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Abstract

We develop a model in which individuals compete for a fixed pool of prizes

by investing effort in a contest. Individuals belong to two separate and identifiable

groups. We say that the contest is discriminatory if a lower share of prizes is reserved

for one group than for the other. We show that it can be difficult for an observer to

detect the presence or absence of discrimination in the contest, as both regimes can

be observationally equivalent. In particular, one group’s belief that it is allocated a

lower share of prizes than the other group can be consistent with observed data even

if no such group quotas actually exist. Conversely, the belief that the contest does

not discriminate can be consistent with data when, in fact, discrimination exists.

Incorrect beliefs will therefore not be revised, as the contest generates no evidence

to the contrary.
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1 Introduction

Gender, racial, religious, and other forms of discrimination are generally viewed as social

ills, excluding individuals from opportunities available to others based solely on char-

acteristics such as a person’s sex or skin color. If discrimination exists, it is often not

directly observable but manifests itself only indirectly, in the form of ex-post inequality

across groups of the population. However, the same inequality can also arise if groups

differ in relevant economic characteristics or if their members make systematically dif-

ferent choices. Thus, if the presence or absence of discrimination cannot be observed

directly, the question becomes whether unequal outcomes constitute evidence of unequal

treatment or not.

We examine this question in a model in which individuals compete for a fixed number

of prizes in a contest. An individual’s qualification for a prize is the sum of her effort

choice and a random shock. We say that the contest is non-discriminatory, or color-

blind, if the prizes are awarded to the individuals with the highest qualifications. On

the other hand, the contest is discriminatory if a fixed share of prizes is reserved for one

identifiable subgroup of individuals and a different share for the remaining subgroup. We

show that non-discriminatory contests can be equivalent to highly discriminatory ones

in observed outcome variables, such as the share of prizes received by each group, the

qualifications of the winners, and individual effort decisions. In other words, to anyone

who observes the outcome of the contest but not the rule by which the outcome was

generated, a color-blind contest can appear discriminatory. Conversely, a discriminatory

contest can appear color-blind, in that it generates no evidence to suggest otherwise.

To make our point as stark as possible, we assume away any fundamental differences

across groups of the population. In addition, all relevant variables in our model are fully

observable, so our results do not rely on any informational frictions. The reason why

seemingly discriminatory outcomes can exist, even in the absence of discrimination, is

the following. In equilibrium of a color-blind contest, some individuals will exert zero

effort and have a zero chance of winning, while others exert positive effort and have

a positive chance of winning. Since the identity of high-effort individuals is irrelevant,

there exist equilibria in which a relatively large fraction of individuals in one group exerts

effort, while a smaller fraction does so in the other group. Relative to its size, one group

will then win a larger share of prizes than the other group. The crucial observation is

that the same profile of efforts and outcomes is also an equilibrium of a discriminatory

contest in which a larger share of prizes is reserved for one group than for the other.

Thus, discriminatory and non-discriminatory contests can look alike in their respective

equilibrium outcomes.

Furthermore, the problem of inferring unequal treatment from unequal representation

can be embedded into our contest model itself. To do so, we depart from the assumption

that the contest rules are common knowledge among the contestants. We show that
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it is possible that some or all individuals believe the contest discriminates, and behave

accordingly, when in fact the contest does not discriminate. Conversely, individuals

may believe the contest does not discriminate, and behave accordingly, when in fact

it discriminates. In both situations, some or all individuals will hold incorrect beliefs

about the nature of competition they are engaged in. Nevertheless, the observed data

generated by the contest will not contradict these incorrect beliefs: If the contest was in

fact what it is believed to be, it would generate precisely the same data. We call such

outcomes rational perceptions equilibria. Contestants in our model can therefore “agree

to disagree” about the presence of discrimination.

