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Abstract

In equilibrium play of a two-round tournament we find that underdogs exert more effort in the opening

round while favorites save more effort for the final. Ability differences between players are therefore

compressed in the opening round so upsets are more likely, and amplified in the final so blowouts are

more likely. Measures that reduce the need to strategically allocate effort across games make for a more

exciting final but a less exciting opening round. Consistent with the model, introduction of a one-day

rest period between regional semi-final and final matches in the NCAA men’s basketball tournament

was found to increase the favorite’s victory margin in the semi-finals by about five points. Non-sports

applications of the model include the allocation of resources across primaries and general elections by

candidates and the allocation of resources across a career ladder by managers.
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1 Introduction

Popular discussions of tournament play often celebrate the success of underdogs in early rounds and decry

the prevalence of unexciting finals. Such a pattern might be just a statistical illusion. There are many early

round matches and some upsets are inevitable. And there is only one final so it is unlikely to be the most

exciting match of the tournament. In this paper we consider instead whether the pattern might have a real

foundation in the strategic allocation of effort by tournament participants.

We analyze a two-round tournament in which a favorite and underdog play in each of the two semi-finals

and then one player from each match advances to the final. Victory in a match is probabilistic in that

the chance of winning is increasing in each player’s relative quality and in his relative effort expenditure.1

Each player has a fixed amount of effort to exert over the two rounds, unused effort is of no value, and the

only payoff is from winning the tournament. To maximize the chance of winning, each player must balance

out the benefits of expending more effort in the semi-final against the opportunity cost of having less effort

available for the final.

Favorites and underdogs both have an incentive to conserve resources for the final, but the trade-offs

they each face are different. A favorite plays a weak opponent in the semi-final, but is likely to face a tough

opponent in the final, so it has a strong incentive to hold back. Conversely, an underdog already plays a tough

opponent in the semi-final, so it has less incentive to conserve effort for the final.2 Because of these different

incentives, we find that in any symmetric Nash equilibrium underdogs exert more effort than favorites in

the semi-final. The extra effort does not fully compensate for lower ability and underdogs are still likely to

lose, but the chance of an upset rises. In the final round each player expends all its remaining resources so

differences in abilities are no longer compressed by strategic considerations. Instead, an underdog who makes

it to the final has fewer resources left to spend than the favorite, so differences in abilities are amplified and

the chance of a blowout by the favorite rises.

If a favored player loses to an underdog in the early rounds it is often accused of “looking past” the

underdog to its next match. Even if a player’s strategy is optimal ex ante, it might turn out to be unsuccessful

ex post, so such criticism is often unfair. Our results imply that it is rational for the favorite to hold back

on resources in the semi-final even if it correctly anticipates that in equilibrium the underdog will be playing

harder. Sometimes the strategy will backfire, but on average the favorite benefits from being in a better

position for the final.

These results are derived using a standard contest model in which each player’s probability of victory in a

match is a strictly increasing function of his ability and effort.3 Such models were first developed to analyze

1Being a better player can be interpreted to mean that the player uses resources more efficiently, or that the player has a

larger resource endowment. Both interpretations are equivalent in our model, so we use the first one without loss of generality.
2Our model assumes that there is no “runner-up” prize for reaching the final but losing. Since the underdog has less chance

of winning the final, such a prize gives the underdog even more incentive to spend resources on the opening round at the expense

of being more likely to lose the final. For simplicity we do not include this effect in the formal model.
3A related literature, which has also been applied to a wide range of situations, considers all-pay auctions in which the

highest bidder wins for certain (Baye, Kovenock, and de Vries, 1996).
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rent-seeking (Tullock, 1967, 1980) and similar models are used in a wide variety of areas including patent

races (Loury, 1979), election campaigns (Snyder, 1989), compensation schemes (Nalebuff and Stiglitz, 1983),

career ladders (Lazear and Rosen, 1981), lobbying (Baye, Kovenock, and de Vries, 1993), and sports contests

(Szymanski, 2003).4 More specifically, we model the contest as a sequential elimination ladder tournament

in which players first compete in separate groups and the winners then compete against each other (Rosen,

1986).

Our result that underdogs do indeed “try harder” than favorites in the semi-finals contrasts with that of

Rosen (1986).5 Because the favorite has a better chance of victory in the final, Rosen finds that winning a

semi-final match is more valuable to the favorite so the favorite tries harder than the underdog. We reach

the opposite conclusion because we assume that there is a fixed supply of effort to be used across rounds

and unused effort in the tournament has no value. Since players lose nothing from trying hard other than

having less effort for the final, and since favorites have more incentive to save effort for the final, underdogs

try harder in the semi-finals. While not directly comparable, our results also differ in flavor from results

on relative effort levels in single-round tournaments. For instance, Baik (2004) finds that favorites and

underdogs exert the same effort, while Dixit (1987) finds that underdogs have an incentive to precommit to

less effort and that favorites have an incentive to precommit to more effort.

The effect of asymmetric abilities in sequential elimination ladder tournaments is also considered by

Groh, Moldovanu, Sela, and Sunde (2003) in an analysis of optimal seedings. The primary difference with

our model is we assume there is a resource constraint for total effort in the tournament. The effect of such

resource constraints is analyzed by Stein and Rapoport (2003). Their model differs in that they consider

the case where players have identical abilities and they concentrate on tournament design issues. Amegashie

(2004) also considers a tournament with budget constraints and asymmetric abilities, but rather than having

a ladder structure the players all compete against each other in a single opening round match and then the

best performers are selected to compete against each other in the final round.

If players have separate budgets for each round then the strategic factors we examine disappear. That

is, all players will “give 100%” in each round so the probability of an upset in the opening round will not

be increased by the favorite withholding effort. We exploit this implication to test our model empirically

by looking at data from the NCAA men’s basketball tournament. Before 1969, the regional semi-finals and

regional finals were played back-to-back on two consecutive days so teams had little time to recover from the

semi-final or prepare for the final. In 1969, the NCAA introduced a rest day between the matches, thereby

reducing the need to allocate effort and preparation time strategically. Since favorites were more free to “play

one game at a time” and focus on defeating their semi-final opponents, our model predicts that semi-final

upsets were less likely starting in 1969 than in previous years. Consistent with the model’s prediction we

find that after introduction of the rest day the number of upsets fell and that the average victory margin for

the favored team increased by about five points despite a long-term trend toward greater parity.

4For a survey see Nitzan (1994). Baye and Hoppe (2002) show the formal connection between many of these models.
5Rosen considers this question briefly in Section IV. The bulk of his paper examines other issues.

