, 5, 6, 7, 8 being THING;

== Here is a list of definitions of properties of binary relations.

ReflexivityDef:

for r holds Reflexive[r] iff (for x holds In[x,x,r]);

IrReflexivityDef:

for r holds irReflexive[r] iff not (ex x st In[x,x,r]);

SymmetryDef:

for r holds Symmetric[r] iff

(for x, y st In[x,y,r] holds In[y,x,r]);

ASymmetryDef:

for r holds aSymmetric[r] iff

(for x, y st In[x,y,r] holds not In[y,x,r]);

AntiSymmetryDef:

for r holds antiSymmetric[r] iff

(for x, y st In[x,y,r] & In[y,x,r] holds x=y);

TransitivityDef:

for r holds Transitive[r] iff

(for x, y, z st In[x,y,r] & In[y,z,r] holds In[x,z,r]);

ConnectednessDef:

for r holds Connected[r] iff

(for x, y holds In[x,y,r] or In[y,x,r]);

== Since binary relations are just sets of pairs, let us define some

== set operations on them.

== (Note the change of notation from the previous assignment.)

== r is included in r’

InclusionDef:

for r,r’ holds Includes[r,r’] iff

(for x, y st In[x,y,r] holds In[x,y,r’]);

RelEqualityDef:

for r,r’ st Includes[r,r’] & Includes[r’,r] holds r = r’;

== r is the intersection of r’ and r’’

IntersectionDef:

for r,r’,r’’ holds Inter[r,r’,r’’] iff

(for x, y holds In[x,y,r’] & In[x,y,r’’] iff In[x,y,r]);

== r is the union of r’ and r’’

UnionDef:

for r,r’,r’’ holds Union[r,r’,r’’] iff
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(for x, y holds In[x,y,r’] or In[x,y,r’’] iff In[x,y,r]);

== And here is an operation very characteristic for binary relations,

== namely, composition.

== r is the composition: r’ followed by r’’

CompositionDef:

for r, r’, r’’ holds Comp[r,r’,r’’] iff

(for x, z holds In[x,z,r] iff (ex y st In[x,y,r’] & In[y,z,r’’]));

begin

Exercise1:

for r st Connected[r] holds not aSymmetric[r] proof

let r be BinRelation;

assume 1: Connected[r];

2: In[1,1,r] by 1,ConnectednessDef;

thus not aSymmetric[r] by 2,ASymmetryDef;

end;

Exercise2:

now let r be BinRelation;

assume a1: In[1,2,r] & In[2,1,r];

thus irReflexive[r] implies not Transitive[r] proof

1: Transitive[r] implies not irReflexive[r] proof

assume 2: Transitive[r];

3: In[1,1,r] by 2,TransitivityDef,a1;

thus not irReflexive[r] by 3,IrReflexivityDef;

end;

thus thesis by 1;

end;

end;

Exercise3:

now let r be BinRelation;

assume a1: In[1,2,r] & In[3,1,r] & In[2,3,r];

thus Transitive[r] implies not aSymmetric[r] proof

assume 1: Transitive[r];

2: In[1,3,r] by TransitivityDef,a1,1;

thus not aSymmetric[r] by ASymmetryDef,a1,2;

end;

thus aSymmetric[r] implies not Transitive[r] proof

assume 3: aSymmetric[r];
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4: not In[1,3,r] by ASymmetryDef,a1,3;

thus not Transitive[r] by TransitivityDef,a1,4;

end;

end;

Exercise4:

now let r be BinRelation;

assume a1: In[2,3,r] & In[3,4,r] & In[1,5,r] &

not In[1,4,r] & not In[2,5,r];

thus Connected[r] implies not Transitive[r] proof

assume 1: Connected[r];

2: In[4,1,r] by ConnectednessDef,a1,1;

thus not Transitive[r] proof

assume 3: Transitive[r];

4: In[4,5,r] by TransitivityDef,2,3,a1;

5: In[2,4,r] by 3,TransitivityDef,a1;

6: In[2,5,r] by 3,TransitivityDef,4,5;

thus contradiction by a1,6;

end;

end;

end;

Exercise5:

for r,r’,r’’ st Transitive[r’] & Transitive[r’’] & Inter[r,r’,r’’]

holds Transitive[r] proof

let r,r’,r’’ be BinRelation;

assume 1: Transitive[r’] & Transitive[r’’] & Inter[r,r’,r’’];

2: for x, y, z st In[x,y,r] & In[y,z,r] holds In[x,z,r] proof

let x,y,z be THING;

assume 3: In[x,y,r] & In[y,z,r];

4: In[x,y,r’] & In[y,z,r’] by 1,3,IntersectionDef;

5: In[x,z,r’] by 1,4,TransitivityDef;

6: In[x,y,r’’] & In[y,z,r’’] by 1,3,IntersectionDef;

7: In[x,z,r’’] by 1,6,TransitivityDef;

thus In[x,z,r] by 1,5,7,IntersectionDef;

end;

thus Transitive[r] by 1,2,TransitivityDef;

end;

Exercise6:

for r, r’, r’’ st Symmetric[r’] & Symmetric[r’’] & Union[r,r’,r’’]

holds Symmetric[r] proof
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let r,r’,r’’ be BinRelation;

assume 1: Symmetric[r’] & Symmetric[r’’] & Union[r,r’,r’’];

2: for x, y st In[x,y,r] holds In[y,x,r] proof

let x,y be THING;

assume 3: In[x,y,r];

4: In[x,y,r’] or In[x,y,r’’] by 1,3,UnionDef;

5: In[y,x,r’] or In[y,x,r’’] by 1,4,SymmetryDef;

thus In[y,x,r] by 1,5,UnionDef;

end;

thus Symmetric[r] by 2,SymmetryDef;

end;

Exercise7:

now let r, r1, r2, r3, r4 be BinRelation;

assume a1: In[1,2,r] & In[2,3,r] & In[3,4,r] & In[4,5,r] & In[5,6,r];

assume c1: Comp[r1,r,r];

assume c2: Comp[r2,r,r1];

assume c3: Comp[r3,r,r2];

assume c4: Comp[r4,r,r3];

thus In[1,6,r4] proof

1: In[4,6,r1] by a1,c1,CompositionDef;

2: In[3,6,r2] by a1,c2,1,CompositionDef;

3: In[2,6,r3] by a1,c3,2,CompositionDef;

thus thesis by a1,c4,3,CompositionDef;

end;

end;

now

== Exercises 8, 9, and 10 concern the notion of

== isomorphism of binary relations.

let A, B be THING;

let R, S be BinRelation;

assume R1: for x, y st In[x,y,R] holds In[x,A] & In[y,A];

assume S1: for x, y st In[x,y,S] holds In[x,B] & In[y,B];

== i.e. R is defined on A and S is defined on B.

== We assume the existence of a bijective function, named Iso,

== from A to B. We will write Iso[x,y] to say that Iso maps x to y

== (unfortunately Mizar MSE does not provide us with functional notation).