Labor economists have long been concerned with the problem of discrimination, and

have explored two fundamentally different approaches to dealing with it. The first is

market-based: The fact that employers must compete for qualified workers may be

enough to prevent discriminatory employment practices (Becker, 1957). Because market

remedies can be hindered by frictions arising from asymmetric information, the second

approach attempts to correct this market failure through policy interventions, such as

discrimination bans or affirmative action (e.g., Coate and Loury, 1993). The present

paper is less concerned with whether, or how, governments should intervene in markets

to correct for discrimination, but instead addresses the question whether discrimination

can be inferred from market outcomes. Our equivalence results nevertheless have policy

implications, which we now discuss.

First, the enforcement of anti-discrimination policies is encumbered by the very same

problem we examine in our model—how the presence of discrimination, or the intent to

discriminate, can be determined by government agencies or courts from observable data.

For example, does a mostly white workforce constitute evidence of a company’s discrim-

inatory hiring practices against blacks? An account of these measurement problems, as

they were encountered by the U.S. Equal Employment Opportunity Commission in the

early days of American affirmative action, is given in Johnson and Green (2009, chapter

3). Our results suggest that, based on the observation of labor market outcomes, it may

be difficult to determine whether anti-discrimination policies are needed, and whether

they work if implemented.

Second, even if market forces or public policies are successful in eliminating dis-

crimination, one should not expect that outcomes be equalized. In our model, non-

discriminatory contests can have asymmetric equilibria, associated with unequal out-

comes across subgroups of the population. Given the multitude of other possible equi-

libria, however, one may wonder why individuals would coordinate on playing an asym-

metric, highly unequal one. An obvious coordination device is to look to past patterns

of behavior. If the contest has actually discriminated in the past, having resulted in

a particular equilibrium, then a focal equilibrium of the new, color-blind contest may

simply be to continue with “business as usual,” thereby perpetuating unequal outcomes.

Third, anti-discrimination policies and market forces may not only fail to equalize
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outcomes, but may also fail to change individual perceptions about the very nature of

competition individuals are engaged in. In this regard, our “agreeing-to-disagree” result

is borne out in the data, at least casually. In a highly publicized 1969 Harris Poll,

82% of black respondents stated that they thought blacks were discriminated against

in obtaining white collar office jobs, while only 38% of white respondents shared this

opinion. With regard to skilled labor jobs, the response rates were 83% vs. 35%, and with

regard to manual labor jobs the response rates were 58% vs. 18%. One might expect that

such perceptive differences would vanish over time, as more evidence becomes available.

When asked the same questions in 2008, however, the response rates were 77% vs. 29%,

74% vs. 21%, and 34% vs. 10%, respectively. Thus, while perceived discrimination

has decreased within both groups, large inter-group differences in perception remain.1

In our model, even in the absence of actual discrimination, perceived discrimination

by members of the disadvantaged group may persist as an equilibrium outcome. This

equilibrium, again, may be focal in case of prior discrimination, and thus may further

perpetuate inequality.

The remainder of the paper is organized as follows. In Section 2 we place our contri-

bution in relation to the literature. In Section 3 we develop our contest model. In Section

4 we solve for the Nash equilibrium of this contest, both when there is no discrimination

and when there is. Section 5 contains two sets of observational equivalence results. First,

we show that it can be difficult to detect discrimination by looking at the outcome of a

contest, assuming that the contestants are informed of the rules of the contest. Second,

we show that the contestants themselves can hold false perceptions about whether or

not there is discrimination. Section 6 extends our basic model by allowing for additional

heterogeneity among individuals as well as externalities. Section 7 concludes. All proofs

are in the Appendix.

