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1 Introduction

Privately informed participants in security markets often have the possibility to commu-
nicate their information to others. For example, corporate insiders can leak knowledge
of events affecting their company to newspapers. In financial newsletters, or on financial
television shows or websites, experts voice their opinions on company stocks. There are
good reasons to question the credibility of such reports. Consider, for instance, an agent
who is privately informed of a favorable event concerning a certain financial asset. The
agent can profit from his privileged information by buying the asset and sell it once the
news becomes public—a behavior that is called informed speculation. However, if the
agent can communicate information to other traders who trust his report, he can use the
following scheme to further increase his profits: First, the agent sells the asset. Then,
contrary to what he knows, the agent claims to have unfavorable information. This will
temporarily depress the market price, allowing the agent to close the short position with a
profit. He then uses the proceeds to buy the asset and waits for the good news to become
public. At this time the asset price appreciates, and the agent can profit a second time
by selling the asset—such behavior is called (information-based) market manipulation. Of
course, if the uninformed market participants are strategically aware, they will see through
this scheme, and the agent’s report cannot contain useful information in any equilibrium
of this market game.

This paper shows that a third strategy can arise in certain cases: Informed speculation
coupled with the communication of true information. We propose a simple model of
communication in financial markets, based on the well-known model of Benabou and
Laroque (1992). The environment features a risky asset of unknown value, to be revealed
at a future date, and cash. Some traders receive independent signals that are imperfectly
correlated with the asset’s value. There are two trading dates, between which the informed
agents make public announcements. After the second date, the true value of the asset is
revealed. Although each agent is quantitatively negligible, informed traders do have some
informational influence: They can strategically exploit the impact of their announcements
on other agents’ expectations and hence on the market price.

The asset can have two possible final values, zero and one. An informed trader’s
knowledge consists of a directional component and a quality component. The directional
component is called the trader’s signal and is either zero or one. The quality compo-
nent is called the trader’s signal precision and represents the probability with which the
signal equals the true asset value. Both the directional and the quality component are
private information of an informed trader. Equivalently, the signal and its precision can
be composed into a single scalar variable which represents an informed trader’s belief re-
garding the asset’s value, and which ranges from “very optimistic” to “very pessimistic.”
In between these extreme points, moderately optimistic or pessimistic signal are possible.

Our main result states that a direction revealing equilibrium exists in the model if the
number of informed traders is sufficiently large. In this equilibrium, the informed traders
truthfully report their signal, but reports concerning the precision of the signals are not
credible. To see why such an equilibrium exists, it is instructive to look at a simpler case
for a moment, where the precision of each informed trader’s signal is fixed and commonly
known. We speak of binary signals in this case, and for a single informed trader the binary
signals case corresponds precisely to the model of Benabou and Laroque (1992). Note that

1



any agent who has bought the asset in period 1 clearly wants to make others believe that
it is going to be of high value, and the opposite holds for an agent who has sold the asset.
Thus, for truthful reporting of the signals it is necessary that traders with high signals
buy the asset in the first period, and traders with low signals sell. This trading behavior
becomes optimal once there are sufficiently many informed traders. The reason is that if
every informed trader’s signal is known, the true asset value can be predicted with high
accuracy. Thus, if there are many informed traders who all report their signals truthfully,
the second period price (call it P2) will likely be close to the true asset value. Because of
this, almost all profits a trader can make accrue between the first and the second trading
period. Now suppose that a trader receives a high signal. He must believe that, with
probability larger than half, P2 is likely going to be close to one; at the same time the
difference between this price and the true value, to be revealed after the second period,
is likely to be small. The key observation is that this holds regardless of what message
the trader sends, provided that the number of informed agents is high enough, as each
trader becomes informationally small and no single message will, on average, influence P2

significantly. Thus, the best the agent can do is to buy the asset and reveal his information
in order to push the post-communication price in the direction that supports his initial
trade. A similar argument can be made for an informed trader who has a low signal and
sells the asset. With binary signals, therefore, a fully revealing equilibrium exists if the
number of informed traders is sufficiently large.

When agents are privately informed about their signal’s precision, a trader who bought
the asset with a moderately optimistic signal would obviously have an incentive to report
that his signal was extremely optimistic (that is, his precision was very high), as such a
report would maximize P2, if believed. Hence there is little hope of obtaining credible
information about the precision of a trader’s signal through communication. We show,
however, that the signal itself can still be credibly communicated, giving rise to a direc-
tion revealing equilibrium. Even though in this case the informed traders retain some
of their informational advantage, we show that the post-communication estimate of the
asset’s value converges in probability to the full information estimate as the number of
informed traders increases. Thus, asymptotically the communication possibilities of the
game aggregate all private information into the market price. We further show that, if N
is large, the incentives to report the directional component truthfully are strict. Hence,
even if there was a small cost of communication and traders had the option of not making
an announcement, the equilibrium would remain intact.

The remainder of the paper is organized as follows. A discussion of some related papers
is given in Section 2 below. The model is contained in Section 3, where we describe the
trading environment, information structure, and communication possibilities. In Section
4 we state the main result, namely that (for the general case) a direction revealing equi-
librium exists and asymptotically aggregates all information. The slightly stronger result
for the binary signals case is then derived as a corollary. In Section 5 we prove the main
result. Section 6 concludes with a discussion of some extensions of the model.
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2 Related Literature

The literature that is related to this paper is vast; containing theoretical as well as empir-
ical studies of insider trading, market manipulation, and communication games. We will
not provide an exhaustive review of these papers here, and focus on only a few papers
that are most directly related to this one.

The paper’s basic model is borrowed from a seminal paper on communication in finan-
cial markets by Benabou and Laroque (1992). The conclusion of Benabou and Laroque
(1992) is that, unless the game is repeated, the single opportunistic informed trader’s
report cannot be credible. For the public to believe the trader’s report, there either has
to be a significant chance that the trader is intrinsically honest and always reports the
truth (the opportunistic type can then hide behind the honest type), or the game must be
repeated so that the informed agent can build a reputation of being honest. Our model
is the same as theirs, except that we allow for multiple informed traders and consider the
more general case where traders possess private precision information.