== Iso is a function.

assume F: for x, y, z st In[x,A] & In[y,B] & In[z,B] holds
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Iso[x,y] & Iso[x,z] implies y=z;

== Iso is a total function.

assume T: for x st In[x,A] ex x’ st In[x’,B] & Iso[x,x’];

== Iso is surjective (onto).

assume S: for x’ st In[x’,B] ex x st In[x,A] & Iso[x,x’];

== Iso is injective (1-1);

assume I: for x, y, z st In[x,A] & In[y,A] & In[z,B] holds

Iso[x,z] & Iso[y,z] implies x=y;

== And now we assume that Iso establishes an isomorphism between

== R and S. That is, R and S differ superficially only.

assume ISO: for x,y,x’,y’ st

In[x,A] & In[x’,B] & In[y,A] & In[y’,B] & Iso[x,x’] & Iso[y,y’]

holds In[x,y,R] iff In[x’,y’,S];

thus

Exercise8:

Symmetric[R] implies Symmetric[S] proof

assume 1: Symmetric[R];

thus Symmetric[S] proof

2: for x, y holds In[x,y,S] implies In[y,x,S] proof

let x’,y’ be THING;

assume 3: In[x’,y’,S];

4: In[x’,B] & In[y’,B] by 3,S1;

5: ex x st In[x,A] & Iso[x,x’] by 4,S;

consider x being THING such that

6: In[x,A] & Iso[x,x’] by 5,S;

7: ex x st In[x,A] & Iso[x,y’] by 4,S;

consider y being THING such that

8: In[y,A] & Iso[y,y’] by 7;

9: In[x,y,R] iff In[x’,y’,S] by 4,6,8,ISO;

10: In[x,y,R] by 3,9;

11: In[y,x,R] by 1,10,SymmetryDef;

thus In[y’,x’,S] by 4,6,8,11,ISO;

end;

thus thesis by 2,SymmetryDef;

end;

end;

thus

Exercise9:

Transitive[S] implies Transitive[R] proof
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assume 1: Transitive[S];

thus Transitive[R] proof

2: for x,y,z holds In[x,y,R] & In[y,z,R] implies In[x,z,R]

proof

let x,y,z be THING;

assume 3: In[x,y,R] & In[y,z,R];

4: In[x,A] & In[y,A] & In[z,A] by 3,R1;

5: ex x’ st In[x’,B] & Iso[x,x’] by 4,T;

consider x’ being THING such that

6: In[x’,B] & Iso[x,x’] by 5;

7: ex x’ st In[x’,B] & Iso[y,x’] by 4,T;

consider y’ being THING such that

8: In[y’,B] & Iso[y,y’] by 7;

9: ex x’ st In[x’,B] & Iso[z,x’] by 4,T;

consider z’ being THING such that

10: In[z’,B] & Iso[z,z’] by 9;

11: In[x’,y’,S] & In[y’,z’,S] by 3,4,6,8,10,ISO;

12: In[x’,z’,S] by 1,11,TransitivityDef;

thus In[x,z,R] by 4,6,10,12,ISO;

end;

thus thesis by 2,TransitivityDef;

end;

end;

thus

Exercise10:

antiSymmetric[R] implies antiSymmetric[S] proof

assume 1: antiSymmetric[R];

thus antiSymmetric[S] proof

2: for x,y holds In[x,y,S] & In[y,x,S] implies x=y proof

let x’,y’ be THING;

assume 3: In[x’,y’,S] & In[y’,x’,S];

4: In[x’,B] & In[y’,B] by 3,S1;

5: ex x st In[x,A] & Iso[x,x’] by 4,S;

consider x being THING such that

6: In[x,A] & Iso[x,x’] by 5,S;

7: ex x st In[x,A] & Iso[x,y’] by 4,S;

consider y being THING such that

8: In[y,A] & Iso[y,y’] by 7;

9: In[x,y,R] & In[y,x,R] by 3,4,6,8,ISO;

10: x=y by 1,9,AntiSymmetryDef;
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11: Iso[x,y’] by 8,10;

thus x’=y’ by 4,6,11,F;

end;

thus thesis by 2,AntiSymmetryDef;

end;

end;

end;

11.6 Relationships between Functions and Relations

Recall that f = 〈D,R,G〉 is a function iff the subset G of D ×R has the property that for
every x ∈ D there is at most one y ∈ R such that 〈x, y〉 ∈ G.

Suppose you have a function f = 〈X,Y,G〉 Then this function induces a binary relation
r = 〈X × Y,G〉. That is, the ordered pairs of the relation r are exactly the ordered pairs
〈x, f(x)〉 where x ∈ domain(f).

Example: Let f = 〈X,Y,G〉 where

X = {0, 1, 2, 3}
Y = {0, 1, 2, . . . , 9}
G = {〈0, 0〉, 〈1, 1〉, 〈2, 4〉, 〈3, 9〉}

Or giving G as a table:

x f(x)

0 0
1 1
2 4
3 9

Note that a function always induces an associated binary relation.
Now suppose you have a binary relation r = 〈D,G〉 where D = X × Y and G ⊆ D.

Then r induces a function f if r has the property that for every pair 〈x, y〉 ∈ G no other pair
exists with the same x value. The function f induced by r is then given by f = 〈X,Y,G〉.

Because of this relationship between functions and their induced relations, and vice
versa, functions are often defined as special kinds of binary relations.

Let’s consider the case where the function f is 1–1. The induced relation r = 〈X×Y,G〉
has the following property: For every ordered pair 〈x, y〉 ∈ G no other pairs exist with the
same x or the same y value.

Now consider a new relation r−1 which comes from r by simply exchanging the x, y
components of every ordered pair in G.

r−1 = 〈Y ×X,G−1〉
G−1 = {〈y, x〉|〈x, y〉 ∈ G}

Since f is 1–1, every pair 〈x, y〉 ∈ G has a unique y value (that is, no other pair has the
same y value). This means that every pair 〈y, x〉 ∈ G−1 has a unique x value. This means
that r−1 induces a function, say f−1, from Y to X given by f−1 = 〈Y,X,G−1〉 with
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G−1 : y f(y)
0 0
1 1
4 2
9 3

The original function f and the new function f−1 have the following properties:

1. f, f−1 are both 1–1

2. range(f) = domain(f−1)

3. domain(f) = range(f−1)

4. for each x ∈ domain(f) we have f−1(f(x)) = x

5. for each y ∈ range(f) we have f(f−1(y)) = y

Now in general, f−1 will be a partial function because range(f) is not necessarily all of Y .
But if f is onto, then range(f) = Y , and so domain(f−1) = Y , and f−1 is total.

Similarly, if f is total, then domain(f) = X, so range(f−1) = X, and f−1 will be onto.
So to the properties above we can add:

1. f is onto Y iff f−1 is total on Y

2. f is total on X iff f−1 is onto X

11.7 Variations on Invertibility

Now what about the case where f is not 1–1? Is it still possible to have a notion of inverse?
This is equivalent to asking: if one has a binary relation r = 〈D,G〉 that lacks the property
that every ordered pair of G has a unique first component, can one associate a function to
r?

Example: Consider the function f = 〈X,Y,H〉 given by

X = {−4,−3,−2,−1, 0, 1, 2, 3, 4}
Y = {0, 1, 2, . . . , 9}

with graph H given by

H : x f(x)
-3 9
-2 4
-1 1
0 0
1 1
2 4
3 9
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Note that domain(f) = {−3,−2,−1, 0, 1, 2, 3} and range(f) = {0, 1, 4, 9}. The function f
is not invertible since it is not 1–1.

The relation r = 〈Y ×X,G〉, where

G = {〈0, 0〉, 〈1,−1〉, 〈1,+1〉, 〈4,−2〉, 〈4, 2〉, 〈9,−3〉, 〈9, 3〉}

identifies the x values associated with each y value in range(f). It cannot induce a function
since it lacks the property that no two ordered pairs in G share the same first value.