2



In addition to sports tournaments, our results apply to other situations with similar tournament struc-

tures, including multi-round hiring decisions, multi-division promotion ladders, and election campaigns with

a primary and general election. For instance, if the favored candidate in a primary election conserves re-

sources for the general election, the underdog candidate is more likely to win, but on average the favored

candidate is still wise to hold back. Rules that restrict the amount of resources spent on the primaries

are typically thought to favor underdogs because favorites are likely to have more resources. Our analysis

suggests that, when resources endowments are the same, strategic allocation of resources across the primary

and general elections helps weaker candidates, so capping resources in the primary can instead help the

stronger candidate.6

2 The Model

Four players compete in a tournament with a semi-final and final round. Each player is endowed with 1 unit

of effort to allocate across the two rounds. In each of two semi-finals two players compete by simultaneously

choosing effort levels which influence the probability of winning the match.7 The two semi-final winners

advance to the final and compete for a prize of normalized value 1 by expending their remaining effort

resources. There is no runner-up prize for a player who advances to the final but loses. The only cost of

effort is the opportunity cost of having less effort available for the other round, and effort saved by a player

who does not advance to the final has no value.8

In each given match (semi-final or final), the probability with which a player wins that match depends

on his own effort level in the match, the effort level of the opposing player, and his relative ability compared

to the opposing player. In particular, if a player expends effort x ∈ [0, 1], the opposing player expends effort
level y ∈ [0, 1], and the relative ability of the first player is measured by r > 0, then the first player wins

with probability

f(r, x, y) =

(
rx
rx+y if x > 0 or y > 0,
r

r+1 if x = y = 0.
(1)

This is an asymmetric version of the familiar Tullock success function.9 Note that the marginal return to

6Resources can be though of quite generally. For instance, “going negative” is a costly strategy for the candidate making

criticisms in that it loses voter goodwill. Underdogs might then be more inclined than favorites to use negative advertising in

the primary.
7In sports contests the simultaneity assumption is most appropriate regarding the allocation of preparation time by players

and coaches before the match. Regarding physical effort in the match itself, it can be adjusted based on circumstances. For

instance, the coach can give more playing time to the best players if the team is behind. But the impact on the outcome is

still probabilistic so the coach cannot be sure of how much playing time is appropriate, and the basic intuition of the model is

unaffected.
8We therefore implicitly assume an extreme version of convex effort costs in which effort has zero cost up to the first unit,

and infinite cost thereafter. With such a cost function it is clearly optimal to use the one unit of resources, but not more, so

the model can be reduced to the allocation problem described in the text.
9This function is popular because of its simplicity and the fact that it typically yields pure strategy equilibria. When the
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effort (as measured by the probability of victory) in a given match is positive and diminishing,

∂

∂x
f(r, x, y) =

ry

(rx+y)2
> 0,

∂2

(∂x)
2 f(r, x, y) =

−2r2y
(rx+y)

3 < 0. (2)

We assume that there are only two types of players, “strong” favorites and “weak” underdogs. The

difference between these types is that a favorite’s ability is higher than that of an underdog. Specifically,

we measure this ability difference by the parameter g > 1. If a favorite is matched against an underdog the

favorite’s relative ability is given by r = g > 1 and the underdog’s relative ability by r = 1/g < 1. If either

a favorite is matched against another favorite or an underdog against another underdog, the relative ability

of either player is r = 1. We assume the semi-final pairings consist of one favorite and one underdog.

2.1 The players’ allocation decisions

Let s1 be the effort of the (strong) favorite in the first semi-final and w1 be the effort of the (weak) underdog

in that semi-final. The probability that the favorite wins the first semi-final is then f(g, s1, w1) and the

probability that the underdog wins is f(1/g,w1, s1). Similarly in the second semi-final let s2 be the effort

of the favorite and w2 be the effort of the underdog, so the probability that the favorite wins the second

semi-final is f(g, s2, w2) and the probability that the underdog wins is f(1/g, w2, s2).

Since each player’s total effort budget is 1, and unused effort has no value, if a player makes it to the final

it will expend effort equal to 1 minus its effort in the semi-final. Consider the favorite in the first semi-final.

It has a f(g, s1, w1) chance of making it to the final. If it makes it to the final the chance of facing an equally

strong opponent is f(g, s2, w2), in which case the chance of victory is f(1, 1−s1, 1−s2), and the chance of
facing a weak opponent is f(1/g, w2, s2), in which case the chance of victory is f(g, 1−s1, 1−w2). Therefore
for i, j = 1, 2 and i 6= j the probability that favorite in the ith semi-final wins the tournament is

πSi (si, wi, sj , wj) =
gsi

gsi+wi

∙
gsj

gsj+wj

(1−si)
(1−si)+(1−sj)

+
wj

gsj+wj

g (1−si)
g (1−si)+(1−wj)

¸
(3)

and, similarly, the probability that the underdog in the ith semi-final wins the tournament is

πWi (si, wi, sj , wj) =
wi

gsi+wi

∙
gsj

gsj+wj

(1−wi)

g (1−sj)+(1−wi)
+

wj

gsj+wj

(1−wi)

(1−wi)+(1−wj)

¸
. (4)

Since there are no effort costs and since the prize is 1 from victory in the final and 0 from anything less, the

expected payoff to each player is just the probability of winning the tournament.

probability of victory is very sensitive to relative effort only mixed strategy equilibria may exist (Baye, Kovenock, and de Vries,

1994).
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2.2 Equilibrium

In equilibrium each player maximizes the probability of winning the tournament taking the allocation deci-

sions by the other players as given, including the players in the other semi-final. As seen from the probability

functions (3) and (4), each player faces a trade-off. Higher effort in the semi-final increases the chance of

making it to the final, but at the opportunity cost of a lower chance of succeeding in the final. Because

f(g, x, y) is concave in x, there are diminishing returns from effort in both rounds. Therefore each player’s

probability of winning the tournament is a concave function of effort by the player: it is initially increasing

when the marginal return to effort in the semi-final is high and the marginal cost of having less effort for the

final is low, and then decreasing when the marginal return to effort in the semi-final is low and the marginal

cost of having less effort for the final is high.

For i, j = 1, 2 and i 6= j the first-order condition for maximization of (3) is

∂πSi
∂si

≡ gwi

(gsi+wi)
2

∙
gsj

gsj+wj

(1−si)
(1−si)+(1−sj)

+
wj

gsj+wj

g (1−si)
g (1−si)+(1−wj)

¸
−

gsi
gsi+wi

"
gsj

gsj+wj

(1−sj)
((1−si)+(1−sj))2

+
wj

gsj+wj

g (1−wj)

(g (1−si)+(1−wj))
2

#
= 0, (5)

and similarly the first-order condition for maximization of (4) is

∂πSi
∂wi

≡ gsi

(gsi+wi)
2

∙
gsj

gsj+wj

(1−wi)

g (1−sj)+(1−wi)
+

wj

gsj+wj

(1−wi)

(1−wi)+(1−wj)

¸
−

wi

gsi+wi

"
gsj

gsj+wj

g (1−sj)
(g (1−sj)+(1−wi))

2+
wj

gsj+wj

(1−wj)

((1−wi)+(1−wj))
2

#
= 0. (6)

Since (3) and (4) are concave functions in their respective decision variables, the first-order conditions are

also sufficient for a maximum. Throughout the rest of the paper, we only consider symmetric Nash equilibria,

meaning that the favorite in one semi-final uses the same strategy as the favorite in the other semi-final, and

likewise for the underdogs. Henceforth when we refer to equilibrium, we will mean a symmetric equilibrium

in which s1 = s2 = s and w1 = w2 = w. Invoking symmetry and making some minor simplifications, the

two first order conditions for the favorites from (5) both reduce to

w

gs+w

∙
s
1

2
+w

(1−s)
b

¸
= s

∙
s

1

4(1−s)+w
(1−w)
b2

¸
, (7)

where b = g(1− s) + (1− w). Similarly, the two first order conditions for the underdogs from (6) reduce to

gs

gs+w

∙
gs
(1−w)

b
+w

1

2

¸
=w

∙
gs

g(1−s)
b2

+w
1

4(1−w)

¸
. (8)

Note that effort levels at the corners cannot be part of any equilibrium. If, for instance, favorites spend

zero effort in the first round, they are assured to lose the tournament unless underdogs also spend zero effort.