A recent paper by Van Bommel (2003) considers disclosure of private information in
a dynamic model of a financial market. In disclosure games the informed agent’s decision
is whether and how much of his private information to communicate, but where lying
(i.e. communicating false information) is not possible. He shows that the informed agent
finds it optimal to disclose privileged information in an effort to induce volatility on which
he then trades. With positive probability (due to market noise) the price overshoots
following the disclosure, allowing the sender to profit twice. Van Bommel then considers
“opportunistic” agents who are just like the traders in our model in that they can make
false statements. Similar to Benabou and Laroque (1992), unless the game is repeated,
no endogenous incentives for the opportunistic type to reveal his information can exist.

Grégoire (2004) examines information disclosure in a multi-asset financial market with
one informed trader per asset (an insider). The insiders are quantitatively large and com-
pete for market depth by revealing private information relating to an insider’s company,
as this attracts liquidity to the market for their asset. Thus, although disclosure reduces
the informational advantage of insiders, it can be beneficial because it also reduces the
implicit transaction costs that arise from limited marked depth.

Finally, the paper is related to a growing literature on the aggregation of expert opin-
ions, containing papers by Austen-Smith (1993), Wolinsky (2002), and Gerardi et al.
(2005). These papers demonstrate how the multiplicity of experts (who do not necessar-
ily possess the same information) can be exploited to construct elicitation schemes that
would not be feasible with only a single expert. However, the models examined in these
papers are much different from the trading game we analyze here, and will therefore not
be discussed.

3 The Model

3.1 The market

A risky asset and a riskless numeraire good (cash) are traded on two days, t = 1, 2. The
risky asset is of uncertain value v ∈ {0, 1}; the prior probability of either value is 1

2 . In
each period t ∈ {1, 2} the risky asset is traded at the price that clears the market, denoted
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by Pt. After period 2 the value v is revealed and the asset pays either one or zero units of
cash. We will call this the consummation period.

Three types of agents participate in the market: Informed traders, uninformed traders
(also called the public), and noise traders. The set of informed traders is N = {1, . . . , N}
and has measure zero. The set of uninformed traders is a continuum of measure 1. The
set of noise traders is a continuum of measure α > 0.1

Initially each informed and uninformed trader is endowed with a single unit of the
riskless asset and zero units of the risky asset. Trade in the risky asset is purely speculative,
and short sales are allowed under the restriction that a trader’s wealth must always be
non-negative. Informed traders are risk neutral and maximize their expected final wealth.
Uninformed traders are risk averse and maximize the expected utility of their final wealth.
The utility function of uninformed traders is denoted u and assumed increasing, concave,
and twice continuously differentiable. Furthermore, u exhibits non-increasing absolute
risk aversion: −u′′(w)/u′(w) is non-increasing in w.

To model noise, we assume that the aggregate demand function for the risky asset by
the noise traders at times t ∈ {1, 2} is given by αz(Pt, ε

t), where α > 0 is the measure
of noise traders in the market, z is a continuous function that is strictly decreasing in Pt

and strictly increasing in εt and satisfies z(1/2, 0) = 0. The εt are i.i.d. random variables
drawn from a symmetric and atomless distribution on [−τ, τ ] (τ > 0). We further assume
that z(1, τ) < 0 and z(0,−τ) > 0. This means that at extremely high prices noise traders
sell the asset for all realizations of εt, and vice versa for extremely low prices.

3.2 Information structure

Prior to the first trading day each informed trader i ∈ N privately observes two variables:
pi ∈ [p, p] ⊂ (1/2, 1), which we call the trader’s signal precision, and si ∈ {0, 1}, which we
call the trader’s signal. The pi are i.i.d. random draws from support [p, p], and we denote
by p̂ = E[pi] the average signal precision. The si are then drawn such that Pr[si = v] = pi.
Conditional on v, the si are therefore independent. Thus, each informed trader receives a
private signal that is imperfectly correlated with the true state v, and is privately informed
as to how precise this signal is. The prior distribution of v, as well as the distribution of
the pi, are common knowledge. Denote by s = (s1, . . . , sN ) the vector of all signals, and
by p = (p1, . . . , pN ) the vector of all precision values.

A special case arises when p = p ∈ (1/2, 1) so that the precision of each trader’s
signal is common knowledge. Trader i’s private information then essentially collapses to
si ∈ {0, 1}, and we refer to this case as the binary signals case. When p < p, we speak of
the continuous signals case.

We denote Ω ≡ {0, 1} × [p, p], the space of possible realizations of (si, pi). Given a
particular value of (si, pi), trader i believes that

σi ≡ Prob[v = 1|si, pi] = sipi + (1− si)(1− pi) ∈ [0, 1]. (1)
1The assumption that there are finitely many informed traders, but a continuum of uninformed and noise

traders, may appear unnatural to some readers. It is made because it simplifies the analysis considerably.
In particular, it allows us to focus on the informed traders impact on prices through their announcements
only, and to neglect any effect their trade quantities may have.
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Note that the scalar σi contains the same information as (si, pi), and it will sometimes
be convenient to denote the private information of an informed trader by σi instead of
(si, pi). Also, Prob[si|pi, v = 1] = σi and Prob[si|pi, v = 0] = 1 − σi. Thus the expected
value of the asset conditional on (s, p) is given by

θF (s, p) ≡ Prob[v = 1|s, p] =
Prob[s|p, v = 1]

Prob[s|p, v = 1] + Prob[s|p, v = 0]

=
∏N

i=1 σi∏N
i=1 σi +

∏N
i=1(1− σi)

(2)

(recall that v = 1 and v = 0 are equally likely ex-ante.) We call θF (s, p) the full-
information estimate of v.