We now look at the subset z of X associated with each y ∈ Y , and define a new function
g as follows:

g = 〈Y,P(X), G′ 〉

where
G′ =

{
〈y, z〉|y ∈ Y and z = {x|〈y, x〉 ∈ G}

}
or, using f instead of r to define G′

G′ =
{
〈y, z〉|y ∈ Y and z = {x|f(x) = y}

}
So, for our example, G′ ={
〈0, {0}〉, 〈1, {−1, 1}〉, 〈4, {−2, 2}〉, 〈9, {−3, 3}〉, 〈2,Ø〉, 〈3,Ø〉, 〈5,Ø〉, 〈6,Ø〉, 〈7,Ø〉, 〈8,Ø〉

}
Which we can express as a table:

G′ : y g(y)
0 {0}
1 {1, -1}
2 Ø
3 Ø
4 {2, -2}
5 Ø
6 Ø
7 Ø
8 Ø
9 {-3, 3}

Note that g is a total function, and its relationship to r and f is expressed by the following
statement: For every y ∈ Y , for every x ∈ g(y) we have f(x) = y and 〈y, x〉 ∈ G.
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12 Induction

12.1 Inductive Construction, Definition, and Proofs

The natural numbers
Nat = {0, 1, 2, . . .}

are a very important set. This set is infinite, yet everyone knows exactly what it contains.
How can this be?

The reason that we feel that we know what Nat contains is that we know how to
“construct” it. Starting with 0 being in Nat, we add 1 and place the result into Nat. Then
we add 1 to this new element and place it (i.e. 2) into Nat. We keep doing this. Any
element of Nat can eventually be constructed by this process of selecting an element from
Nat, adding 1 to it, and putting the result into Nat. Here is a more precise description of
this process:

Base Case: 0 ∈ Nat
Induction Step: for n ∈ Nat holds n+ 1 ∈ Nat
Extremal Clause: Nat contains no other elements than those constructed above.

This is an inductive definition of the set Nat of natural numbers.
An inductive definition can apply to more than just sets of numbers. Consider character

strings with the concatenation operator ·. Here is a definition of a set of formulas over the
variables x, y, z using the operators negation, addition, and multiplication.

Base Case: “x”, “y”, “z” ∈ F
Induction Step: for f, g ∈ F holds “−”·f ∈ F & “(”·f ·“+”·g·“)”∈ F &

“(”·f ·“×”·g·“)”∈ F
The BNF grammar of Mizar is also an inductive definition of all the syntactically correct
Mizar texts.

The general form of an inductive definition of a set A follows this pattern:
Base Case: Provide some fixed set B = {b1, . . . , bk} of basis elements to be included

in A, that is B ⊂ A.

Induction Step: Provide a way of taking an arbitrary set I = {a1, . . . , al} of elements
already in A, and constructing a set S = {s1, . . . , sm} of elements to be added to
A.

Extremal Clause: Specify that A contains no other elements than those constructed
above.

The inductive definition of a set gives us a mechanism for proving that a given property
holds for every member of the set. The idea is to show that some property P holds for
the basis elements (show P [0] in the case of Nat), and then to show that P is inherited by
objects during the construction step (show that if P [n] holds then P [n+ 1] holds).

The general method of showing that a property P holds for all elements of an inductively
defined set A, that is,

for x ∈ A holds P [x]

follows this pattern:
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Base Case: Prove that all objects in the basis set B = {b1, . . . , bk} satisfy property
P .

Induction Step: Show that if P holds for every element of an arbitrary subset I =
{a1, . . . , al} of A, then P also holds for every element of the set S = {s1, . . . , sm}
containing all objects constructed from elements of I.

For example, here is a typical induction proof of the type one sees in high school.

for n being Nat holds
∑n

i=0 i = n(n+1)
2

proof

BaseCase: == when n = 0∑0
i=0 i = 0(0+1)

2

InductionStep: now

let n be Nat; == n is an arbitrary Nat
== assume that what we want to prove is true for n
assume IndHyp:

∑n
i=0 i = n(n+1)

2
== show that what we want to prove is true for n+ 1
1: (

∑n
i=0 i) + (n+ 1) = n(n+1)

2 + n+ 1 by IndHyp;

2:
∑n+1

i=0 i = n(n+1)+2(n+1)
2 by 1;

thus
∑n+1

i=0 i = (n+1)((n+1)+1)
2 by 2;

end;

thus for n being Nat holds
∑n

i=0 i = n(n+1)
2 by BaseCase, InductionStep;

end;

Why should the conclusion follow from BaseCase and InductionStep? Surely, some
kind of inference rule is required to justify the conclusion. Consider what the induction
step actually shows:

for n being Nat holds
∑n

i=0 i = n(n+1)
2 implies

∑n+1
i=0 i = (n+1)((n+1)+1)

2
Thus the actual inference rule for induction must mention passing from a statement about
n to the same statement about n+ 1, independently of n.
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12.2 Natural Number Induction or Weak Induction

Let Nat = {0, 1, 2, 3, . . .} be the set of natural numbers. Let P be a 1-ary predicate defined
on Nat. If the following two properties hold:

BaseCase:P [0]
InductionStep: for n being Nat holds P [n] implies P [n+ 1]

then you can conclude

for n being Nat holds P [n]

Note: for a particular predicate P the axiom of natural number induction can be stated
as the single logical formula:

P[0] & (for n being Nat holds P [n] implies P [n+ 1])
implies

(for n being Nat holds P [n])

We will refer to this rule of inference as NaturalNumberInduction.
Here are some examples of inductive proofs of the kind you typically see in high school.

Note how we have used the Mizar proof style, event though Mizar does not understand
arithmetic.

12.2.1 A geometric sum

Let P [n] be the predicate on natural numbers that is true when

3n+1 − 1 =
i=n∑
i=0

2 · 3i

for n being Nat holds P [n]
proof

BaseCase: P [0]
proof

30+1 − 1 = 2 · 30
thus thesis

end;

InductionStep: for n being Nat holds P [n] implies P [n+ 1]
proof

let n be Nat;
assume P [n];

3n+1 − 1 =
∑i=n

i=0 2 · 3i;
3n+1 − 1 + 2 · 3n+1 = 2 · 3n+1 +

∑i=n
i=0 2 · 3i;

3 · 3n+1 − 1 =
∑i=n+1

i=0 2 · 3i;
thus P [n+ 1];

end;
thus thesis by BaseCase, InductionStep, NaturalNumberInduction;

end;
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12.2.2 A quadratic sum

Find a closed form 5 formula for:

02 + 12 + 22 + 32 + · · ·+ k2

which using the Σ operator is written as:

i=k∑
i=0

i2

Note: The Principle of Induction, or any of what we call logic for that matter, does not
tell us how to guess the closed formula. However, we are free to make a very intelligent
guess that for arbitrary k:

i=k∑
i=0

i2 =
1

6
k(k + 1)(2k + 1)

Now using the Principle of Induction we can check whether or not our intelligent guess
was correct. What are we proving?

for k being Nat holds (
i=k∑
i=0

i2 =
1

6
k(k + 1)(2k + 1))

Which has the shape of “ for k being Nat holds P [k] ” where

P [k] iff

i=k∑
i=0

i2 =
1

6
k(k + 1)(2k + 1)

for k being Nat holds P [k]
proof

BaseCase: P [0]
proof ∑i=0

i=0 i
2 = 1

60(0 + 1)(2 · 0 + 1);
thus thesis

end;

InductionStep: for k being Nat holds P [k] implies P [k + 1]
proof

== Note that the current thesis is:
== for k being Nat holds (

∑i=k
i=0 i

2 = 1
6k(k + 1)(2k + 1)

== implies

==
∑i=k+1

i=0 i2 = 1
6(k + 1)((k + 1) + 1)(2(k + 1) + 1))

== What are we to prove?
== Recall the Universal Quantifier Introduction rule.

let n be Nat; == An arbitrary natural number.

5We say that a formula is in a closed form if it involves only a fixed number of simple operations. The
summation operator hides a variable number of additions, and thus a formula using it is not closed.
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== What remains to be proven?
== Recall The Implication Introduction rule.

assume InductionHypothesis:
∑i=n

i=0 i
2 = 1

6n(n+ 1)(2n+ 1);

== The Principle of Induction does not give us a hint how to get
== the consequent.
== Take lhs of the consequent and “massage” it.