But in that case, each team can discontinuously increase its chance of winning the tournament by allocating
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Figure 1: Reaction functions for symmetric equilibrium.

an infinitesimal amount of effort to the first round. A similar argument shows that allocating all available

resources to the first round is not optimal either. Thus, to find equilibria of the model we may restrict our

attention to effort levels that are strictly between zero and one.

For each w ∈ (0, 1), call s∗(w) the value of s that solves (7), and likewise for each s ∈ (0, 1), call w∗(s) the
value of w that solves (8) (in the Appendix we show that these solutions are indeed well-defined). A symmetric

Nash equilibrium in pure strategies is then a pair (s∗, w∗) that satisfies s∗ = s∗(w∗) and w∗ = w∗(s∗).

Figure 1 depicts representative reaction functions s∗(w) and w∗(s) generated by (7) and (8).10 A sym-

metric equilibrium occurs at the point where they intersect. Note that this intersection is in the northwest

half of the diagram where s < w, implying that underdogs exert more effort in the semi-final and that

10These functions already include the assumption that both favorites follow the same strategy and both underdogs follow the

same strategy. Hence they limit our attention to symmetric Nash equilibria. The particular functions shown were generated by

setting g = 4.
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favorites have more effort remaining for the final, 1− s > 1− w. Note also that the equilibrium lies in the

region where w < gs, implying from (1) that f(1/g, w∗, s∗) < 1
2 . Therefore, although underdogs exert more

effort than favorites in the semi-final, they do not exert so much more as to become the new favorite.11 In

fact, as stated in the following proposition, these properties always hold in our model.12

Proposition 1 A symmetric pure strategy Nash equilibrium (s∗, w∗) exists. In any such equilibrium, the

underdog exerts more effort than the favorite in the semi-final, but not enough to overcome the favorite’s

ability advantage, s∗ < w∗ < gs∗.

The proof of Proposition 1 is in the Appendix. We first show that s∗(w) and w∗(s) each intersect the

45-degree line at exactly one point in (0, 1)2 and that s∗(w) intersects it from below while w∗(s) intersects it

from above. As can be seen from examination of Figure 1, this implies that s∗ and w∗ intersect each other

in the interior of the strategy space at least once so a symmetric Nash equilibrium always exists. It is then

shown that s∗ intersects at a lower value than w∗ does and that s∗(w) is strictly increasing in w. These

restrictions imply that any such intersection is above the 45-degree line, so s∗ < w∗. Finally, to show that

w∗ < gs∗ we use proof by contradiction based on direct manipulation of the equilibrium conditions.13

Why do underdogs “front-load” effort to early rounds, while favorites “back-load” effort to the finals? To

gain some intuition for the result, consider the problem of a favorite. In the semi-final he is paired against an

underdog. If he gets to the final there is a chance he will face an underdog again, but also a chance he will

face the other favorite. Therefore the expected quality of a favorite’s opponents increases as the tournament

progresses. Conversely, an underdog is paired against a favorite in the semi-final. If he gets to the final,

there is a chance that he will have to play a favorite again, but also a chance that he will play an underdog.

Therefore the expected quality of an underdog’s opponents decreases as the tournament progresses. Given

these changes in opponent quality over the course of the tournament, an equal effort allocation for all players

is clearly not an equilibrium. Favorites would have an incentive to shift some effort to the final where the

marginal effect on the probability of winning is higher. Similarly, underdogs would have an incentive to shift

some effort to the first round. Only if the underdogs exert more effort than favorites in the semi-final, and

if the favorites exert more effort than underdogs in the final, can each player’s marginal return from effort

in the semi-final be equal to the opportunity cost of having less effort remaining for the final.

The strategic allocation of effort identified in Proposition 1 arises because the players have a single budget

constraint for the whole tournament and can substitute their effort across rounds. To gain more insight into

the model, it is worth comparing how outcomes differ when effort expenditures by the two players in a match

are equal. This would result if players naively allocated half of their effort to each round. It would also result

11In the example of Figure 1 where g = 4, strategic allocation of effort raises the probability of an upset from 1/(1 + g) = .2

to w∗/(gs∗ +w∗) = .529/(4(.397)+.529) = .250, which is still well below 1/2.
12Again we are following the literature in limiting attention to symmetric equilibria. There may also be asymmetric equilibria

and we cannot be assured that they have the same properties as the symmetric equilibria we examine.
13Although we have not found any such situations, there may be multiple intersections, implying the existence of multiple

equilibria. Any symmetric Nash equilibrium in pure strategies has the properties that we identify.
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if the players had a separate effort budget in each round and could not substitute effort across rounds. For

instance, if the interval between rounds was sufficient for the players to fully recover, then the players would

have a full unit of effort to expend in each round.14 Since the success function f(r, x, y) is homogenous of

degree zero in (x, y) the exact amount of effort in a match does not matter as long as it is the same for both

players. Let the amount be e ∈ [0, 1].15

One question is whether strategic allocation of effort across rounds makes an upset in the semi-final more

likely than if the players exerted equal effort. As would be expected, w∗ > s∗ implies that this is true,

f(
1

g
, w∗, s∗)− f(

1

g
, e, e) =

g (w∗ − s∗)

(gs∗+w∗) (g + 1)
> 0. (9)

Now consider how this higher probability of an upset in the semi-final affects the likely matchups in the

final. The final is between a favorite and an underdog if either the favorite in the first semi-final wins and

the underdog in the second semi-final wins, or vice-versa. Because strategic allocation of effort pushes the

chance of an upset in each semi-final closer to 1/2 but not above it, the probability of a final between a

favorite and an underdog is higher than in the equal effort case. Comparing,

2f(g, s∗, w∗)f(
1

g
, w∗, s∗)− 2f(g, e, e)f(1

g
, e, e) = 2g

(w∗−s∗)
¡
g2s∗−w∗

¢
(gs∗+w∗)2 (g+1)2

> 0, (10)

where the inequality follows from w∗ > s∗, gs∗ > w∗, and g > 1. Not only does strategic allocation of effort

lead to more favorite-underdog matches in the final, but the underdog has less remaining resources, so the

favorite is more likely to win these matches than in the case of equal effort expenditures. In particular,

f(g, 1− s∗, 1− w∗)− f(g, e, e) =
g(w∗ − s∗)

(g(1− s∗) + 1− w∗) (g + 1)
> 0, (11)

where the inequality follows from w∗ > s∗.

These results from inequalities (9) — (11) are stated formally in the following proposition.