2 Relation to the Literature

Our rational perceptions equilibrium concept is similar in spirit to, but not the same

as, the self-confirming equilibrium pioneered by Fudenberg and Levine (1993). A self-

confirming equilibrium is a profile of strategies and beliefs such that strategies are optimal

given beliefs about other players’ actions, and these beliefs are not contradicted by the

observable actions taken by other players. However, the game itself is common knowledge

among all players. Similar equilibrium concepts, in which players hold incorrect beliefs

about the types of others or themselves, are also considered in Eyster and Rabin (2005)

and Squintani (2006). In our model, on the other hand, possibly incorrect beliefs concern

the rules of the game. This possibility is ruled out in a self-confirming equilibrium, as

1Source: Harris Interactive (2009). It is worth mentioning that the 2008 poll was conducted in the
month of December, after the election of Barack Obama to the office of President of the United States,
a decidedly white collar job.
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the extensive form (and nature’s probabilities) are known to all players.2

The political economy literature contains a number of contributions which explore

heterogeneity in agents’ beliefs about “the way the world works.” In Piketty (1995),

agents hold different beliefs about the relative roles of effort and predetermined factors for

social mobility. Piketty (1995) shows that heterogenous beliefs—some of which must be

incorrect—can survive in the long run. However, this result requires that individual effort

decisions are not perfectly observable by others. In contrast, our results hold regardlesss

of whether individual efforts are observable or not. Alesina and Angeletos (2005) develop

a model in which individual success depends on both effort and luck. Alesina and

Angeletos (2005) show that across economies with the same fundamentals, multiple

equilibria may emerge which differ in the amount of effort, degree of redistributions,

and in agents’ beliefs about the contribution of effort for success. Within the same

economy, however, all agents will have the same belief. In Saint-Paul (2010, 2011),

the models used by agents to understand the world are shaped by a class of individuals

called “intellectuals.” These intellectuals may (knowingly or unknowingly) communicate

incorrect models to the public. An incorrect model will remain undetected if the data

generated by the decision of agents acting on the perceived model is consistent with the

perceived model.3

It is also important to distinguish our framework from models of statistical discrim-

ination in the literature. Like ours, these models rely on equilibrium indeterminacy in

games where individuals invest in their qualifications. However, the two approaches are

not the same. To see why, consider the result of Coate and Loury (1993) that racial

stereotypes can be self-enforcing: The belief that employers discriminate induces behav-

ior on part of the individuals which then generates the hypothesized discrimination as

a best response by the employers. The belief that employers discriminate is therefore

correct in equilibrium. Discrimination persists as an equilibrium outcome because, due

to informational frictions, individuals are judged by employers according to the aggre-

gate behavior of the individual’s group. This aggregate judgment makes it impossible

for a single individual to break out of a discriminatory equilibrium.4 In our model, on

the other hand, discrimination is exogenous. The belief that the contest discriminates

2In macroeconomics, the term “self-confirming equilibrium” is sometimes used to describe outcomes
in which policies are based on an incorrect model (instead of the “true” model); see Sargent (2008).

3Outside the political economy literature, see Yildiz (2003) for a model in which players disagree on
the rules of a bargaining game, and Coury and Sciubba (2010) for a model in which traders disagree
on the distribution of a state-of-nature in a competitive economy, despite observing the same prices and
trades.

4The equilibrium theory of labor market discrimination appears first in contributions by Phelps (1972)
and Arrow (1973), and has recently been applied to other areas, such as crime (Verdier and Zenou, 2004;
Curry and Klumpp, 2008). For a survey of this literature, see Fang and Moro (2011). Kolpin and Singell
(1997) show that asymmetric information among firms can result in discrimination against groups even
if they are uniformly better qualified than others. See Dal Bo (2007) for a model that can generate
discrimination as a social norm without requiring informational frictions.
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therefore does not, and cannot, generate discrimination. Instead, what it generates is

data consistent with the hypothesis that the contest discriminates, even if the contest

does not. Possibly incorrect perceptions of discrimination can persist as equilibrium be-

liefs because the contest generates no evidence to the contrary through which individuals

might eventually learn that their perceptions are incorrect.

Finally, previous work has examined color-blind and color-conscious rules in models

of college admissions. Chan and Eyster (2003) show that a color-blind admissions policy

can lower the quality of admitted minority students, compared to a color-conscious policy.