∑i=n+1
i=0 i2 =

∑i=n
i=0 i

2 + (n+ 1)2 == isolate n+ 1 term
= 1

6n(n+ 1)(2n+ 1) + (n+ 1)2 == from InductionHypothesis

= 1
6(n+ 1)(n(2n+ 1) + 6(n+ 1)) == factor out n+ 1

= 1
6(n+ 1)(2n2 + n+ 6n+ 6) == multiply

= 1
6(n+ 1)(n(2n+ 3) + 2(2n+ 3)) == regroup

= 1
6(n+ 1)(n+ 2)(2n+ 3) == factor out

= 1
6(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1); == and regroup

== and we have the rhs of the consequent.
thus thesis

end;
thus for k being Nat holds (

∑i=k
i=0 i

2 = 1
6k(k + 1)(2k + 1))

by BaseCase, InductionStep, NaturalNumberInduction

end

12.2.3 A confusing example

Find a closed form formula for:
i=k∑
i=0

1

We make an intelligent guess that for arbitrary k:

i=k∑
i=0

1 = (k + 1)

which can be proven by induction. What are we proving?

for k being Nat holds
∑i=k

i=0 1 = (k + 1)
proof

== The thesis has the shape of for k being Nat holds P [k]
== where P [k] iff

∑i=k
i=0 1 = (k + 1).

BaseCase:
∑i=0

i=0 1 = 0 + 1; == i.e. P [0], is obviously true.

InductionStep: for k being Nat holds P [k] implies P [k + 1]
proof
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let k be Nat; == k is an arbitrary Nat.
assume InductionHypothesis:

∑i=k
i=0 1 = k + 1;∑i=k+1

i=0 1 =
(∑i=k

i=0 1
)

+ 1

= (k + 1) + 1 == by InductionHypothesis.

thus thesis

end

thus thesis by BaseCase, InductionStep, NaturalNumberInduction

end

12.2.4 Programming examples

Here is another, more “realistic” example of induction use. Consider the following function
(we hope you can follow the notation):

function S(x) : Nat 7→ Nat
pre: x ≥ 0
post: S(x) = x2

if x = 0 then
return 0;

else
return S(x− 1) + 2 ∗ x− 1;

endif;
end;

Observe how S(x) is expressed recursively in terms of S(x− 1) when x > 0.

Claim: for x being Nat holds S(x) = x2

proof

BaseCase: S(0) = 0 by definition of S;
InductionStep: for x being Nat holds S(x) = x2 implies S(x+1) = (x+1)2

proof

let x be Nat;
assume IndHyp: S(x) = x2;
1: x+ 1 > 0 by ?;

2: S(x+ 1) = S(x) + 2(x+ 1)− 1 by 1, definition of S;
3: S(x+ 1) = x2 + 2x+ 1 by 2, IndHyp, ?;
thus S(x+ 1) = (x+ 1)2 by 3;

end;
thus thesis by BaseCase, InductionStep, NaturalNumberInduction

end;

Question: What would happen if we used Int instead of Nat and we attempted to evaluate
S(x) for x < 0?

Here is a another recursively defined function.
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function M(x, y) : Nat×Nat 7→ Nat
pre: none.
post: M (x , y) = x · y .

if x = 0 then
return 0;

else
return y +M(x− 1, y);

endif;
end;

What does this program do?

Claim: for x, y being Nat holds M(x, y) = xy
proof

== Induction on x;
BaseCase: for y being Nat holds M(0, y) = 0 by definition of M ;
InductionStep: for x being Nat holds

(for y being Nat holds M(x, y) = xy)
implies

(for y being Nat holds M(x+ 1, y) = (x+ 1)y)
proof

let x be Nat;
assume IndHyp: for y being Nat holds M(x, y) = xy
0: now

let y be Nat;
1: x+ 1 > 0 by ?;

2: M(x+ 1, y) = y +M(x, y) by 1, definition of M ;
3: M(x+ 1, y) = y + xy by 2, IndHyp, ?;
thus M(x+ 1, y) = y(x+ 1) by 3;

end;
thus for y being Nat holds M(x+ 1, y) = (x+ 1)y by 0;

end;
thus thesis by BaseCase, InductionStep, NaturalNumberInduction

end;

Question: what would happen if we changed the type of y to Int? Does the above proof
still work? What if the type of x is changed to Int? In this case we could define another
function to reduce integer multiplication to natural multiplication:

function IM(x, y) : Int× Int 7→ Int
if x < 0 then

return −M(−x, y);
else

return M(x, y);
endif;

end;

Question: is the type casting done above to change the sign of x and the result legal?
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12.2.5 Fibonacci sequence

The original problem that was stated by Fibonacci (Leonardo of Pisa) was as follows. A
pair of guinea pigs born at time 1 creates a further pair in every month of its existence,
beginning with the second month, and its descendants behave the same way. How many
pairs will there be after n months.

Let F : N 7→ N and F (n) be the number of pairs after n months. The graph of F is
inductively defined as (we assume that after 0 months there were 0 pairs)

1◦ (basis) 〈0, 0〉 ∈ F , 〈1, 1〉 ∈ F .
2◦ If 〈k, x〉 ∈ F and 〈k + 1, y〉 ∈ F then 〈k + 2, x+ y〉 ∈ F , for any k ∈ N .
3◦ Nothing else is in F but what was mentioned in 1◦ and 2◦.

Exercise: Construct first 10 elements of F .

We will use the more common notation for sequences, instead of 〈x, y〉 ∈ F we write
Fx = y.

With this notation Fn is defined recursively as:
1◦ (stop condition) F0 = 0, F1 = 1.
2◦ (recursion) Fn = Fn−1 + Fn−2, for n ≥ 2.

The two definitions above define exactly the same thing.
Prove that for every n ∈ Nat the following property P [n] holds

Fn ≤
(

1 +
√

5

2

)n−1

We will use the following notation: ϕ =
(
1+
√
5

2

)
. What are we proving?

for n being Nat holds Fn ≤
(
1+
√
5

2

)n−1
proof

BaseCase: == Show P [0], i.e.

F0 ≤
(
1+
√
5

2

)0−1
== since F0 = 0 and the rhs =

(
2

1+
√
5

)
InductionStep: for n being Nat holds P [n] implies P [n+ 1]
proof

let n being Nat; == an arbitrary natural
assume Fn ≤ ϕn−1;

At this point we are to show P [n + 1], that is, Fn+1 ≤ ϕ(n+1)−1. We know that
Fn+1 = Fn + Fn−1. But we know nothing specific about Fn−1! We get stuck and cannot
continue.

However, there is a remedy in this case. Surprisingly, proving a stronger proposition is
easier. We will prove:

for n being Nat holds (Fn ≤ ϕn−1 & Fn+1 ≤ ϕn)
proof
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== from which the original proposition easily follows.

BaseCase: 0 ≤ ϕ0−1 & 1 ≤ ϕ0; == which is easy to see

InductionStep: now

let k be Nat;
assume InductionHypothesis: Fk ≤ ϕk−1 & Fk+1 ≤ ϕk;
thus Fk+1 ≤ ϕk; == The first part of what we want to prove.

== the second conjunct, Fk+2 ≤ ϕk+1 is proven as follows:

Fk+2 = Fk+1 + Fk == see definition of F
≤ ϕk + ϕk−1 == by InductionHypothesis

= (ϕ+ 1)ϕk−1 == factor out
= ϕ2ϕk−1 == check that ϕ+ 1 = ϕ2

= ϕk+1;

thus Fk+2 ≤ ϕk+1; == The second part of what we want to prove.
end

thus thesis

end

Where did we pick up ϕ =
(
1+
√
5

2

)
? Answer: Because we are extremely clever.