Proposition 2 Compared to the equal effort case, in any symmetric pure strategy Nash equilibrium: (i) the

probability that an underdog defeats a favorite in the semi-final is higher; (ii) the probability that a favorite

and an underdog meet in the final is higher; and (iii) the probability that a favorite-underdog final is won by

the favorite is higher.

Although the model does not directly predict the margin of victory, the margin is likely to be correlated

with relative effort levels and the probability of victory. Therefore Propositions 1 and 2 support the basic

intuition that the strategic allocation of resources across the tournament makes close matches in the semi-

finals and a “blowout” in the championship more likely.

14That they would in fact use all of it follows from our simplifying assumption that unused effort has no value.
15For simplicity we assume that all effort levels in the tournament are the same, but the results hold as long as effort levels

by the two players in each match are the same, even if effort varies across matches.
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Now consider how the allocation of effort affects whether a favorite or underdog is most likely to win the

whole tournament. From (3), with equal effort the probability that a given favorite wins the tournament is,

for i = 1, 2,

πSi (e, e, e, e) =
g

g + 1

µ
g

g + 1

1

2
+

1

g + 1

g

g + 1

¶
. (12)

With strategic allocation of effort the probability is, for i = 1, 2,

πSi (s
∗, w∗, s∗, w∗) =

gs∗

gs∗+w∗

µ
gs∗

gs∗+w∗
1

2
+

w∗

gs∗+w∗
g(1−s∗)

g(1−s∗)+(1−w∗)

¶
. (13)

The respective probabilities that one of the two favorites wins are therefore 2πSi (e, e, e, e) and 2π
S
i (s
∗, w∗, s∗, w∗).

Comparing (12) and (13), there are two effects from allocating effort across rounds. First, since

g

g + 1
>

gs∗

gs∗ + w∗

as implied by Proposition 2(i), favorites are less likely to advance to the final than with equal effort levels.

Second, if they do make it to the final they have more resources left to compete. This second effect does not

matter if two favorites meet since the probability of victory is 1/2 in either case, but if a favorite meets an

underdog the probability of victory rises to

g(1− s∗)

g(1− s∗) + (1− w∗)
>

g

g + 1

as shown in Proposition 2(iii). From direct comparison of (12) and (13) the relative strength of the two

effects is not obvious. The following proposition, which is proven in the Appendix, uses indirect methods

based on an underdog’s probability of winning the tournament to show that the first effect always dominates

the second effect. Even though allocation of effort across rounds makes it more likely that the favorite

wins a match with an underdog, the probability that two underdogs reach the final increases enough that a

favorite is less likely overall to win the tournament than in the case of equal effort expenditures.

Proposition 3 Compared to the equal effort case, in any symmetric pure strategy Nash equilibrium the

probability that a favorite wins the tournament is lower.

3 Empirical Test

Because of their formalized structure and data availability, sporting contests are particularly amenable to

empirical tests of strategic behavior. To test whether the strategic resource allocation effects derived in

our model are present in actual contests, we use data from the NCAA men’s basketball tournament. This

sequential elimination tournament features invited U.S. college teams which first compete to be one of the

“Final Four” regional champions and then compete for the national title. The tournament is attractive for our

purposes because a structural change in the tournament’s schedule allows us to contrast team behavior under
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two different resource constraints.16 Before 1969, semi-final and final matches were played on consecutive

days so coaches and players had little time to recover from the semi-finals and prepare for the finals. Starting

in 1969, the NCAA introduced a rest day between the matches in order to “provide greater preparation time

for the coaches involved” and “give more rest to the players”.17

The rest day was introduced in both the regional championships and in the national championship.

Because there are four regional championships every year, but only one national championship, there are

four times as many observations on the regional level, so we test our model using regional data. While the

entire tournament extends over more than just the two regional rounds, there is a multi-day (usually about

one week) break between any preliminary matches and the regional semi-finals, and about a one week break

between the regional finals and the national championships. Therefore, from the perspective of allocating

resources across matches, the regional semi-finals and finals can be viewed in relative isolation from the rest

of the tournament and our basic model of a two-round tournament can be applied.18

Our model predicts that the introduction of the rest day should have had differing effects on favorites

and underdogs. Before 1969 when teams had to allocate their resources across the two rounds, favorites had

a strong incentive to hold back on effort in the semi-final because they expected to play a better team in

the final. Underdogs also had some incentive to conserve effort, but they were already playing a strong team

in the semi-final so they had less incentive to hold back. Therefore, from Proposition 1, without the rest

day we expect underdogs to allocate more effort to the semi-final than favorites do.19 After introduction

of the rest day, teams could recover from the semi-final before the final so the need to allocate resources

across the tournament should have declined or disappeared. Therefore, as discussed in the previous section,

teams should have come closer to fully exerting themselves in each match. Based on this result, Proposition

2(i) predicts there will be fewer upsets in the semi-finals after introduction of the rest day, Proposition 2(ii)

predicts there will be fewer pairings in the final between the favorite from one semi-final and the underdog

from the other, Proposition 2(iii) predicts such matches will be less likely to be won by the favorite, and

16This tournament is also attractive for testing the model because the duration of matches is not endogenous to player

strategies except for rare overtime matches. In tournaments where the duration of matches is endogenous, e.g. the NBA

tournament where a match is won after one team wins a majority of n games, or tennis tournaments where a match is won

after one player wins a majority of n sets, a favorite that tries to save resources can instead find itself wasting resources on a

longer match than necessary.
17These were the first two reasons cited by the “Report of the Executive Committee” in the NCAA’s Proceedings of the 62nd

Annual Convention - 1968. Better press coverage was the third reason.
18Since semi-final matches are played sequentially rather than simultaneously, players in the second match may have the

opportunity to adjust their effort levels based on the outcome of the first match. However, such adjustments will be incomplete

since it is too late for players and coaches to adjust their preparation time for the semi-final. For simplicity we abstract from

this issue.
19Recall that we are assuming there is no cost to effort other than the opportunity cost of having less effort available for the

next match. This simplifying assumption may not be appropriate for professional tournaments where players have been shown

to vary their effort based on financial rewards (Ehrenberg and Bognanno, 1990). The idea that college basketball players in the

tournament are willing to “go all out” is indirectly supported by McClure and Spector (1997) who find that higher financial

rewards for colleges do not affect performance levels.
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Proposition 3 predicts that the overall probability of a favorite winning the regional championship will higher.

Since all of the model’s predictions follow from the main result of Proposition 1, we concentrate our

formal analysis on measuring relative effort in the semi-final matches. The other predictions, which are more

indirect and therefore more difficult to test, are briefly analyzed at the end of the empirical section.

3.1 Data and preliminary analysis

For each match in the tournament we observe the victor, the point scores of the two teams, and whether or

not the game went into overtime.20 To measure the quality of teams we use the final UPI poll which ranked

the top 20 teams after the regular season and immediately before the start of the tournament.21 Ideally we

would like to observe each team’s effort level and the resulting probability of winning, but clearly this is not

possible. However, the relative scores of the two teams can be used as a noisy measure of relative effort.22

To the extent that we can condition on the teams’ relative quality, this measure will be more accurate.