The mechanism through which this works relies on the interplay of an admissions officer’s

desire for diversity and the fact that a color-blind policy prevents the officer from using

race as an admissions criterion.5 Finally, Fu (2006) uses a contest model to study positive

discrimination in college admissions. Fu (2006) shows that the preferential treatment

of individuals of a group that is ex-ante handicapped (i.e., the same amount of effort

produces a lower qualification than for a non-handicapped individual) can increase pre-

college efforts in both groups.

3 Additive-Noise Contests with Multiple Winners

In the following, we develop a model in the spirit of the additive-noise contest of Lazear

and Rosen (1981), extended to allow for a many players and many prizes.

There is a continuum I of individuals. This continuum is of size 1 and split into two

identifiable groups: A fraction α1 of the population belongs to group I1 ⊂ I and the

remaining fraction α2 = 1 − α1 belongs to group I2 = I\I1. Members of both groups

are identical in all economically relevant aspects, except for their group label. We let

g(i) ∈ {1, 2} denote the group label that individual i belongs to.

All individuals compete for a measure m ∈ (0, 1) of prizes. (For convenience, we

often simply say that the individuals compete for m prizes.) Winning a prize is worth

Π > 0 to each individual, and each individual can win at most one prize.

In order to win, individual i chooses effort ei ≥ 0 and incurs cost c(ei). Effort gen-

erates a publicly observable signal ti = ei + νi, where νi ∈ [0, ε] is a random component,

distributed with cumulative distribution F and density f . It will not matter whether ei

and νi are separately observable, or only their sum ti is.

We make the following technical assumptions:

Assumption 1. (i) The cost function c is twice differentiable and satisfies the following:

c(0) = c′(0) = 0, c′(ei) > 0 and c′′(ei) > 0 for all ei > 0, c′(ei) → ∞ as ei → ∞. (ii)

All νi are distributed independently on support [0, ε], and the density function f is

5Thus, in an environment where one cares about race but only observes qualification, qualification
becomes an (imperfect) signal of race. Interestingly, this is the opposite effect of what occurs in Coate
and Loury (1993): There, in an environment where one cares about qualification but only observes race,
race becomes a signal of qualification.
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differentiable on (0, ε). (iii) f(0) ≤ c′(1/f(0))/Π. (iv) For all νi ∈ (0, ε) and ei ≥ 0:

f ′(νi) > −c′′(ei)/Π.

Parts (iii) and (iv) of Assumption 1 state that f cannot be too large at zero, and

the slope of f cannot be too negative. These assumptions are made to guarantee that

individual payoffs are sufficiently smooth and not too responsive to small changes in

efforts. Conditions (iii) and (iv) are relatively mild and can be satisfied by most standard

cost and density functions. For example, if the cost function is c(e) = e2 and f is uniform

on [0, ε], then the conditions hold as long as ε >
√

Π/2.

3.1 Contest types

Let us now turn to the rules along which competition over the m prizes takes place.

Specifically, we consider two different types of contests.

We say that the contest is non-discriminatory if the fraction m of individuals

with the highest signals ti win. In a non-discriminatory contest, the expected payoff to

individual i is given by

ui(ei, e−i) = Pr
[ ∣∣{j ∈ I : ej + νj ≥ ei + νi}

∣∣ ≤ m ]
Π− c(ei), (1)

where e−i = (ej)j 6=i denotes the profile of efforts of individuals other than i, and | · |
denotes the Lebesque measure of a set.6

On the other hand, the contest is said to be discriminatory if there are group-

specific quotas m1,m2 ∈ [0, 1] with α1m1 + α2m2 = m, such that the top-m1 (top-m2)

quantile of signals in group 1 (2) win. Thus, in a discriminatory contest the expected

payoff to individual i becomes

ui(ei, e−i) = Pr
[ ∣∣{j ∈ Ig(i) : ej + νj ≥ ei + νi}

∣∣ ≤ αg(i)mg(i)
]
Π− c(ei). (2)