But people were that clever a long time ago: Fibonacci—Leonardo of Pisa studied the
sequence around 1202. The ancient Greeks knew about ϕ even earlier—they considered the
ratio ϕ to 1 to be the most pleasing aesthetically, calling it the “Golden Ratio”.

Exercise. Prove that for all n ∈ N

Fn =
1√
5

((
1 +
√

5

2

)n

−
(

1−
√

5

2

)n)

The above formula did not come out of the blue. The theory of difference equations offers a
number of methods for finding closed formulae for recursively defined functions. However,
this theory is generally considered quite advanced.

12.2.6 Powersets

Given set A, |A| is the cardinality of A and P(A) is the powerset of A. We will try to prove
the following theorem:

for n being Nat holds for A being Set holds |A| = n implies |P(A)| = 2n.

We will save on writing by using an alternative Mizar syntax for the above sentence:

for n being Nat, A being Set st |A| = n holds |P(A)| = 2n.

First, notice that the property of natural numbers P [n] that we are trying to prove here
is:
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P [n] iff (for A being Set holds |A| = n implies |P(A)| = 2n).

for n being Nat, A being Set st |A| = n holds |P(A)| = 2n

proof

== By induction over n.

BaseCase: for A being Set st |A| = 0 holds |P(A)| = 20

proof

== Do you now how to prove it?
== Hint: if |B| = 0 then B = Ø and |P(Ø)| = 1.

end;

InductionStep: for n being Nat holds P [n] implies P [n+ 1]
proof

let n be Nat;
assume InductionHypothesis:

for A being Set st |A| = n holds |P(A)| = 2n;
thus for A being Set st |A| = n+ 1 holds |P(A)| = 2n+1

proof

== Sketch of the proof. Let A be a set with n+ 1 elements

A = {a1, a2, a3, . . . an, an+1}

== we can look at its powerset as:

P(A) = {B | B ∈ P(A \ {an+1})} ∪
{B ∪ {an+1} | B ∈ P(A \ {an+1})}

== Because of |A \ {an+1}| = n then by InductionHypothesis

|P(A \ {an+1})| = 2n.

== Therefore

|P(A)| = |{B | B ∈ P(A \ {an+1})}| +
= |{B ∪ {an+1} | B ∈ P(A \ {an+1})}|
= 2n + 2n = 2n+1.

thus thesis

end

end

end

12.2.7 Factoring polynomials

Prove that (x− y) is a factor of (xn − yn), for all n ≥ 1.
We will write P | R to say that polynomial P is a factor of polynomial R. What do we

mean by P | R? Here is the definition:
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for P,R being polynomial holds
P | R iff ex S being polynomial st R = P × S.

What are we proving?

for n being Nat holds (n ≥ 1 implies (x− y) | (xn − yn)).

What property of natural numbers do we prove? Here it is:

P [n] iff (n ≥ 1 implies (x− y) | (xn − yn)).

for n being Nat holds (n ≥ 1 implies (x− y) | (xn − yn))
proof

BaseCase: 0 ≥ 1 implies (x− y) | (x0 − y0); == vacuously true

InductionStep: for k being Nat holds P [k] implies P [k + 1]
proof

let n be Nat; == an arbitrary natural number
assume InductionHypothesis: n ≥ 1 implies (x− y) | (xn − yn);

== What remains to be proven?

assume (n+ 1) ≥ 1; == antecedent

== Note that two cases are possible: (n+ 1) = 1 or (n+ 1) > 1.

Case1: now

assume n+ 1 = 1;
n = 0;

thus (x− y) | (x0+1 − y0+1)
end;

Case2: now

assume n+ 1 > 1;
n ≥ 1;
(x− y) | (xn − yn) by InductionHypothesis;
consider S being polynomial such that

1: (x− y)× S = (xn − yn); == by definition of |.
== To prove the consequent, take xn+1 − yn+1 and “massage” it.

xn+1 − yn+1 = xxn − yyn
= x((x− y)S + yn)− yyn == from 1

= x(x− y)S + xyn − yyn
= x(x− y)S + (x− y)yn

= (x− y)(xS + yn);

thus (x− y) | (xn+1 − yn+1); == Do you see why?
end

thus thesis by Case1, Case2

end

thus for n being Nat holds (n ≥ 1 implies (x− y) | (xn − yn))
by BaseCase, InductionStep, NaturalNumberInduction

end
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12.3 Integer Induction

There is nothing special about the set Nat = {0, 1, 2, . . .} except for two properties:
1. There is a first element, 0.

2. There is a way of moving from one element x to the next one, x + 1, without
missing any in between.

These properties are also true for any set of integers of the form:

A = {n|n ∈ Int and n ≥ a}

for some constant a. (Alternatively, A = {a, a+1, a+2, . . .}.) Thus we expect the following
induction rule to be legitimate:

P[a] & (for n being Int st n ≥ a holds P [n] implies P [n+ 1])
implies

(for n being Int st n ≥ a holds P [n])

Note how this is like the axiom for natural number induction except that an additional
guard of n ≥ a has been placed on n. This can also be expressed as:

Let a be an integer, and let P be a 1-ary predicate defined on the subset A = {n|n ∈
Int and n ≥ a}. If the following two properties hold:

BaseCase: P [a]
InductionStep: for n being Int st n ∈ A holds P [n] implies P [n+ 1]

then you can conclude

for n being Int st n ∈ A holds P [n]

When a = 0 this gives us the axiom for natural number induction.

12.3.1 Factoring polynomials again

We will now redo the example 12.2.7 using the integer induction in place of the natural
number induction. Let Pos be the set of positive integers, Pos = {1, 2, 3, . . .}. The property
of elements in Pos that we are proving now is:

P [n] iff (x− y) | (xn − yn).

What are we proving now?

for n being Pos holds (x− y) | (xn − yn)
proof

BaseCase: (x− y) | (x1 − y1); == obviously true
== Note the difference from the previous proof.

InductionStep: for k being Pos holds P [k] implies P [k + 1]
proof
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let n be Pos; == An arbitrary positive integer.
assume InductionHypothesis: (x− y) | (xn − yn);

== What remains to be proven? (x− y) | (xn+1 − yn+1);
== We will construct the polynomial required to prove this.

consider S being em polynomial such that

1: (x− y)× S = (xn − yn);
== by definition of | and InductionHypothesis.

== To prove the consequent, take xn+1 − yn+1 and “massage” it.

xn+1 − yn+1 = xxn − yyn
= x((x− y)S + yn)− yyn == by 1

= x(x− y)S + xyn − yyn
= x(x− y)S + (x− y)yn

= (x− y)(xS + yn)

thus (x− y) | (xn+1 − yn+1) == Make sure you understand this.
end

thus for n being Pos holds (x− y) | (xn − yn)
by BaseCase, InductionStep, IntegerInduction

end
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12.4 Complete Induction

Consider this program:

function Fib(i) : Nat 7→ Nat
pre: i ≥ 0
post: Fib(i) is the i’th Fibonacci number

if i = 0 then
return 0;

else if i = 1 then
return 1;

else
return Fib(i− 2) + Fib(i− 1);

endif;
end;

This recursion requires two evaluations of Fib and so does not easily fit into the induction
patterns discussed so far. But we have seen how to solve this problem (cf. 12.2.5).