3.3 Communication

Between the first and the second period, the informed traders can make public announce-
ments concerning their private information. Each informed trader i sends a costless mes-
sage (mi, qi) ∈ Ω, and all informed and uninformed traders observe these messages. De-
note by m = (m1, . . . ,mN ) the vector of all messages concerning the signals, and by
q = (q1, . . . , qN ) the vector of all messages concerning the precision of the traders’ signals.

At the communication stage, informed traders i’s information set is the tuple

(si, pi, x
1
i , P1) ∈ Ω× R× [0, 1].

A pure communication strategy for i is then a function that assigns to each possible
information set a message (mi, qi) ∈ Ω. A mixed communication strategy assigns to
each information set a probability distribution over possible messages. A communication
strategy is said to be informative or fully revealing if (si, pi) can be inferred with certainty
from the report (mi, qi) generated by the strategy. A strategy is direction revealing if si

can be inferred with certainty from the report (mi, qi) and nothing is learned about pi.
For example, the pure strategy to report

(mi, qi) = (si, pi) ∀si, pi, x
1
i , P1

is an informative strategy. Similarly, if i draws qi uniformly from [p, p] and then reports

(mi, qi) = (si, qi) ∀si, pi, x
1
i , P1,

he follows a direction revealing strategy. From now on and without loss of generality, these
strategies are meant when speaking of informative, or direction revealing, strategies.

3.4 Equilibrium

After observing the reports (m, q), the uninformed traders update their belief to a revised
estimate, call it θ(m, q) ≡ Prob[v = 1|m, q] ∈ [0, 1]. An equilibrium in this model is
a collection of communication strategies and a public belief function θ : ΩN → [0, 1],
such that θ(m, q) is calculated via Bayes’ rule using the vector of messages (m, q) and
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the communication strategies used by the informed traders, and trader i’s communication
strategy (together with his trade quantities) maximizes i’s expected wealth for each i ∈ N .
An informative (or fully revealing) equilibrium, if it exists, is an equilibrium in which
every informed trader uses an informative strategy. In an informative equilibrium, the
public’s post-communication belief θ(m, q) equals the full-information estimate θF (s, p).
A direction revealing equilibrium is an equilibrium in which every informed trader uses a
direction revealing strategy. Our results will concern precisely these two types of equilibria.

We conclude this section with two remarks concerning our equilibrium definition. First,
the equilibrium concept employed is essentially that of sequential equilibrium, but utilizes
the fact that the scalar θ(m, q) is a sufficient statistic for beliefs about each informed
trader’s individual information. Notice that with the fully revealing and direction revealing
strategies described above there are no unsent messages; thus no specification of out-of-
equilibrium beliefs is necessary. There are of course other, equivalent, strategies that do
not send all possible messages. For example, the report (mi, qi) = (si, p) is also direction
revealing but only the highest precision value, p, is reported. In this case, we would have to
specify what an uninformed trader believes if, out of equilibrium, some report (mi, qi) with
qi < p was made. As is common in cheap-talk and signaling games, the game’s structure
does not induce any constraints on consistent out-of-equilibrium beliefs. Therefore one
can always posit beliefs to construct the original equilibrium outcomes that obtain for
the case of strategies with no unsent messages. Second, since the informed traders are
of measure zero the first-period price P1 will not be affected by their information and
hence be independent of the informed trader’s knowledge. However, in general (m, q) can
depend on P1. If this was the case in equilibrium, P1 would have to be included as an
argument in θ as well. Neither in a fully revealing equilibrium nor in a direction revealing
equilibrium will this be necessary, however.

4 The Main Result

An informed trader can profit from speculative trading in three ways. He can trade
from t = 1 to t = 2 (pre-announcement speculation), from t = 2 to the final consum-
mation period (post-announcement speculation), or both. Benabou and Laroque (1992)
demonstrate that, for the binary signals case, even if informed traders are restricted to
post-announcement speculation, an informative equilibrium does not exist for N = 1. The
results of this paper concerns what happens in the presence of several informed traders,
each of whom is free to combine the two types of speculation. We establish two results
which state that equilibria with better informational properties can be obtained if the
number of informed traders is sufficiently large. The main result is the following:

Proposition 1. There exists a constant α > 0 such that for all 0 < α ≤ α, the following
holds: If N is sufficiently large, a direction-revealing equilibrium exists. In this equilibrium,
an informed trader buys the asset in period 1 and reports mi = 1 when he has a high signal
(si = 1), and sells it and reports mi = 0 when he has a low signal (si = 0). Furthermore,
as N → ∞ the post-communication belief θ(m, q) converges in probability to the full-
information estimate θF (s, p). That is, for all ε > 0 and δ > 0 there exists N∗ such
that

Prob[ θF (s, p)− ε < θ(m, q) < θF (s, p) + ε ] > 1− δ ∀N > N∗.

6



When all informed traders have the same, commonly known signal precision, the signals
si, i = 1, . . . , N constitute the only private information held by informed traders. The
direction revealing equilibrium of Proposition 1 thus becomes a fully revealing equilibrium.
Since the binary information structure is employed in Benabou and Laroque (1992) for
the case N = 1, we state this observation as a corollary to Proposition 1 above.

Corollary 1. Consider the binary signals case. There exists a constant α > 0 such that
for all 0 < α ≤ α, the following holds: If N is sufficiently large, an informative (i.e.
fully revealing) equilibrium exists. In this equilibrium, an informed trader buys the asset
in period 1 and reports mi = 1 when he has a high signal (si = 1), and sells it and reports
mi = 0 when he has a low signal (si = 0). Furthermore, the post-communication belief
θ(m, q) equals the full-information estimate θF (s, p).