To evaluate the impact of the rest day, we look at symmetric windows on either side of the change in

1969. The NCAA tournament began in 1939 but the modern system of four regional championships did

not start until 1952.23 Therefore the broadest possible window includes the 17 years 1952-1968 and the

subsequent 17 years 1969-1985. We also consider a narrower 10-year window on either side of the change

to reduce the impact of other unmeasured factors that might be changing concurrently. Every year there

are four regional championship tournaments with two semi-final matches each. Therefore for the 34 years

of data in the 17-year window there are a possible 272 matches in the sample, and for the 20 years of data

in the 10-year window there are a possible 160 matches in the sample. Unranked teams, which are assigned

the censored rank of 21, cannot be compared with other unranked teams so we discard matches in which

both teams are unranked, leaving a sample of 249 matches for the 17-year window and 151 matches for the

10-year window.

As a first step to get some perspective on the data let us examine how average winning margins of favored

teams have changed over time. Positive margins are assigned to victories by favored teams, negative margins

are assigned to upsets, and zero margins are assigned to games that go into overtime. We compute the

20Tournament data is from the official NCAA site, http://www.ncaasports.com.
21The AP poll is the other major poll, but for the period 1963-1968 the AP only reported the top 10 teams.

The NCAA did not start its own ranking of teams in the tournament until 1979. UPI rankings are from

http://www.sportsstats.com/bball/rankings/national.rankings.by.year. Results are very similar if we use the AP top 10 data

available from http://www.ncaasports.com. Rankings for teams in the 11-20 range are comparatively noisy so matches between

teams in this range contribute little to our regression results.
22An alternative to the actual scores is Las Vegas point spreads. Assuming that gamblers anticipate the effects we consider,

this ex ante measure should be less noisy, but we were unable to find point spread data for most of the sample period.
23Before 1951 there were only 8 teams in the in the tournament and only two regional championships. The number of

participants rose to 16 teams in 1951 but the creation of four regional championships (and the concurrent adjustment to rest

periods before the national championship) did not occur until the following year. Note that the number of participants increased

further to 22 in 1953, and then ranged from 23 to 25 until 1975 when 32 teams participated. The number was again increased

to 40 teams in 1979, to 48 teams in 1980, and finally to 64 teams in 1985.
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Figure 2: Average semi-finals victory margin with prediction from trend and rest day dummy variable

average margin for each year and regress the resulting sequence against a time trend and a rest day dummy

variable that is set to zero until 1968 and to one after that. The result of this regression for the 17-year

window is depicted in Figure 2. (Results for the 10-year window are similar.) Note that there is a long-term

trend toward greater parity, presumably as athletic ability rises asymptotically toward physical maximums.24

Consistent with Proposition 1, this trend appears to have been temporarily reversed in 1969 when the rest

day was introduced. For the 17-year window, inclusion of the rest day dummy variable raises the adjusted

R2 from .146 to .218. For the 10-year window, where the long-run trend toward parity is less apparent,

inclusion raises the adjusted R2 from only -.030 to .265. However, while suggestive, these regressions are not

conclusive because they are based on annual averages rather than on match-level data.25

24Such a trend would be captured in our model by a decrease in g. Greater parity is most apparent in individual sports

such as running where world records have improved at a decreasing rate and victory margins have narrowed. In the NCAA

tournament such a trend could also result from the increasing number of teams admitted to the tournament. Toward the end

of the period so many teams were starting the tournament that surviving to the regional semi-finals (the “Sweet Sixteen”) had

become a strong signal of a team’s ability, even if a team was poorly ranked before the tournament. However, the number of

participants was nearly constant from 1953 to 1975 during which most of the fall in victory margins occurred. The issue of

survival bias through the course of a tournament is analyzed in Abrevaya (2002).
25The coefficient for the dummy variable is 6.11 in the 10-year window regression and 4.33 in the 17-year window regression.

The t-statistics are 2.36 and 1.69. The dummy variable coefficients for robust regressions are similar and the t-statistics are

2.14 and 2.03 respectively.
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Table 1: Regression results for impact of rest day on semi-final victory margins

10-year window (1959-1978) Full 17-year window (1952-1985)

OLS Robust OLS Robust

Fav. Score − Under. Score

Constant

Year

Rest Day

Fav. Score−Under. Score
Constant

Year

Under. Rank − Fav. Rank

Rest Day

(Fav. Score)
1
2 −(Under. Score) 12

Constant

Year

Rest Day

(Fav. Score)
1
2 −(Under. Score) 12

Constant

Year

(Under. Rank)
1
2 −(Fav. Rank)

1
2

Rest Day

Coeff t-stat

39.057 1.88

-0.520 1.59

5.897 1.56

34.817 1.72

-0.525 1.65

0.459 2.95

6.126 1.66

2.388 1.99

-0.032 1.70

0.359 1.65

2.055 1.77

-0.032 1.74

0.151 3.48

0.381 1.81

Coeff t-stat

42.713 2.07

-0.591 1.82

7.544 2.01

42.163 2.13

-0.640 2.02

0.424 2.74

7.775 2.13

2.584 2.16

-0.036 1.89

0.433 1.99

2.435 2.11

-0.038 2.08

0.151 3.49

0.449 2.14

Coeff t-stat

28.474 3.34

-0.353 2.51

4.376 1.60

24.357 2.91

-0.360 2.63

0.455 3.87

4.487 1.68

1.672 3.32

-0.021 2.48

0.258 1.60

1.406 2.86

-0.021 2.64

0.145 4.25

0.279 1.78

Coeff t-stat

33.056 3.89

-0.434 3.10

6.095 2.24

29.120 3.50

-0.435 3.20

0.427 3.67

5.485 2.21

1.928 3.84

-0.025 3.01

0.340 2.11

1.658 4.30

-0.025 3.16

0.146 4.30

0.332 2.14

Year variable equals calendar year minus 1900. Rest Day dummy variable equals 1 starting in Year 69.

3.2 Estimation and results

To see whether the patterns suggested by Figure 2 are statistically significant, we use match-level data for

the 10-year and 17-year windows before and after the change. Match-level data allows us to avoid statistical

problems due to averaging and also allows us to condition on the rankings of the two teams so that the

victory margin is a more accurate measure of relative efforts. We perform standard OLS regressions and also

robust regressions that iteratively reweight the observations to reduce the impact of large outliers.26 In our

case such outliers could arise from the stochastic relationship between victory margins and relative effort or

from the imperfect (and censored) measurement of team ability.27

Looking at Table 1, we first regress the victory margin of the favorite against the year trend and the rest

day dummy. This regression is the match-level equivalent of the regression shown in Figure 2. Second, we

26We use the rreg command from STATA which uses a mixture of Huber weights and bi-weights to reweight the regression.
27For each specification the robust regression procedure assigns the smallest weight to #1 UCLA’s 49-point victory over

unranked Wyoming in 1967. The different regressions predict only about a 9-point victory, but undefeated UCLA (the eventual

tournament champion) was an unusually strong #1 team, Wyoming with a 15-12 record was an unusually weak unranked team,

and UCLA, which had not made it to the tournament the previous year after winning the tournament two years in a row, might

have been less averse to running up the score than the typical favorite.
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perform the same regression except we condition on the difference in rankings between the underdog and

the favorite where better teams have lower ranks. Third, we regress the difference in the square roots of

the scores against the year trend and the rest day dummy. Fourth, we again condition on the difference in

rankings between the underdog and the favorite, but we use square roots of the rankings.