A contest type is then a tuple summarizing the variables pertaining to whether

(and if so, how) the contest discriminates. That is, a contest type is a tuple

C = (θ,m1,m2)

such that θ ∈ {ND,D} and m1,m2 ∈ [0, 1]. The parameter θ indicates whether the

contest is discriminatory or not, and if θ = D then m1 and m2 represent the group-

specific award quotas. (If θ = ND, then m1 and m2 are irrelevant.)

Given effort profile e = (ei)i∈I and a contest type C = (θ,m1,m2), we denote by

Ui(e|C) the expected payoff to individual i in this contest and profile. If θ = ND then

this is the payoff given in equation (1), and if θ = D then this is given in equation (2).

6This will always be well-defined in our equilibria.
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3.2 Remarks

We will often interpret this contest model as follows, although there is nothing in the

model that prevents other interpretations: We think of a prize as a job offer, and of

ti as individual i’s qualification for the job. Effort ei reflects i’s investment in her

qualification (e.g., the effort she spends studying at school or university), while νi reflects

a luck component she has no control over (e.g., the quality of her teachers). In a non-

discriminatory contest, the m most qualified individuals will receive a job offer, regardless

of their group identity. In a discriminatory contest, on the other hand, the groups are

segregated. For example, there might be α1m1 jobs reserved for whites, and α2m2 jobs

reserved for blacks.

In a discriminatory contest with m1 6= m2, one group is allocated a smaller quota

of prizes than the other, relative to their representation in the population. This group

is then disadvantaged in the sense that its members are, on average, less likely to win

than members of the other group. Note that the disadvantaged group is not simply

handicapped: Even with higher effort, they will not be able to overcome the constraint

that their pool of available prizes is smaller (as a percentage of the group’s size) than

that of the the other group.

Notice also that a discriminatory contest with m1 = m2 is not the same as a non-

discriminatory contest: It is a separate-but-equal contest in which, while neither group

is disadvantaged vis-à-vis the other, individuals still cannot compete for prizes across

groups (as they could in a non-discriminatory “color blind” contest). Because group-

identity matters, even if m1 = m2, we will maintain the term “discriminatory” for the

separate-but-equal case. Further discussion regarding the separate-but-equal contest is

offered in Section 6.2

4 Equilibrium

A Nash equilibrium of the contest C is a profile e∗ = (e∗i )i∈I of efforts such that each

individual’s effort e∗i maximizes the expected payoff Ui(ei, e
∗
−i|C) with respect to ei, given

the equilibrium effort profile e∗−i of the other individuals.

In principle, efforts can be generated by mixed strategies. Because there is a con-

tinuum of players, any mixed strategy can easily be recast in terms of fractions of the

population playing different pure strategies. While both cases are equivalent, we pre-

fer to think of pure strategies for the following reason. Any mixed strategy a player

may have used to generate his or her effort is unobservable. On the other hand, effort

levels themselves are, in principle, observable. Since our paper is concerned with the

inferences one can draw from the observable data generated by a contest, we will focus

our discussion on the pure strategy case. Our formal results include both possibilities,

however.
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4.1 Equilibrium of non-discriminatory contests

Let us first consider a non-discriminatory contest CND. Associated with any equilibrium

of CND will be a threshold signal τ such that a fraction m of individuals obtains signals

which exceed τ . These individuals will then be the winners. Since there is a continuum

of individuals, no single effort choice will alter the value of τ , which individuals therefore

take parametrically.

Consider the possibility of a symmetric pure strategy equilibrium in which all indi-

viduals exert the same effort, e∗i = σ. The capacity constraint becomes Pr[ti ≥ τ ] =

Pr[νi ≥ τ − σ] = m, or

F (τ − σ) = 1−m. (3)

To determine σ, note that each individual maximizes, with respect to ei, the function

U(ei|τ) ≡ (1− F (τ − ei))Π− c(ei).