5 Proof of Proposition 1

In this section we prove Proposition 1; Corollary 1 follows immediately from the Propo-
sition and is not proven separately. To establish the existence of a direction revealing
equilibrium, our approach is to look at the decision problem of a single informed trader,
say i, and postulate direction revealing strategies and appropriate beliefs for everybody
else. That is, we assume that every trader j 6= i reports his signal si truthfully (mi = si),
and all uninformed traders believe that every informed trader reports his signal truth-
fully. Similarly, we assume that every trader j 6= i follows a completely uninformative
communication strategy with respect to qi (for example, they randomize uniformly over
possible reports qi ∈ [p, p]), and all uninformed traders believe that the reports qi contain
no information about pi. This hypothesis gives rise to a certain process by which the
second-period market price P2 is formed in response to the traders’ messages. It then
needs to be checked if—under this price process—the optimal communication strategy
for i is in fact direction revealing if N is large enough. Finally, the convergence part of
Proposition 1 is proven in the Appendix, as are several intermediate results.

5.1 Price formation

We begin with a preliminary result that characterizes the market prices P1 and P2. Note
that these prices will not depend on the informed traders’ demand quantities, as they are
of measure zero. They will, however, depend on the demand by the uninformed and noise
traders. The uninformed traders’ demand further depends on their beliefs. In period 1,
the uninformed traders simply believe that Prob[v = 1] = 1/2. In period 2, they will
have updated this belief to, say, θ = θ(m, q) = Prob[v = 1|m, q]. The following Lemma
characterizes P1 and P2 and their dependence on the uninformed traders’ beliefs.

Lemma 1. Let θ ∈ [0, 1] denote the publics’s belief in period 2. If α is sufficiently small,
unique market clearing price P1 ∈ [0, 1] and P2 ∈ [0, 1] exist. P1 and P2 are random vari-
ables with the following properties. Given P1, P2 is continuous and first-order stochasti-
cally increasing in θ. Given a fixed α > 0, P2 is bounded away from 0 and 1. Further, the
supports of P1 and P2 are continuous in α, and if α = 0 then P1 = 1/2 and P2 = θ.
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Conditional on the public’s belief, the market clearing prices are random variables due
to noise. We let M(·|θ) denote the c.d.f. of P2, conditional on θ and P1 (the dependence
on P1 has been suppressed in the notation). Thus, given P1, we have M(P2|θ) ≤M(P2|θ′)
if θ > θ′, with strict inequality for some P2.

5.2 Belief formation

We now describe the formation of beliefs in detail. Look at period 2 first. Each informed
trader has transmitted a message (mi, qi), and the informed as well as uninformed traders
have observed the vector of messages (m, q). In equilibrium, the uninformed traders also
know the communication strategies used by the informed. This allows them to update
their beliefs θ accordingly. In a direction revealing equilibrium the public believes that
s = m and ignores q, and because all informed traders are ex-ante symmetric, the Bayesian
post-communication belief will simply be a function of the number of high reports in m.
Let this number be k, and for notational convenience write write θ(k) instead of θ(m, q).
The public’s belief, given a message vector m with k high reports, is then

θ(k) = Prob[v = 1|k] =
Prob[k|v = 1]

Prob[k|v = 1] + Prob[k|v = 0]
. (3)

Sometimes we will fix a trader i and let ki be the number of high reports made by traders
j 6= i. In this case, if mi ∈ {0, 1} is trader i’s report, we use notation θ(k−i,mi) to denote
the public’s post-communication belief θ(k−i + mi). Given some scalar µ ∈ [0, 1], the
binomial probability of k successes in N Bernoulli trials with success rate µ is given by

ψ(µ,N, k) =
(
N

k

)
µk(1− µ)N−k. (4)

If all traders’ signals were known to be of precision µ, then the probability terms in (3)
would be of the binomial form given in (4), that is

θ(k) =
ψ(µ,N, k)

ψ(µ,N, k) + ψ(1− µ,N, k)
. (5)

Unless we have binary signals, however, the public does not know how precise a trader’s
signal is; one therefore has to take the expectation of (5) with respect to all possible
precision values. As the following Lemma establishes, this expectation can be obtained
by replacing each trader’s signal precision pi with its expectation p̂:

Lemma 2. In any direction-revealing equilibrium, the public’s belief following an an-
nouncement with k high reports is given by

θ(k) =
ψ(p̂, N, k)

ψ(p̂, N, k) + ψ(1− p̂, N, k)
. (6)

Now turn to period 1. There, uninformed traders believe that Prob[v = 1] = 1/2.
Each informed trader knows his own private signal si as well as pi, or equivalently σi, and
uses this information to update his belief about the other traders’ signals. Recall that
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k−i denotes the number of high signals by traders j 6= i. Then, from the perspective of a
trader with private information (si, pi), k−i is distributed according to

f(k−i|si, pi) ≡ Prob[k−i|si, pi]

= σiψ(p̂, N − 1, k−i) + (1− σi)ψ(1− p̂, N − 1, k−i). (7)

Coupled with his own report mi, trader i can use these probabilities in period 1 to form
his own beliefs about the public’s beliefs at t2. For example, if i plans on reporting a
high signal (mi = 1), the probability that the public’s post-communication belief is θ(k)
is given by f(k − 1|si, pi).

5.3 The informed trader’s problem

Because informed traders are risk neutral and quantitatively negligible, we can rule out
“mixed portfolios” that contain both a long and a short position of the risky asset. In each
period, traders use their entire wealth to either buy the asset, or as collateral for a short
sale. We will thus compare the expected values of the two extreme portfolios that can
be chosen in period 1; one containing 1/P1 shares (a long portfolio), the other containing
P1/(1− P1) units of cash and −1/(1− P1) shares (a short portfolio). The initial position
a trader enters in the first period will accordingly be denoted by L (for long) or S (for
short).