A similar problem occurs in the typical tree traversal:

traverse(T):
traverse(left-subtree(T))
do root(T)
traverse(right-subtree(T))

These kinds of problems, in which a given instance is broken into many smaller problems,
leads to the notion of complete induction. In its version for natural numbers it is:

(for n being Nat holds (for m being Nat st m < n holds P [m]) implies P [n])
implies

(for n being Nat holds P [n])

The corresponding complete integer induction is:

Let a be an integer, and let P be a 1-ary predicate defined on the subset of integers
A = {n|n ∈ Int and n ≥ a}. If the following property holds:

for n being Int st n ∈ A holds

((for m being Int st m ∈ A & m < n holds P [m]) implies P [n])

then you can conclude

for n being Int st n ∈ A holds P [n]

Here is an example of complete natural number induction:

given ϕ = 1+
√
5

2
Lemma: 1 + ϕ = ϕ2; (An easy proof is left as an exercise to the reader).
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Claim: for n being Nat st n ≥ 0 holds Fib(n) ≤ ϕn−1 proof

0: now

let n be Nat;
assume IndHyp: for m being Nat st m < n holds Fib(m) ≤ ϕm−1

1: n < 2 or 2 ≤ n by ?;
2: n < 2 implies Fib(n) ≤ ϕn−1

proof

assume A: n < 2;
2a: n = 0 or n = 1 by A;
2b: Fib(n) = n by 2a, definition of Fib;
2c: 0 ≤ ϕ−1;
2d: 1 ≤ ϕ0;
thus Fib(n) ≤ ϕn−1 by 2a, 2b, 2c, 2d;

end;
3: n ≥ 2 implies Fib(n) ≤ ϕn−1

proof

assume B: n ≥ 2;
3a: 0 ≤ n− 2 & 0 ≤ n− 1 by B;
3b: Fib(n) = Fib(n− 2) + Fib(n− 1) by 3a, definition of Fib;
3c: Fib(n− 2) ≤ ϕn−3 & Fib(n− 1) ≤ ϕn−2 by B, IndHyp;
3d: Fib(n) ≤ ϕn−3 + ϕn−2 by 3b, 3c;
3e: Fib(n) ≤ ϕn−3(1 + ϕ) by 3d;
thus Fib(n) ≤ ϕn−1 by 3e, Lemma;

end;
thus Fib(n) ≤ ϕn−1 by 1, 2, 3;

end;
thus thesis by 0, CompleteInduction;

end;

Note: make sure that you see what is proven by the reasoning labelled 0.

12.4.1 An example of complete induction

We have a function T : N 7→ N defined as:

T (n) =

{
T (bn/5c) + T (b3n/4c) + n if n > 0
0 n = 0

(The floor of r, brc, for real r is the largest integer not greater than r.)
Similar functions are common in the analysis of algorithms that use Divide and Conquer.

Note the trouble with weak induction when proving

for n being Nat holds T (n) ≤ 20n.

Where is the trouble? Not with the base case. If you start the proof of the induction step
then you will quickly notice that the inductive hypothesis is essentially useless.

Therefore we will proceed by complete induction. The property of natural numbers that
we are concerned here with is:
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P [n] iff T (n) ≤ 20n.

and to apply complete induction we have to prove the following single statement:

for n being Nat holds
(for k being Nat st k < n holds P [k]) implies P [n].

which quite appropriately can be named an induction step.

InductionStep:

for n being Nat holds
(for k being Nat st k < n holds T (k) ≤ 20k) implies T (n) ≤ 20n

proof

let k be Nat; == An arbitrary natural.
assume InductionHypothesis:

for l being Nat st l < k holds T (l) ≤ 20l;
== We are to prove that T (k) ≤ 20k.
== Since k is arbitrary, we will consider 2 cases: k = 0 or k > 0.

Case1: now assume k = 0;
== Note that the InductionHypothesis is useless.
== We have to do the base case anyway. It is easy to see that

thus T (0) = 0 ≤ 20 · 0
end

Case2: now

assume k > 0;
1: T (k) = T (bk/5c) + T (b3k/4c) + k; == by the definition of T
2: bk/5c < k & b3k/4c < k; == simple arithmetic

T (k) ≤ 20bk/5c+ 20b3k/4c+ k
by 1, 2, InductionHypothesis

≤ 20k/5 + 20 · 3k/4 + k as bac ≤ a
= 4k + 15k + k
= 20k

thus T (k) ≤ 20k
end thus thesis by Case1, Case2

end

Therefore we conclude

for n being Nat holds T (n) ≤ 20n by InductionStep, CompleteInduction

12.4.2 Another Example of Complete Induction

Induction is particularly useful when reasoning about recursive functions. Here is a decep-
tively simple recursive definition of a function F 7→ Int× Int.

DefFx : F (x) =

{
x− 10 if x > 100
F (F (x+ 11)) if x ≤ 100
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In Pascal this could be written as
function F(x: integer): integer;

if x > 100 then

F := x-10;

else

F := F(F(x+11));

endif;

end;

We wish to prove that for any integer x,

F (x) =

{
x− 10 if x > 100
91 if x ≤ 100

Let us begin by defining two predicates that mirror the two cases in the program for
F . Predicate H corresponds to the “then” part, and predicate E corresponds to the “else”
part.

for x ∈ Int holds
H[x] iff ( x > 100 implies F (x) = x− 10 )

for x ∈ Int holds
E[x] iff ( x ≤ 100 implies F (x) = 91 )

What we want to prove is for x ∈ Int holds H[x] & E[x].
Now, a simple inspection of the definition of F , DefFx, shows that for x ∈ Int holds

H[x] is true. But a proof for the “else” case requires complete induction. Here is an informal
proof in Mizar style.

for x ∈ Int holds x ≤ 100 implies F (x) = 91 proof

now

let x be Int such that A1: x ≤ 100;
assume IndHyp: for m ∈ Int st x < m ≤ 100 holds F (m) = 91;
thus F (x) = 91 proof

Fx: F (x) = F (F (x+ 11)) by A1, DefFx;
Case1: now assume A2: x+ 11 ≤ 100;

S1: x < x+ 11 ≤ 100 by A2;
S2: F (x+ 11) = 91 by S1, IndHyp ;
S3: x < 91 ≤ 100 by A2 ;
S4: F (91) = 91 by S3, IndHyp ;
S5: F (F (x+ 11)) = 91 by S2, S4;
thus F (x) = 91 by S5, Fx;

end;
Case2: now assume A2: x+ 11 > 100;

S1: F (x+ 11) = x+ 1 by A2, DefFx;
Case2a: now assume A3: x+ 1 = 101;

thus F (x+ 1) = 91 by A3, DefFx;
end;
Case2b: now assume A3: x+ 1 ≤ 100;

thus F (x+ 1) = 91 by A3, IndHyp;
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end;
S2: F (F (x+ 11)) = 91 by A1, S1, Case2a, Case2b;
thus F (x) = 91 by S2;

end;
thus F (x) = 91 by Case1, Case2;

end;
end;
thus thesis by CompleteInduction

end;

12.4.3 A Variant of Complete Induction

This variant works for a subset of Int bounded from above. Note how each step constructs
a smaller element of A.

Let a be an integer, and let P be a 1-ary predicate defined on the subset of integers
A = {n|n ∈ Int and n ≤ a}. If the following property holds:

for n being Int st n ∈ A holds

((for m being Int st m ∈ A & n < m holds P [m]) implies P [n])

then you can conclude

for n being Int st n ∈ A holds P [n]
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12.4.4 Least Element Principle

The last induction scheme is not based on construction: Let A be a non-empty set of natural
numbers. Then A has a smallest element. That is

ex n being Nat st n ∈ A & (for m being Nat st m ∈ A holds n ≤ m)
The above induction axioms for natural numbers can be proven using the least element
principle, and vice versa.
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12.5 An incorrect inductive proof

Consider the following inductive proof.

Theorem: For all natural numbers n, for all sets of natural numbers A such that A
contains n elements, it holds that all members of A are even.