That is, instead of taking the opponent effort profile e−i as given and maximizing

Ui(ei, e−i|CND), we may think of the individual as taking the cutoff signal τ as given

and maximizing U(ei|τ). The first and second derivatives of U with respect to ei are

U ′(ei|τ) = f(τ − ei)Π − c′(ei) and U ′′(ei|τ) = −f ′(τ − ei)Π − c′′(ei). Notice that by

Assumption 1 we have U ′′(ei|τ) < 0 for all ei ∈ (τ − ε, τ). Thus, there will be a unique

effort level that maximizes U on (t∗ − ε, t∗). This effort level is characterized by the

first-order condition f(τ − ei)Π− c′(ei) = 0, and invoking symmetry (ei = σ) we get

f(τ − σ)Π = c′(σ). (4)

Conditions (3)–(4) simultaneously pin down a cutoff signal τ and an effort level σ. In

particular, (3)–(4) imply that σ is given by the implicit condition

c′(σ) = f(F−1(1−m))Π. (5)

Since c is strictly convex and satisfies c′(0) = 0 and c′(ei) → ∞ as ei → ∞, a unique σ

exists that satisfies (5). The corresponding τ is then given by plugging σ back into (3).

Making the dependence on m explicit, we have:

σ(m) = [c′]−1
(
f(F−1(1−m))Π

)
, (6)

τ(m) = F−1(1−m) + σ(m). (7)

The effort σ(m) is in fact the symmetric pure strategy equilibrium effort in the non-

discriminatory contest with m prizes—under one condition: The number of prizes, m,

must not be too small. If this condition is violated the equilibrium will become asym-

metric, with some individuals exerting zero effort. (Equivalently, the equilibrium will
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become mixed, with individuals randomizing over positive and zero efforts.) Proposition

1 characterizes the overall equilibrium of the contest:

Proposition 1. Consider a non-discriminatory contest. There exists a unique m ∈
(0, 1), which satisfies mΠ = c(σ(m)), such that the following holds:

(a) If m < m < 1, there exists a symmetric pure strategy equilibrium of the contest

in which every individual i ∈ I spends effort e∗i = σ(m), as defined in (6). The

minimum signal needed for winning is τ(m), as defined in (7).

(b) If 0 < m ≤ m, there exists an asymmetric pure strategy equilibrium in which a

fraction λ(m) = m/m of individuals spend effort σ(m) and win if their signal is at

least τ(m). The remaining fraction 1− λ(m) spend zero effort and never win.

(c) If 0 < m ≤ m, there also exists a symmetric mixed strategy equilibrium in which

every individual spends effort σ(m) with probability λ(m) = m/m, and zero effort

with the remaining probability 1− λ(m).

The proof of Proposition 1 is in the Appendix. Here we discuss why it is not an

equilibrium for all individuals to invest positive effort when m is too low (specifically,

when m < m). If every agent invested σ(m), and m decreases, the expected payoff to

each agent eventually becomes zero at m = m, and negative once m falls below m. This

profile clearly cannot be an equilibrium, as investing zero effort results in a zero payoff.

The first-order condition (4) thus describes a local payoff optimum only. There exists a

second local maximum, at zero. If m > m the interior optimum exceeds the corner one,

but if m < m this is no longer the case. Thus, a solution based solely on (4) is not an

equilibrium any more.