Consider first period 2. An informed agent has inherited the portfolio ρ ∈ {L, S} he
chose in the previous period and now faces the second period price P2. The market value
of his portfolio at price P2 is the agent’s interim wealth. Furthermore, i knows m−i, the
reports made by the other informed traders, as well as his own signal si and his signal’s
precision pi. A sufficient statistic for m−i is k−i, the number of high signals reported by
the other traders. Trader i revises his expectation of v to

θi(k−i, si, pi) = E[v|k−i, si, pi]

=
σiψ(p̂, N − 1, k−i)

σiψ(p̂, N − 1, k−i) + (1− σi)ψ(1− p̂, N − 1, k−i)
, (8)

where σi is defined in (1), and the expected precision p̂ was used for the same reason by
trader i as it is by the public when forming belief θ(k). Note that even if mi = si (i.e.
i reports his signal truthfully), due to i’s private precision information θi(k−i, si, pi) is
typically not the the same as θ(k), the public’s belief.

Consider first the case ρ = L. The trader’s interim wealth is then P2/P1. The agent’s
optimal strategy is now either to hold his inherited long position until the asset value is re-
vealed, or to close the long position and enter a short position containing −P2/[P1(1−P2)]
units of the asset. We denote these strategies by H (hold) and R (reverse), respectively.
The expected value of i’s final wealth is then given by one of the following:

wL,H(P2, k−i, si, pi) =
θi(k−i, si, pi)

P1
,

wL,R(P2, k−i, si, pi) =
P2

P1
· 1− θi(k−i, si, pi)

1− P2
.
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Similarly, if the trader went short initially, his interim wealth is (1 − P2)/(1 − P1), and
the expected value of his final wealth is one of

wS,H(P2, k−i, si, pi) =
1− θi(k−i, si, pi)

1− P1
,

wS,R(P2, k−i, si, pi) =
1− P2

1− P1
· θi(k−i, si, pi)

P2
.

For each P2, k−i, and (si, pi), trader i chooses the second period trade H or R that
maximizes his expected final wealth. Thus, assuming optimal behavior, the value of the
inherited portfolio ρ in the second period is

wρ(P2, k−i, si, pi) = max
{
wρ,H(P2, k−i, si, pi) , wρ,R(P2, k−i, si, pi)

}
. (9)

Let us now go back to the first period, in which the informed trader must decide on
ρ ∈ {L, S} and mi ∈ {0, 1}. Agent i knows his private signal si as well as its precision
pi, but the realizations of P2 and k−i are unknown. He forms expectations over these
variables as follows: Given si and pi, k−i is distributed according to f(·|si, pi). Given k−i

and mi, the public’s belief in t = 2 is given by θ(k−i,mi) ≡ θ(k−i + mi). Thus P2 is
distributed according to M(·|θ(k−i,mi)). The expectation of (9) can therefore be written
as

wρ(si, pi,mi) ≡ E[wρ(P2, k−i, si, pi)|si, pi,mi]

=
N−1∑

k−i=0

f(k−i|si, pi)hρ(k−i, si, pi,mi), (10)

where

hρ(k−i, si, pi,mi) =
∫ 1

0
wρ(P2, k−i, si, pi)dM(P2|θ(k−i,mi)) (11)

is the expected value of portfolio ρ, given si, pi, mi, and k−i.
The trader’s problem in the first period is thus to maximize (10) with respect to

ρ ∈ {L, S} and mi ∈ {0, 1}. To solve this problem, two results need to be established.
The first one says that the optimal announcement mi is determined by the choice of ρ, not
by the trader’s signal. More precisely, it is optimal for an informed trader to set mi = 1
if he has entered a long position, and mi = 0 if he has entered a short position at t1:

Lemma 3. If all j 6= i use a direction revealing strategy, and the public believes that the
reports mi are truthful, then wL(si, pi, 1) ≥ wL(si, pi, 0) and wS(si, pi, 0) ≥ wS(si, pi, 1)
for all (si, pi) ∈ Ω.

Thus, if i sets mi = 1 if and only if he has entered a long position in period 1, his
message reveals his position to the public. Thus, an informative equilibrium exists if a
trader with a high signal buys the asset in period 1, and a trader with a low signal sells
it—just like a conventional speculator does.2

The second result says that, if there is some positive measure of noise traders, an
informed trader’s announcement does not affect the value of his portfolio significantly if
N is large:

2It should be noted that the incentives to reveal one’s position to the public are strict when N is
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Lemma 4. Suppose all j 6= i use a direction revealing strategy, and the public believes
that the reports mi are truthful. If α > 0, then for all (si, pi) ∈ Ω and ρ ∈ {L, S},
|wρ(si, pi, 1)− wρ(si, pi, 0)| → 0 as N →∞.

5.4 Existence of a direction revealing equilibrium

We are now prepared to prove the existence part of Proposition 1. Suppose that si =
1. By Lemma 3, a direction revealing equilibrium exists if wL(1, pi, 1) > wS(1, pi, 0)
and wS(0, pi, 0) > wL(0, pi, 1). The first inequality will be shown below, and the same
argument can be repeated to show the second inequality. This proves that a direction
revealing equilibrium exists in which the risky asset is traded according to the informed
traders’ private signals in the first period. These signals are then reported truthfully
between periods 1 and 2 in order to “push” the second-period price P2 in a direction that
supports the initial trades.

To show that wL(1, pi, 1) > wS(1, pi, 0) if N is large, assume for a moment the limiting
case α = 0, so that P1 = 1/2 and P2 = θ(k). Suppose an informed trader can trade a
non-zero quantity at these prices. (Of course, if there is no noise, a zero quantity will be
traded at these prices. But α = 0 is only an intermediate assumption and will be relaxed
in due course.) To derive a lower bound for wL(1, pi, 1), note that a trader can always
hold the long position and not trade in period 2. In this case, his final wealth will be 2pi.
Thus, assuming optimal trading behavior in period 2, we have

wL(1, pi, 1) ≥ 2pi. (12)

Consider next the value wS(1, pi, 1). We have

hS(k−i, 1, pi, 1) = max
{

2(1− θi(k−i, 1, pi)), 2θi(k−i, 1, pi)
1− θ(k−i, 1)
θ(k−i, 1)

}
. (13)

We now derive an upper bound for hS(k−i, 1, pi, 1). After some algebraic manipulations
and using (5) and (8), we can write (13) as

hS(k−i, 1, pi, 1) =

2
ψ(1− p̂, N − 1, k−i)

σiψ(p̂, N − 1, k−i) + (1− σi)ψ(1− p̂, N − 1, k−i)
max

{
1− σi,

1− p̂

p̂
σi

}
.