Proof: We proceed by induction on the size of the set A.

Define, for any natural number n, the property E[n] as follows: E[n] iff for any set A of
natural numbers such that A contains n members it holds that all members of A are even.

Base Case: E[0] is vacuously true since all elements of an empty set of natural
numbers are even.

Induction Step: Let n be an arbitrary natural number, suppose that E[n] holds.
We will show that E[n+ 1] holds.

Let A be any set of natural numbers of size n+1. Pick any two distinct elements
of A, say x and y, and form two new sets Ax = A − {x} and Ay = A − {y}
by removing x and y (respectively) from A. Since x ∈ Ay and y ∈ Ax we have
A = Ax ∪Ay.

Now both Ax and Ay have size n. Thus we can apply the induction hypothesis,
E[n], to conclude that all elements of Ax and Ay are even.

But A = Ax ∪ Ay, so we also have that all elements of set A are even. Thus
E[n+ 1] holds.

Thus, for any natural number n, holds E[n], and the theorem is proven.

End proof.
The theorem is clearly false. What is wrong with this proof?
The problem is in the step that says “Pick any two distinct elements of A . . . ”. This

must be possible for any set of size n+ 1. But n can be 0, in which case n+ 1 is 1, and it
is impossible to pick two distinct elements from a set of size 1.



Part IV

Collected Examples
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A Sample Mizar Proofs

We used to have a bunch of Mizar proofs from the past assignments in this section. Now
they are spread all over the notes.

A.1 A murder mystery

(agatha.mse)

== The following puzzle is due to L. Schubert

==

== A mysterious death at Dreadbury Mansion ...

==

== 1: Someone who lives at Dreadbury Mansion killed Aunt Agatha.

== 2: Only Agatha, the butler and Charles has lived at Dreadbury Mansion.

== 3: A killer always hates their victim.

== 4: A killer is never richer than their victim.

== 5: Charles hates no-one that Aunt Agatha hates.

== 6: Aunt Agatha hates everyone but the butler.

== 7: The butler hates everyone who is not richer than Aunt Agatha.

== 8: The butler hates everyone Aunt Agatha hates.

== 9: No-one hates everyone.

== 10: Aunt Agatha is not identical with the butler, of course.

==

== Question: Who killed Aunt Agatha?

==

environ reserve x1,x2,z,u,v,w for Person;

given Agatha, butler, Charles being Person;

1: ex x1 st LivesatDBM[x1] & Killed[x1,Agatha];

2: for x1 st LivesatDBM[x1] holds x1=Agatha or x1=butler or x1=Charles;

3: for x1,x2 st Killed[x1,x2] holds Hates[x1,x2];

4: for x1,x2 st Killed[x1,x2] holds not Richer[x1,x2];

5: for x1 st Hates[Agatha,x1] holds not Hates[Charles,x1];

6: for x1 st x1<>butler holds Hates[Agatha,x1];

7: for x1 st not Richer[x1,Agatha] holds Hates[butler,x1];

8: for x1 st Hates[Agatha,x1] holds Hates[butler,x1];

9: for x1 ex x2 st not Hates[x1,x2];

10: Agatha<>butler

begin

Killed[Agatha, Agatha]

proof

11: for x1 st x1<>butler holds Hates[butler,x1] proof

let u be Person;

assume 11a: u<>butler;

thus Hates[butler,u] proof

11b: Hates[Agatha,u] by 11a,6;

thus thesis by 8,11b;
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end;

end;

12: ex x2 st not Hates[butler,x2] by 9;

consider u such that

13: not Hates[butler,u] by 12;

14: u=butler proof

assume 14a: u<>butler;

14b: Hates[butler,u] by 11,14a;

thus contradiction by 13,14b;

end;

15: not Hates[butler,butler] by 13,14;

16: Richer[butler,Agatha] by 7,15;

17: not Killed[butler,Agatha] by 4,16;

18: Hates[Agatha,Agatha] by 6,10;

19: not Hates[Charles,Agatha] by 5,18;

20: not Killed[Charles,Agatha] by 3,19;

consider u such that

21: LivesatDBM[u] & Killed[u,Agatha] by 1;

22: u=Agatha or u=butler or u=Charles by 2,21;

23: u<>butler & u<>Charles by 17,20,21;

24: u=Agatha by 22,23;

thus thesis by 21,24;

end

A.2 K. Schubert’s Steamroller

(steamr.mse)

environ

== The following example is due to L. Schubert.

==

== Wolves, foxes, birds, caterpillars, and snails are animals, and there

== are some of each of them.

reserve x, y, w, f, b, c, s for animal;

A: ex w, f, b, c, s st

wolf[w] & fox[f] & bird[b] & caterpillar[c] & snail[s];

== Also, there are some grains, and grains are plants.

reserve p, g for plants;



190 Section A.2: K. Schubert’s Steamroller

P: ex g st grain[g];

== Every animal either likes to eat all plants or all animals much smaller

== than itself that like to eat some plants.

1LIKES: for x holds

(for p holds likes[x,p])

or

(for y st smaller[y,x] &

(ex p st likes[y,p])

holds likes[x,y]);

== Caterpillars and snails are much smaller than birds, which are much smaller

== than foxes, which in turn are much smaller than wolves.

1SMALLER: for x, y st (caterpillar[x] or snail[x]) & bird[y]

holds smaller[x,y];

2SMALLER: for x, y st bird[x] & fox[y] holds smaller[x,y];

3SMALLER: for x, y st fox[x] & wolf[y] holds smaller[x,y];

== Wolves do not like to eat foxes or grains, while birds like to eat

== caterpillars but not snails.

2LIKES: for x, y, p st wolf[x] & fox[y] & grain[p]

holds not likes[x,y] & not likes[x,p];

3LIKES: for x, y st bird[x]

holds (caterpillar[y] implies likes[x,y]) &

(snail[y] implies not likes[x,y]);

== Caterpillars and snails like to eat some plants.

4LIKES: for x st caterpillar[x] or snail[x]

ex p st likes[x,p]

== Therefore there is an animal that likes to eat a grain-eating animal.

begin

ex x, y, p st likes[x,y] & likes[y,p] & grain[p]

proof

consider w, f, b, c, s such that

WFBCS: wolf[w] & fox[f] & bird[b] & caterpillar[c] & snail[s] by A;

consider g such that G: grain[g] by P;

0: not likes[b,s] & (ex p st likes[s,p]) & smaller[s,b]

by 3LIKES, 4LIKES, 1SMALLER, WFBCS;

1: likes[b,g] by 0, 1LIKES;

2: smaller[f,w] & not likes[w,f] & not likes[w,g]

by 3SMALLER, 2LIKES, G, WFBCS;

3: not likes[f,g] by 2, 1LIKES;

4: smaller[b,f] by 2SMALLER, WFBCS;



Section A.2: K. Schubert’s Steamroller 191

5: likes[f,b] by 1, 3, 4, 1LIKES;

thus thesis by G, 1, 5

end;

== A bit shorter, but messier.

ex x, y, p st likes[x,y] & likes[y,p] & grain[p]

proof

consider w, f, b, c, s such that

WFBCS: wolf[w] & fox[f] & bird[b] & caterpillar[c] & snail[s] by A;

consider g such that G: grain[g] by P;

1: not likes[b,s] & (ex p st likes[s,p]) & smaller[s,b] &

smaller[f,w] & not likes[w,f] & not likes[w,g] & smaller[b,f]

by 1SMALLER, 2SMALLER, 3SMALLER, 2LIKES,

3LIKES, 4LIKES, G, WFBCS;

2: likes[b,g] & not likes[f,g] by 1, 1LIKES;

3: likes[b,g] & likes[f,b] by 1, 2, 1LIKES;

thus thesis by G, 3

end

== Who will make it any shorter?