Instead, two different behaviors emerge: Some individuals exert zero effort and

thereby effectively withdraw from the contest. The remaining individuals compete over

the m prizes. Since m is fixed, if fewer individuals compete the relative proportion

of prizes available to them increases. Thus, by setting the size of the competing pool

appropriately (so that the proportion of prizes to competitors is exactly m), the com-

peting agents will earn a zero expected payoff when playing the symmetric equilibrium

effort σ(m) among themselves. Consequently, each individual is indifferent between be-

longing to the competing group and belonging to the non-competing group, making the

asymmetric or mixed profiles an overall equilibrium (part (b) and (c) of the result).7

7The result that contestants are indifferent between different effort levels may seem unrealistic, and
we will address the issue in more detail in Section 6.1 below. We note, however, that individual indif-
ference and mixed strategies are common equilibrium features of many contest models examined in the
literature. Examples include the War of Attrition (Maynard Smith, 1974), the all-pay auction with com-
plete information (Hillman and Riley, 1989; Baye et al., 1996), difference form contests (Che and Gale,
2000), the Tullock-contest with a sufficiently convex success function (Baye et al., 1994), the Chopstick
Auction (Szentes and Rosenthal, 2003), the Colonel Blotto game (Roberson, 2006), and the simultaneous
primaries game (Klumpp and Polborn, 2006).
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4.2 An example

Let us illustrate the equilibria described in Proposition 1 by the following example of a

non-discriminatory contest. (The example will be continued in Section 5.1, where it is

applied to discriminatory contests, and in Section 6.1.)

Set the prize value to Π = 1, suppose that the cost function of effort is c(ei) = 1
2e

2,

and assume that νi follows a uniform distribution on [0, 1]:

f(νi) =


0 if νi < 0,

1 if νi ∈ [0, 1],

0 if νi > 1,

F (νi) =


0 if νi < 0,

νi if νi ∈ [0, 1],

1 if νi > 1.

The relative group sizes α1 and α2 do not matter.

The first-order condition (4) implies that σ = Π = 1, and condition (3) implies that

τ = 2 − m. The expected payoff to each individual in a symmetric profile with effort

σ = 1 is thus m− 1
2 . To check whether this interior outcome is an equilibrium, we need

to consider possible deviations from σ = 1 to zero. If τ − 1 ≥ 0, or m ≤ 1, then a

deviation to zero guarantees a zero probability of a win, and hence a zero payoff. Thus,

spending zero is strictly preferred over spending 1 if and only if m < 1
2 . The effort σ = 1

is therefore a symmetric equilibrium effort for m ∈ [m, 1) with m = 1
2 . This satisfies the

condition mΠ = c(σ(m)) in Proposition 1.

If m < 1
2 , on the other hand, we can construct an equilibrium in which a fraction

of the population spends effort 1 while the remainder spends zero. In this equilibrium,

the payoff from both efforts must be the same. The payoff from positive effort is (1 −
F (τ − 1)) − 1

2 = 3
2 − τ , while the payoff from from zero effort is zero; equality hence

implies τ = 3
2 . The individuals with positive effort generate signals uniformly on [1, 2],

so that one-half of these individuals have signals above τ = 3
2 . On the other hand, none

of the zero-effort individuals generate signals above τ . To fulfill the capacity constraint,

therefore, the fraction of individuals exerting high effort must be λ(m) = 2m, which

equals m/m as stated in Proposition 1 (b). Figure 1 plots the equilibrium variables

λ(m) and τ(m) in this example.

4.3 Equilibrium of discriminatory contests

Next, we examine discriminatory contests CD. Observe that a discriminatory contest is

simply a pair of separate non-discriminatory contests—one played by α1 of individuals

competing for α1m1 prizes, and the other played by α2 of individuals competing for

α2m2 prizes.

If m1 and m2 are strictly between zero and one, we can solve for an equilibrium

by applying the same steps as in Section 4.1 but treating each group separately. If

mg ∈ {0, 1}, on the other hand, the contest is so severely biased that individuals in
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Figure 1: Equilibrium σ, λ, and τ as functions of m

group g have either a zero chance of winning or are guaranteed to win. In these extreme

cases, it is clearly a dominant strategy for all individuals in group g to invest a zero

effort. We thus get the following result:

Proposition 2. Suppose the contest is discriminatory. The following holds for each

group g = 1, 2:

(a) If m < mg < 1, there exists a symmetric pure strategy equilibrium of the contest

played by group g in which every individual i ∈ Ig spends effort e∗i = σ(mg). The

minimum signal needed for an individual from group g to win is τ g = τ(mg).