Therefore, to compute an upper bound for

wS(1, pi, 1) =
N−1∑

k−i=0

f(k−i|1, pi)hS(k−i, 1, pi, 1)

large. To see this, consider an informed trader with private signal si = 1, and suppose mi = 1. If N is
sufficiently large, it is possible that even for large pi we have θi(k−i, 1, pi) < 1/2. In this case and if ε2 > 0,
the second-period price satisfies P2 > θi(k−i, 1, pi), and i reverts his long position. Thus, with positive
probability i benefits strictly from sending message mi = 1, as it increases P2 and thus his interim wealth
to be used to fund the short sale. If P2 ≤ θi(k−i, 1, pi), i simply holds his long position in period 2 and
is thus indifferent between the messages he can send. Thus, on expectation i strictly prefers to reveal his
long position to the public.
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we have to consider two cases. First, suppose 1− σi ≥ 1−p̂
p̂ σi. Then

wS(1, pi, 1) =
N−1∑

k−i=0

2(1− σi)ψ(1− p̂, N − 1, k−i) = 2(1− σi) = 2(1− pi). (14)

Next, suppose 1− σi <
1−p̂

p̂ σi. Then

wS(1, pi, 1) =
N−1∑

k−i=0

2
1− p̂

p̂
σiψ(1− p̂, N − 1, k−i) = 2

1− p̂

p̂
σi = 2

1− p̂

p̂
pi. (15)

Since p > 1
2 , for each realization of pi ∈ [p, p] (12) exceeds (14) and (15) by a constant C

that is bounded away from zero:

wL(1, pi, 1)− wS(1, pi, 1) ≥ 2pi −max{2(1− pi), 2
1− p̂

p̂
pi}

≥ C ≡ min{2(2p− 1), 2p(1− 1− p̂

p̂
)} > 0.

C is further independent of N . Now increase the level of noise slightly to some α > 0.
By continuity of prices in α, wS(1, pi, 1)− wL(1, pi, 1) is still bounded away from zero by
a constant that is independent of N . If N is now chosen large enough, Lemma 4 implies
wL(1, pi, 1) > wS(1, pi, 0) ≈ wS(1, pi, 1), as needed to be shown.

6 Discussion

For a direction revealing equilibrium to exist, a sufficiently large number of informed
traders is needed. The effect of increasing N in the model is that each agent becomes
informationally small, reducing the impact of any single trader’s announcement on beliefs
and prices: If one is informed of N−1 signals, and N is large, v can be predicted with high
accuracy. This implies that between periods 1 and 2, the asset prices moves from P1 ≈ 1/2
to P2 ≈ 0 or P2 ≈ 1, and an additional N th signal would have only little impact on this
price movement. Our result hence relies on the interplay between an agent’s informational
advantage due to his private signal in period 1, and his “informational smallness” at the
communication stage, formally stated in Lemma 4.

We conclude with a brief discussion of several further aspects of the model and our
results. These concern the existence of other equilibria, alternative assumptions on the
timing in our model, and alternative specifications of the information structure.

Other equilibria. It is easy to see that for continuous signals no fully revealing equilibria can
exist. If they did, then θ(m, q) = θF (s, p). Notice that the full-information estimate in (2)
increases in each σi, and P2 increases in the public’s belief. Hence a trader who bought the
asset in period 1 and is hence interested in seeing as high a second-period price as possible
can push P2 up by reporting the highest possible signal precision (qi = p). He will do so
always, and thus no report concerning pi can be credible. Thus, the direction revealing
equilibrium is the most informative equilibrium in the continuous signals case.3 The model

3Of course, there exist 2N−1 equivalent equilibria that can be obtained by permuting the message sets.

12



possesses many other (less informative) equilibria as well: A babbling equilibrium, in which
no information is revealed, always exists of course. It is also possible for asymmetric
equilibria to exist in which some informed traders use direction revealing strategies and
others use uninformative strategies, or to find symmetric equilibria that are direction
revealing after some realizations of P1 and uninformative after others.

Timing of announcements and trades. Interestingly, the direction revealing equilibrium,
if it exists, is robust with respect to extensions of the model in which traders can choose
the timing of their trades and their announcements. Consider, for example, a model with
T > 2 periods, where after period T the value v is revealed, the asset can be traded in
any of the T periods, and communication takes place between the trading periods. One
can show that a sequential equilibrium exists in which the vector of signals s is reported
truthfully at the earliest possible date (i.e. between periods 1 and 2) and the market price
from period 2 onward contains that information. This equilibrium, however, requires that
the informed traders remain quantitatively negligible and act as a price taker. If the
quantities traded by the informed participants exerted price pressure, then these traders
would likely split their trades into smaller blocks and trade them over time. The incentives
to reveal information immediately after the first trading round would then be weakened.
However, it is not obvious what the equilibria of such a model might be.

Alternative information structures. Finally, note that even though we have assumed
continuous signals, the set of possible valuations of the risky asset was still binary, i.e.
v ∈ {0, 1}. Alternatively, one can depart from the binary case by assuming that v ∈
{v1, . . . , vL} ⊂ [0, 1] with ex-ante expected value E[v] = 1/2. Assume that each informed
trader draws a signal si ∈ V such that Prob[si = v] = p > 1/L and Prob[si = v′] =
(1 − p)/(L − 1) ∀v′ 6= v. In this case, the precision of each trader’s signal is p and com-
monly known, but signals are not binary because the asset value is not binary. With
this information structure and if N is large enough, the model has an equilibrium that is
direction revealing in the sense that an agent’s report still communicates the direction of
his initial trade (i.e. long vs. short). However, the information aggregation properties of
this equilibrium are much weaker than in the model of Section 3. To see this, note that
the direction of an informed agent’s trade is informative only as to whether E[v|si] > 1/2
or not. Observing the direction of the agents’ initial trades is thus informative only in so
far as v < / > 1

2 can be learned with arbitrarily high probability, but not more. There
will hence be some residual uncertainty in the post-communication belief. This residual
uncertainty concerns the precise value of the asset and does not vanish as N →∞.