Part V

Mizar MSE Grammar
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B Mizar MSE Grammar

B.1 Notation

Name (in italics) stands for a variable in the grammar, that is a
non-terminal symbol.

token (in typewriter font) a token, that is a terminal symbol.
| separates alternative elements.

( ) groups elements together.
{ } zero or more occurrences of what is between braces.
{ }+ one or more occurrences of what is between braces.
[ ] zero or one occurrence of what is between brackets.

B.2 Grammar

Commentaries

Comment ::= == ArbitraryTextToEndOfLine

Article

Article ::= environ Environment [ begin TextProper ]

Environment ::= {
Axiom ; |
Reservation ; |
GlobalConstantsDeclaration ;

}

TextProper ::= { Statement ; }+

Environment Items

Axiom ::= LabelId : Formula

Reservation ::= reserve Identifier { , Identiifier } for SortId

GlobalConstantsDeclaration ::= given QualifiedObjects

Text Proper Items

Statement ::= CompactStatement |
DistributedStatement |
Choice

CompactStatement ::= Proposition ( SimpleJustification | Proof )

DistributedStatement ::= [ LabelId : ] now Reasoning end
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Choice ::= consider QualifiedObjects [ such that Proposition ]
SimpleJustification

Proposition ::= [ LabelId : ] Formula

SimpleJustification ::= [ by Reference { , Reference } ]

Reference ::= LabelId

Reasonings and Proofs

Proof ::= proof Reasoning end

Reasoning ::= { SkeletonItem ; | Statement ; }+

SkeletonItem ::= Assumption |
Generalization |
Conclusion

Assumption ::= assume Proposition

Generalization ::= let ExplicitlyQualifiedObjects

Conclusion ::= thus CompactStatement

Formulas

Formula ::= AndOrFormula |
ConditionalFormula |
BiconditionalFormula |
QuantifiedFormula

AndOrFormula ::= ConjunctiveFormula |
DisjunctiveFormula

DisjunctiveFormula ::= ConjunctiveFormula { or ConjunctiveFormula }

ConjunctiveFormula ::= UnitFormula { & UnitFormula }

UnitFormula ::= { not } ( AtomicFormula | ( Formula ) )

AtomicFormula ::= Equality |
Inequality |
PredicativeFormula |
contradiction |
thesis

Equality ::= Term = Term

Inequality ::= Term <> Term

PredicativeFormula ::= PredicateId [ [ Term { , Term } ] ]

Term ::= ObjectId

ConditionalFormula ::= AndOrFormula implies AndOrFormula
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BiconditionalFormula ::= AndOrFormula iff AndOrFormula

QuantifiedFormula ::= UniversalFormula | ExistentialFormula

UniversalFormula ::=

for QualifiedObjects [ st Formula ] holds Formula |
for QualifiedObjects [ st Formula ] QuantifiedFormula

ExistentialFormula ::= ex QualifiedObjects st Formula

Object Declarations

QualifiedObjects ::= ImplicitlyQualifiedObjects |
ExplicitlyQualifiedObjects |
ExplicitlyQualifiedObjects , ImplicitlyQualifiedObjects

ImplicitlyQualifiedObjects ::= ObjectList

ExplicitlyQualifiedObjects ::= QualifiedSegment { , QualifiedSegement }

QualifiedSegment ::= ObjectList ( be | being ) SortId

ObjectList ::= ObjectId { , ObjectId }

Identifiers

LabelId ::= Identifier

SortId ::= Identifier

PredicateId ::= Identifier

ObjectId ::= Identifier

IdentifierChar ::= A..Z | a..z | 0..9 |

Identifier ::= { IdentifierChar }+ { ’ }

Remarks

• Semicolon followed by begin, end or end-of-text can be omitted.

• A QualifiedSegment in Generalization must use be; in all other contexts, being
must be used.

• A Reasoning must include at least one Conclusion .

• The Reservation construct lets us use ImplicitelyQualifiedObjects where the SortId
is not specified explicitly for an ObjectId . The SortId of such an ObjectId is the
one that has been reserved for the ObjectId in Reservation .
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• The atomic formula thesis can save a lot of writing. thesis is always equivalent to
the formula that still remains to be proven in order to complete the innermost Proof .
Thus, any usage of thesis outside of a Proof is meaningless.

Consider a Proof . Initially, the thesis is equivalent to the Proposition for which
the Proof is written. The meaning of thesis is affected by each SkeletonItem in
the way that to many appears mysterious. In a correct Proof , the last meaning of
thesis should be not contradiction, that is true.

• The UniversalFormula has more variants than in BB version. The construct:

for someQualifiedObjects st aFormula1 holds aFormula2;

is equivalent to

for someQualifiedObjects holds aFormula1 implies aFormula2;

And also, if the scope of the quantifier is a QuantifiedFormula , then holds may be
omitted.
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B.3 Problems with syntax

B.3.1 A question

(syntax01q.mse)

== You are given a number of syntactically incorrect formulas.

== Your job is to make them syntactically correct by inserting parentheses

== (no other visible symbols are permitted)

== in such a way that the formulas become not only syntactically correct

== but also are accepted by the Mizar checker (without any errors).

== That is, all formulas you obtain should be tautologies.

environ

given a being PERSON;

== If you wish, you may understand the abbreviations as follows:

== K[a] a is a knight

== N[a] a is a knave

== S[a] a is short

== T[a] a is tall

== H[a] a is handsome

== You should understand however that the above suggestion is

== completely immaterial since tautologies are independent of the

== interpretation.

begin

== Example. For the syntactically incorrect

1: K[a] implies T[a] & T[a] implies H[a] & K[a] implies H[a];

== the solution can be:

1: ((K[a] implies T[a]) & (T[a] implies H[a]) & K[a]) implies H[a];

== End of example

1: K[a] implies S[a] iff S[a] or not K[a];

2: K[a] implies T[a] implies T[a] implies H[a] implies K[a] implies H[a];

3: K[a] implies T[a] & T[a] implies H[a] implies K[a] implies H[a];

4: K[a] implies T[a] implies K[a] implies K[a];

5: K[a] implies S[a] & N[a] implies T[a] implies K[a] & N[a] implies

S[a] & T[a];

6: K[a] implies S[a] & N[a] implies T[a] & K[a] or N[a] implies S[a] or T[a];

7: K[a] implies S[a] & N[a] implies T[a] & K[a] or N[a] & not S[a] implies

T[a];
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8: K[a] implies S[a] & S[a] implies K[a] iff K[a] iff S[a];

9: K[a] & S[a] or not S[a] & not K[a] iff K[a] iff S[a];

B.3.2 Its answer

(syntax01a.mse)

environ

given a being PERSON;

begin

1: K[a] implies (S[a] iff S[a] or not K[a]);

2: (K[a] implies T[a]) implies

((T[a] implies H[a]) implies (K[a] implies H[a]));

3: ((K[a] implies T[a]) & (T[a] implies H[a]))

implies (K[a] implies H[a]);

4: (K[a] implies T[a]) implies (K[a] implies K[a]);

5: ((K[a] implies S[a]) & (N[a] implies T[a]))

implies (K[a] & N[a] implies S[a] & T[a]);

6: ((K[a] implies S[a]) & (N[a] implies T[a]) & (K[a] or N[a]))

implies S[a] or T[a];

7: ((K[a] implies S[a]) & (N[a] implies T[a]) & (K[a] or N[a])

& not S[a]) implies T[a];

8: ((K[a] implies S[a]) & (S[a] implies K[a])) iff (K[a] iff S[a]);

9: (K[a] & S[a] or not S[a] & not K[a]) iff (K[a] iff S[a]);