The regression results tend to support the basic trend in Figure 2 of decreasing margins over time with

a jump in 1969 when the rest day is introduced. In particular, when we condition on the rankings the rest

day dummy is significant at the 10% level in all of the OLS regressions and at the 5% level in all of the

robust regressions.28 Coefficient signs for the other variables are also as predicted and significant, with more

significant results for the full 17-year window.29 Using square roots tends to increase the overall predictive

power of the regressions, but has little impact on the significance of the rest day dummy.30 Adjusted R2s

(available only for the OLS regressions) are small as is typical in cross-sectional data, reaching a high of .101

for the 17-year window regression with square root victory margins and square root rankings.

Regarding alternative measures of effort besides victory margins, one attractive measure is minutes played

by the best players, but scorekeepers did not record this statistic regularly until late in the sample period. A

related measure, for which data is available for all matches in the 10-year window around 1969, is percentage

of total points scored by the starting players. Our model predicts that before 1969 favorites should have

relied on their starting players less than underdogs did so as to save their energies for the final, and that

this difference should have narrowed after introduction of the rest day in 1969. This measure of effort turns

out to be somewhat noisy, presumably because the number of players with strong offensive talents varies

substantially across teams, but the overall trend is consistent with the model. Before 1969, starting players

for favored teams accounted for about 5% less of their team’s total points than did starting players for

underdog teams, and this difference completely disappeared after 1969. Regressing this difference in share

of points by starting players against a time trend and the rest day dummy, the rest day dummy is always

positive as predicted and consistent with a 5%-10% shift, but the coefficient is typically not significant.31

3.3 Other predictions

Now consider briefly the other predictions of the model. Proposition 2(i) predicts a decrease in the number

of semi-final upsets following the change in 1969. The binary outcome of an upset or not is a noisier measure

of relative effort than is the victory margin, but the numbers are consistent with the theory. For instance,

28If one-sided tests are used the rest day dummy is also significant at the 5% level in the OLS regressions. The (unreported)

results for median regression, another method for handling outliers, are of similar significance as the robust regression results.
29Similar results also hold for the unbalanced window 1952—2000.
30Results are also very similar for different ways of conditioning on relative strength, such as using logs or taking the square

root of the difference in ranks rather than the difference in the square root of ranks.
31The results improve if we restrict the sample to matches where the stronger teams are in different semi-finals. Using annual

average data, the dummy variable is then significant at the 5% level in the robust regression. Using match-level data and

performing the equivalent regressions as in Table 1, the rest day dummy is significant at the 10% level in the OLS regressions

but is still not significant in the robust regressions.
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in the five years 1964—1968 before the change there were 13 upsets in the semi-finals, while in the five years

1969—1973 after the change there were only 8 upsets. Looking at a narrower window around the change, there

were 8 upsets in 1967 and 1968, and only 2 upsets in 1969 and 1970. However, with wider time windows,

the long-run trend toward greater parity washes out the resource allocation effects observed around 1969.

For instance, in the full 17 years 1952—1968 there were 28 upsets, while in the subsequent 17 years 1969—1985

there were 39 upsets.

Proposition 2(ii) predicts that the number of finals featuring the favored team from one semi-final and

the underdog from the other semi-final should decrease after introduction of the rest day. It turns out that

there is little difference in the number of favorite-underdog pairings in the finals before and after 1969. For

instance, in the five years before the change there were 7 such pairings and in the five years after the change

there were 8 such pairings. The number of pairings is even noisier than the total number of upsets because in

many cases there are upsets in both semi-finals, and such cases are more likely when upsets are more likely.

Therefore we simply do not have a large enough sample to accurately test the prediction. A similar problem

occurs when we try to test whether favorites are more likely to win final matches against underdogs before

introduction of the rest day — the implication of Proposition 2(iii). Overall, only about one fourth of all

games result in upsets, and these include cases where there are upsets in both semi-finals. Furthermore, the

model assumes that the stronger teams are in different semi-finals, which is not always the case. This does

not present a problem for the basic intuition that the stronger team in each semi-final has more incentive

to conserve resources,32 but it can change the prediction regarding the finals. Therefore, to test Proposition

2(iii) we need to limit the sample to cases where there is an upset in only one semi-final and where the two

strongest teams are in different semi-finals. Doing so reduces the number of usable data points by so much

that an accurate test becomes impossible. For instance, in the ten years before the change, only 10 out of

40 matches fit our criteria, and only 12 do so in the ten years after the change.

Proposition 3 predicts that a favored team is more likely to win the tournament after introduction of the

rest day. This prediction, too, is difficult to test because there are only four regional championships each

year and favored teams are still very likely to win, with or without the rest day. Nevertheless, the numbers

are consistent with our theory in that in the five years before the change, 15 of the 20 regional championships

were won by one of the two best teams from the semi-finals, and in the five years after the change this share

increased to 18 out of 20.33

32For instance, if a strong team and a very strong team meet in one semi-final and a weak team and a very weak team meet

in the other semi-final, then the very strong team still has more incentive to hold back than the strong team, and the weak

team still has more incentive to hold back than the very weak team. This pattern holds in numerical simulations based on

generalizations of equations (5)—(6).
33If we only consider matches where the favorites are in different semi-finals, 10 of 13 regional championships are won by

favorites in the five years before the change, and 15 of 15 regional championships are won by favorites in the five years after

the change.
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4 Conclusion

This paper develops and tests a model of a two-round sequential elimination tournament among resource-

constrained players of varying ability. We take the design of the tournament as given, but clearly these results

have implications for tournament design (Lazear and Rosen, 1981). For sports tournaments, the main concern

is probably the excitement value of the matches as measured by intensity of the play and uncertainty over

the likely victor (Chan, Courty, and Li, 2003). This paper implies that increasing excitement at one level of

the tournament involves a trade-off in reducing excitement at the other level. For election campaigns, a key

concern for each party is ensuring that the strongest candidate makes it to the general election (Klumpp and

Polborn, 2003). This paper suggests that spending constraints and other restrictions at the primary level

can reduce the problem of a weak candidate upsetting a better candidate who saves resources for the general

election. For career ladders, a main concern is ensuring that the best manager makes it to the top. This

paper indicates that strategic allocation of effort, e.g. managers delaying having children so as to be less

encumbered for competition early in their careers, increases the chance of a less talented manager prevailing.

Under such circumstances performance measures alone may not be the best selection criteria.

Appendix

In this Appendix we prove the propositions that are stated in the main text. To this end, we first establish

the following intermediate result:

Lemma 1 For every w ∈ (0, 1), there exists a unique s∗(w) ∈ (0, 1) that solves (7), and for every s ∈ (0, 1),
there exists a unique w∗(s) ∈ (0, 1) that solves (8). Furthermore, s∗ and w∗ are continuous functions on

(0, 1), and s∗ increases in w.