Appendix

Proof of Lemma 1

The market clearing price P2.

Suppose an uninformed enters period 2 with wealth w > 0 and belief θ ∈ [0, 1]. Let y2

denote the demand quantity of an uninformed trader. The trader’s final wealth will be
w = w+ (1− P2)y2 if v = 1, and w = w− P2y

2 if v = 0. The expected utility in period 2
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can thus be written as
v(y2, P2, θ) = θu(w) + (1− θ)u(w),

which is maximized by choice of a demand y2 ∈ [− w
1−P2

, w
P2

]. Since u is continuous and
strictly concave, there is a unique maximizer, which we also denote by y2, and which in
continuous in P2.

We will now show that y2 strictly decreases in P2 and (weakly) increases in θ. In case
of a corner solution, either y2 = − w

1−P2
or y2 = w

P2
, all of which are strictly decreasing

P2 and independent of θ. Now focus on the case of an interior maximum. The first order
condition can be stated as

u′(w)
u′(w)

=
1− θ

θ

P2

1− P2
.

Thus y2 has the sign of θ − P2. By the implicit function theorem, y2 is continuously
differentiable in both P2 and θ. To see how y2 varies with P2, note first that ∂y2/∂P2 has
the sign of

∂2v(y2, P2, θ)
∂y2∂P2

= −θu′(w)− (1− θ)u′(w)

+y2[−θ(1− P2)u′′(w) + (1− θ)P2u
′′(w)]. (16)

The first two terms in (16) are strictly negative. To show that the third term is non-
positive, assume first that P2 ≤ θ (and therefore y2 ≥ 0) and write the expression in
brackets as

−θ(1− P2)u′(w)
u′′(w)
u′(w)

+ (1− θ)P2u
′(w)

u′′(w)
u′(w)

.

Because u has non-increasing absolute risk aversion, this cannot be greater than

−θ(1− P2)u′(w)
u′′(w)
u′(w)

+ (1− θ)P2u
′(w)

u′′(w)
u′(w)

=
u′′(w)
u′(w)

[−θ(1− P2)u′(w) + (1− θ)P2u
′(w)] = 0

by the first-order condition. An analogous argument applies for P2 ≤ θ and y2 ≤ 0, so
that y2 strictly decreases in P2. Similarly, ∂y2/∂θ has the sign of

∂2v(y2, P2, θ)
∂y2∂θ

= (1− P2)u′(w) + P2u
′(w) > 0,

so that y2 increases in θ.
Let y2(P2, θ) be the uninformed traders’ demand as a function of P2 and θ. The demand

by noise traders in period 2 is αz(P2, ε
2). Since there is a zero measure of informed traders,

market clearing requires that

ξ2(P2, θ, ε
2) ≡ y2(θ, P2) + αz(P2, ε

2) = 0. (17)

Note that the excess demand function in (17) is continuous in α, continuous and strictly
increasing in θ, and continuous and strictly decreasing in P2. Our assumption that
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z(1, τ) < 0 and z(0,−τ) > 0 guarantees that for every ε2 ∈ [−τ, τ ] and every θ ∈ [0, 1]
there is a unique P ∗

2 ∈ [0, 1] such that ξ2(P ∗
2 , θ, ε

2) = 0. By continuity of ξ2 in θ, P ∗
2 is

continuous in θ. Thus, by continuity of (17) in α, the support of P ∗
2 is continuous in α

and if α = 0 then P ∗
2 = θ. An upper bound for P2 is given by the implicit relationship

ξ2(P2, 1, τ) = y2(1, P2) + αz(P2, τ) = 0 (18)

(i.e. both ε2 and θ are at their highest possible values). Since z2 and y2 are continuous
and strictly decreasing in P2, y2(1, 1) = 0, and z(1, τ) < 0, the value P2 which solves (18)
must be strictly less than one. The same argument can be made to find a lower bound
on P2 which exceeds zero. Finally, ε2 and θ independent and ξ2 strictly increasing in θ
implies P ∗

2 is increasing in θ in the sense of first-order stochastic dominance.

The market clearing price P1.

In period 1, an uninformed trader maximizes with respect to his demand y1 ∈ [− 1
1−P1

, 1
P1

]
the expectation of the indirect utility which he receives in period 2 at wealth level 1 +
y1(P2 − P1). This expectation is taken jointly over θ and P2, and is continuous in α by
the previous step; hence the uninformed traders’ demand y1(P1) is continuous in α. The
noise traders’ demand in period 1 is αz(P1, ε

1). Thus market clearing in period 1 requires

ξ1(P1, ε
1) ≡ y1(P1) + αz(P1, ε

1) = 0. (19)

Now consider the case α = 0. Since the quantity traded in period 2 must then be then
zero, the uninformed trader’s problem in period 1 is the same as the problem analyzed
above, with θ = 1/2, w = 1, and P2 = P1. Thus, ξ1(P1, ε

1) slopes downward strictly and
is zero at P ∗

1 = 1
2 . By continuity, then, the same holds for small enough but positive α.

Thus a unique market clearing price P ∗
1 exists, has support that is continuous in α, and

if α = 0 then P ∗
1 = 1/2.

Proof of Lemma 2

In general, post-communication beliefs are given by the expression in (5). To prove the
Lemma we must therefore show that

Prob[k|v = 1] = ψ(p̂, N, k) and Prob[k|v = 0] = ψ(1− p̂, N, k).

Given k and N , define mN
k = (1, . . . , 1, 0, . . . , 0); that is the first k entries are equal to one

and the remaining N − k entries are equal to zero. Given this vector, let mN
k (1) denote

its first entry. Assume that each one of the entries in m is an independent Bernoulli trial
with success rate pi, and pi itself is a random variable with expected value p̂. Let P (N, k)
be the probability of realization mN

k . Since there are
(
N
k

)
vectors of length N with k

one-entries and N − k zero-entries, all of which must have the same probability as mN
k ,

we have Prob[k|v = 1] =
(
N
k

)
P (N, k). The probability P (N, k) can be written as

P (N, k) = Prob[mN
k (1) = 1]P (N − 1, k − 1) = p̂P (N − 1, k − 1).
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P (N − 1, k − 1) itself can be written as p̂P (N − 2, k − 2), and continuing in this fashion
we have

P (N, k) = p̂P (N − 1, k − 1) = p̂2P (N − 2, k − 2) = . . . = p̂kP (N − k, 0).

Similarly, the probability P (N − k, 0) can be written as

P (N−k, 0) = Prob[mN−k
0 (1) = 0]P (N−k−1, 0) = (1−p̂)P (N−k−1, 0) = . . . = (1−p̂)N−k,

and therefore

Prob[k|v = 1] =
(
N

k

)
P (N, k) =

(
N

k

)
p̂k(1− p̂)N−k = ψ(p̂, N, k).

Proof of Lemma 3

The argument is made for the case ρ = L. For this case, rewrite the term inside the
integral in (11) as

g(P2, k−i, si, pi) ≡ max
{

θi(k−i,si,pi)
P1

, P2
P1

1−θi(k−i,si,pi)
1−P2

}
. (20)

The second term on the right-hand side of (20) is strictly increasing in P2, while the
first term is independent of P2. Thus, g(P2, k, σi) is increasing in P2. Next, note that
θ(k+1) > θ(k) for all 0 ≤ k < N −1. Therefore M(P2|θ(k+1)) ≤M(P2|θ(k)) by Lemma
1, and we have

hL(k−i, si, pi, 1) =
∫ 1

0
g(P2, k−i, si, pi)dM(P2|θ(k + 1))

≥
∫ 1

0
g(P2, k−i, si, pi)dM(P2|θ(k)) = hL(k−i, si, pi, 0) (21)

for all k. Hence,

N−1∑
k−i=0

f(k−i|si, pi)hL(k−i, si, pi, 1) ≥
N−1∑

k−i=0

f(k−i|si, pi)hL(k−i, si, pi, 0),

so that mi = 1 is optimal if ρ = L. A similar argument can be made to show that mi = 0
is optimal if ρ = S.

Proof of Lemma 4

Fix µ ∈ (1/2, 1) and φ ∈ (0, 1). Define

f(k) = φψ(µ,N, k) + (1− φ)ψ(1− µ,N, k)

and
θ(k) =

φψ(µ,N, k)
φψ(µ,N, k) + (1− φ)ψ(1− µ,N, k)

,
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and let h : [0, 1] → R be some bounded and continuous function. We first show that

N−1∑
k=0

f(k) [h(θ(k + 1))− h(N, θ(k))] → 0

as N →∞. To see this, rewrite θ(k) as

θ(k) =

[
1 +

1− φ

φ

(
µ

1− µ

)N−2k
]−1

.

One can see that θ(k) goes to 0 (1) as N−2k goes to +∞ (−∞). Thus, θ(k+1)−θ(k) → 0
as |N−2k| → ∞. Since h is continuous, h(θ(k+1))−h(θ(k)) → 0 as |N−2k| → ∞. Since
f is a weighted sum of two binomial probability distributions with success rates µ > 1/2
and 1− µ < 1/2,

∑
|N−2k|<d f(k) → 0 as N →∞ for every d > 0. Together with the fact

that
∑N−1

k=0 f(k) → 1, this implies that

N−1∑
k=0

f(k) (h(θ(k + 1))− h(θ(k))) → 0

as N →∞.
To complete the proof of the Lemma, note that the term inside the integral in (11) is

a continuous and bounded function of P2 (as P2 is bounded by Lemma 1). Since M(·|θ)
is continuous in θ by Lemma 1, (11) implies that hρ(k−i, si, pi,mi) is a bounded and
continuous function of θ(k−i +mi). Therefore

wρ(si, pi, 1)− wρ(si, pi, 0) =
N−1∑

k−i=0

f(k−i|si, pi) [hρ(k−i, si, pi, 1)− hρ(k−i, si, pi, 0)] → 0

as N →∞.

Proof of the convergence result in Proposition 1

Note that we can express θ(k) as

θ(k) = E[θF (s, p)|k(s) = k],

and taking expectations with respect to k we obtain

E[θ(k)] = E[E[θF (s, p)|k(s) = k]] = E[θF (s, p)].

Now suppose v = 1. By Lemma 2 Prob[k|v = 1] = ψ(p̂, N, k); thus we have

E[θ(k)|v = 1] =
N∑

k=0

Prob[k|v = 1]θ(k) =
N∑

k=0

ψ(p̂, N, k)θ(k).
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Since p̂ > 1/2, θ(k) → 1 as 2k−N →∞ (as shown in the proof of Lemma 4). Furthermore,∑
2k−N<d ψ(p̂, N, k) → 0 as N →∞ for every d > 0. Taken together, these two facts imply

that

E[θ(k)|v = 1] = E[θF (s, p)|v = 1] =
N∑

k=0

ψ(p̂, N, k)θ(k) → 1 (22)

as N → ∞. Because θF (s, p) ≤ 1 and θ(k) ≤ 1, (22) can only hold if θ(k) converges in
probability to θF (s, p), conditional on v = 1. For v = 0, one can similarly show that

E[θ(k)|v = 0] = E[θF (s, p)|v = 0] =
N∑

k=0

ψ(1− p̂, N, k)θ(k) → 0, (23)

and since θF (s, p) ≥ 0 and θ(k) ≥ 0, (23) implies that θ(k) converges in probability to
θF (s, p), conditional on v = 0. The two cases are exhaustive and the result follows.
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