For equation (7) denote the left-hand side as FS
L (s, w) and the right-hand side as F

S
R(s, w). Similarly

for equation (8) denote the left-hand side as FW
L (s, w) and the right-hand side as F

W
R (s, w). The proof

is organized in two main steps, one for s∗ and one for w∗. Each step is divided into three substeps: (a)

existence, (b) uniqueness, and (c) continuity. For s∗ there is an additional substep (d) in which we establish

monotonicity.

Step 1. s∗ exists and is unique and continuous in w.

Step 1a.

Observe that, for fixed w ∈ (0, 1), FS
R strictly increases in s, FS

R(0, w) = 0, and FS
R(1, w) = ∞. Since

FS
L (0, w) and FS

L (1, w) are finite positive numbers, there exists s
∗ ∈ (0, 1) such that FS

L (s
∗, w) = FS

R(s
∗, w).

Step 1b.

To show that s∗ is unique for given w, we now show that FS
L decreases in s. Differentiating with respect to
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s and simplifying, we obtain

∂FS
L (s,w)

∂s
= −1

2
w2
−1 + 4w − 3w2 − 2gsw + g2(1+s2−2s) + 2gs

(gs+w)2b2
,

which is non-positive if and only if the term in the numerator,£
−1 + 4w − 3w2 − 2gsw

¤
+
£
2gs+ g2(1 + s2 − 2s)

¤
≡ L, (14)

is non-negative. Our approach is to minimize (14). Consider the value for w first. The second term in

brackets in (14) is independent of w, while the first term is minimized if w ∈ {0, 1}. If w = 0, then

L = −1 + [g2(1 + s2 − 2s) + 2gs], which is minimized if s = (g − 1)/g, so that L = 2(g − 1) > 0. If w = 1,

then L = −2gs+ [g2(1+ s2− 2s)+2gs] = g2(1+ s2− 2s), which is minimized if s = 1, so that L = 0. Hence
L ≥ 0 and FS

L decreases in s, and a unique s∗ exists such that FS
L (s
∗, w) = FS

R(s
∗, w).

Step 1c.

Since FS
L and FS

R are continuous in w for w ∈ (0, 1), s∗ is continuous on (0, 1).

Step 1d.

It can be shown that FS
L (s, w) = 0 if and only if

h(s, w) =
s

2(1−s)

µ
w(1−s)
gs+w

− s

2

¶
+

w

g(1−s)+1−w

µ
1−s− s(1−w)

g(1−s)+1−w

¶
= 0. (15)

It is easy to see that h(s, w) increases in w. We further know from Step 1b that for each w there is a unique

s∗(w) that solves (15). Since h(0, w) ≥ 0, h(s, w) must be downward sloping in s at s = s∗(w). From the

implicit function theorem, it follows that s∗(w) increases in w.

Step 2. w∗ exists and is unique and continuous in s.

Step 2a.

Observe that, for fixed s ∈ (0, 1), FW
R strictly increases in w, FW

R (s, 0) = 0, and FW
R (s, 1) = ∞. Since

FW
L (s, 0) and F

W
L (s, 1) are finite positive numbers, there exists w

∗ ∈ (0, 1) such that FW
L (s, w

∗) = FW
R (s, w

∗).

Step 2b.

Establishing uniqueness of w∗ is more complicated than for s∗, since FW
L may be increasing in w. We

show the following: If FW
L is increasing in w on a subset of (0, 1), then it is concave on (0, 1). Noting that

FW
L (s, 0) > 0 = FW

R (s, 0), concavity implies that the two curves intersect exactly once. After some algebra,

the first two derivatives of FW
L can be written as follows:

∂

∂w
FW
L (s,w) =

1

2

g2s2

(gs+w)2

∙
1−2L1(w)

b2

¸
,

∂2

∂w2
FW
L (s,w) = − g2s2

(gs+w)3

∙
1−2L2(w)

b3

¸
,
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where

L1(w) = (1−s)(g+g2s)+(1−w)2,

L2(w) = g3s(2s2 − 3s+ 1) + g2(1− s)(1− 3sw) + g(1− s)(2− 3w) +(1−w)3.

Now let M1(w) = 2L1(w) − b2 and M2(w) = 2L2(w) − b3. These functions are continuous in w ∈ (0, 1).
Observe that M1(w) < (>) 0 iff FW

L (s,w) is increasing (decreasing) at w, and M2(w) < (>) 0 iff FW
L (s, w)

is concave (convex) at w. In the following, it will be convenient to extend FW
L , L1, L2, M1 and M2 to all

w ∈ R, and assume that s ∈ [0, 1].
Let us first examine the slope of FW

L . Notice that M1 is quadratic in w with a positive coefficient. This

implies that FW
L will either be always decreasing in w on R, or have one local maximum and one local

minimum in w on R. If this is the case, then the solutions for M1(w) = 0 are given by

w = 1−g(1−s)−
√
A, w = 1−g(1−s)+

√
A,

where A = g2(4s2 − 6s+ 2)− 2g(1− s) and w corresponds to the local minimum of FL
B and w to the local

maximum. We now verify that w < 0 or w = 1. For w to be a real number, A ≥ 0, which implies s ≥ 1 or
s ≤ 1

2(1−
1
g ). In the first case, only s = 1 is relevant, and w = 1. In the second case, note that 1−g(1−s) < 0

for all s < 1 − 1
g . Thus, if s < 1

2(1 −
1
g ), w1 < 0. For the slope of FW

L , this leaves us with three possible

cases:

(1) w ≤ w ≤ 0 or w = 1 ≤ w ⇒ FL
B is decreasing on [0, 1],

(2) w < 0 < 1 ≤ w ⇒ FW
L is increasing on [0, 1],

(3) w < 0 < w < 1 ⇒ FW
L is first increasing and then decreasing on [0, 1].

In case (1), Step 2b is complete. For the other two cases, we need to check the curvature of FW
L ; in

particular we want to show that FW
L is concave. If it is, then Step 2b is complete. It can be shown that the

following relationship between M1 and M2 holds:

∂M2(w)

∂w
= −3M1(w).

In cases (2) and (3) above, w < 0 and w > 0. Since M1(w) = 0, so FW
L and M2 have local maxima at

w. Furthermore, M2(w) ≤ 0, for otherwise FW
L would be convex at a local maximum, which is impossible.

Since w is the only extremum of M2 on [0, 1], it must be that M2(w) ≤ 0 for w ∈ [0, 1]. Therefore, FW
L is

concave at w ∈ [0, 1] ⊃ (0, 1).

Step 2c.

Finally, since FW
L and FW

R are continuous in s for s ∈ (0, 1), w∗ is continuous on (0, 1).
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4.1 Proof of Proposition 1

Part 1: Existence. Any interior intersection of s∗ and w∗ from Lemma 1 is a symmetric Nash equilibrium.

We now examine the points at which s∗ and w∗ intersect the 45-degree line in (s, w)-space. Substituting

w = s into (7), we get

−sg
2s+(4g+11)s+2g−6
4(1−s)(g+1)2 = 0.

There is one non-zero solution:

ψS = 2
g+3

g2+4g+11
.

Thus, s∗(ψS) = ψS , and s∗ intersects the 45-degree line at w = ψS . Similarly, from (8) we get

ψW = 2
g(3g+1)

11g2+4g+1
.

Thus, w∗(ψW ) = ψW , and w∗ intersects the 45-degree line at s = ψW .

The numbers ψS and ψW are unique, well-defined, and positive. We now show that ψS < 1 and ψW < 1;

this ensures that w∗ and s∗ intersect the 45-degree line exactly once in (0, 1). For ψS , we have

ψS = 2
g+3

g2+4g+11
= 2

g+3

(g + 3)(g + 1) + 8
< 2

g+3

(g + 3)(g + 1)
=

2

g + 1
≤ 1.

For ψW , we have

ψW = 2
g(3g+1)

11g2+4g+1
= 2

g(3g+1)

(3g + 1)( 113 g +
1
9) +

8
9

< 2
g(3g+1)

(3g + 1)(113 g +
1
9)
=

g
11
3 g +

1
9

<
2

11/3
=
6

11
< 1.

Next, recall that by Lemma 1, s∗ and w∗ are continuous functions on (0, 1) and have values in (0, 1). Any

intersection is a symmetric Nash equilibrium. So to prove existence, we need to show that they intersect in

the interior. To do so, we first verify that limw→1 s
∗(w) ∈ (0, 1). For s∗, multiply (7) by b2(1− s)(gs+ w)

to get

w(1− s)

∙
1

2
sb2 + wb(1− s)

¸
= s(gs+ w)

∙
1

4
sb2 + w(1− w)(1− s)

¸
. (16)

The curve defined by (16) coincides with s∗ for w ∈ (0, 1), but extends continuously to [0, 1]. Since neither
(s = 1, w = 1) nor (s = 0, w = 1) satisfy (16), we conclude that 0 < limw→1 s

∗(w) < 1. The same steps

applied to (8) show that lims→1w
∗(s) ∈ (0, 1). Next, since s∗ crosses the 45-degree line exactly once in (0, 1),

the fact that limw→1 s
∗(w) ∈ (0, 1) implies that for w < (>)ψS , s∗(w) < (>)w. Likewise, since w∗ crosses

the 45-degree line exactly once in (0, 1), the fact that lims→1w
∗(s) ∈ (0, 1) implies that for s < (>)ψW ,

w∗(s) > (<)s. It is then impossible for s∗ and w∗ not to intersect each other in (0, 1)2. Hence, a symmetric

pure strategy equilibrium exists.

Part 2: s < w. When g = 1, ψS = ψW = 1/2. When g > 1, we claim that ψS < ψW . To see this,

simply observe that
dψS

dg
= −2 g2+6g+1

(g2+4g+11)2
< 0
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and
dψW

dg
= 2

g2+6g+1

(11g2+4g+1)2
> 0.

Since both s∗ and w∗ are continuous functions on (0, 1),ψS < ψW implies that s∗ and w∗ intersect at a point

above the 45-degree line, i.e. where w > s. Furthermore, since s∗ increases, there cannot be an intersection

of s∗ and w∗ below the 45-degree line, so in every equilibrium s∗ < w∗.

Part 3: w∗ < gs∗. Dividing (7) by (8), we get

w
gs+w

¡
1
2s+w

1−s
b

¢
gs

gs+w

¡
1
2w+gs

1−w
b

¢ = s
³
s 1
4(1−s)+w

1−w
b2

´
w
³
w 1
4(1−w)+g

2s1−sb2
´ .

Rearranging and simplifying yields

w2(1−s)
gs2(1−w)| {z } ×

g2s2(1−w)4(1−s)
£
b+2(1−s)ws

¤
+
£
swb3+2w2(1−s)b2

¤
w2(1−s)4(1−w)

£
b+2(1−w)gsw

¤
+[swb3+2gs2(1−w)b2]| {z } = 1.

A1 A2

(17)

Condition (17) is necessary (but not sufficient) for equilibrium. Now suppose, contrary to the proposition,

that w ≥ gs. It follows that gs/w ≤ 1, gs2 ≤ w2, 1−w < 1−s, and w/s > 1, implying

A2 ≥
g2s2(1−w)4(1−s) [b+2(1−s)]+

£
swb3+2w2(1−s)b2

¤
w2(1−s)4(1−s) [b+2(1−s)]+[swb3+2w2(1−s)b2] . (18)

Note that ρ1
ρ2
≤ 1 and c > 0 implies ρ1+c

ρ2+c
≥ ρ1

ρ2
. This fact and 1− w < 1− s implies

A2 ≥
g2s2(1−w)4(1−s) [b+2(1−s)]
w2(1−s)4(1−s) [b+2(1−s)] =

g2s2(1−w)
w2(1−s) = g

1

A1
,

and therefore A1A2 ≥ A1g
1
A1
= g > 1 so condition (17) cannot hold. Therefore (s, w) with w ≥ gs cannot

be an equilibrium.

4.2 Proof of Proposition 3

Note that πS1 + πS2 + πW1 + πW2 = 1. Therefore to show that 2πSi (s
∗, w∗, s∗, w∗) < 2πSi (e, e, e, e) for

i = 1, 2 it is equivalent to show that 2πWi (s
∗, w∗, s∗, w∗) > 2πWi (e, e, e, e). To prove this we will show that

πWi (s
∗, w∗, s∗, w∗) ≥ πWi (s

∗, s∗, s∗, w∗) > πWi (s
∗, s∗, s∗, s∗) = πWi (e, e, e, e). First note that π

W
i (s

∗, w∗, s∗, w∗)

is the underdog’s equilibrium probability of winning the tournament while πWi (s
∗, s∗, s∗, w∗) is the under-

dog’s probability of winning the tournament when the underdog chooses effort s∗ instead of the equilibrium

effort w∗. By the definition of a Nash equilibrium, πWi (s
∗, w∗, s∗, w∗) ≥ πWi (s

∗, s∗, s∗, w∗). Now comparing

πWi (s
∗, s∗, s∗, w∗) with πWi (s

∗, s∗, s∗, s∗),

πWi (s
∗, s∗, s∗, w∗) =

1

g + 1

∙
gs∗

gs∗ + w∗
1

g + 1
+

w∗

gs∗+ w∗
(1−s∗)

(1−s∗)+(1−w∗)

¸
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and

πWi (s
∗, s∗, s∗, s∗) =

1

g + 1

∙
g

g + 1

1

g + 1
+

1

g + 1

1

2

¸
(19)

so

πWi (s
∗, s∗, s∗, w∗)− πWi (s

∗, s∗, s∗, s∗) =
1

g + 1

[w∗(1 + 3g) + g(g − 1) (2− s∗)] (w∗ − s∗)

2 (w∗ + gs∗) (2− s∗ − w∗) (g + 1)2
> 0,

where the inequality follows from w∗ > s∗ and g > 1. The final equality that πWi (s
∗, s∗, s∗, s∗) = πWi (e, e, e, e)

follows from (12) and (19).
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