(b) If 0 < mg ≤ m, there exists an asymmetric pure strategy equilibrium of the contest

played by group g in which a fraction λ(mg) = mg/m of group-g individuals spend

effort σ(m) and win if their signal is at least τ g = τ(m). The remaining fraction

1− λ(mg) spend zero effort and never win.

(c) If 0 < mg ≤ m, there also exists a symmetric mixed strategy equilibrium of the

contest played by group g. In this equilibrium, every group-g individual spends

effort σ(m) with probability λ(mg) = mg/m, and zero effort with the remaining

probability 1− λ(mg).

(d) If mg ∈ {0, 1}, there exists a symmetric pure strategy equilibrium of the contest

played by group g in which every individual i ∈ Ig spends zero effort.

(The proof of Proposition 2 (a)–(c) is identical to the proof of Proposition 1 and is

therefore omitted. Part (d) was explained above.)

Note that in equilibrium of CD there will be two signal thresholds, τ1 and τ2, such

that individual i ∈ Ig wins if e∗i + νi ≥ τ g (g = 1, 2). Each τ g is computed as a function

of mg in the same way as the single threshold τ(m) for CND.
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5 Observational Equivalence and Perceptions

We have so far introduced two types of contests, non-discriminatory and discriminatory,

and solved for their respective equilibria under the standard assumption that the contes-

tants had common knowledge of the type of contest. We will now present an argument

that, from the perspective of both an outside observer and that of a contestant, it can

be difficult to distinguish between discriminatory and non-discriminatory contests.

To do so, we imagine an “analyst” who does not observe the contest type. However,

the analyst may observe the outcome of the contest, or parts of it. That is, she may

observe the following data:

1. The individual efforts,

2. the resulting qualifications (signals) of winners and losers,

3. the fraction of winners in each group,

or any combination thereof. Depending on how much one assumes regarding the infor-

mation available to the analyst, only some of the above variables may be realistically

observed.8 It will not matter for our results how much outcome information is actually

available to the analyst.

Before we proceed, we need to introduce some additional notation. Given g = 1, 2,

denote by

T g(e, ν|C) =

 inf
{
t :

∣∣{i ∈ I : ei + νi ≥ t}
∣∣ ≤ m }

if θ = ND,

inf
{
tg :

∣∣{i ∈ Ig : ei + νi ≥ tg}
∣∣ ≤ αgmg

}
if θ = D

the observed cutoff signal above which members of group g win in contest C, for efforts e

and realized noise ν. Note that, if C is non-discriminatory then T 1(e, ν|C) = T 2(e, ν|C).

If C is discriminatory, it is possible (but not necessary) that T 1(e, ν|C) 6= T 2(e, ν|C).

Because both groups contain a continuum of agents, the law of large number implies

that

T g(e|C) ≡ Eν
[
T g(e, ν|C)

]
= T g(e, ν|C) almost surely.

That is, for a profile given e, the ex-post observed cutoff signal will equal the ex-ante

expected threshold with probability one.

Further, denote by

Mg(e, ν|C) =
1

αg
·
∣∣{i ∈ Ig : ei + νi ≥ T g(e, ν|C)}

∣∣
8For example, if the contest represents a labor market, statistical information about the third item

(the fraction of hires in each group) can be relatively easy to obtain. The second item (the actual
qualification of individuals hired and not hired) may be harder to come by, and information on the first
item (the individuals’ efforts while in training) may be impossible to get.
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the observed fraction of group-g winners in contest C, again for efforts e and realized

noise ν. Note that, if C is discriminatory with prescribed group quotas m1 and m2, then

M1(e, ν|C) = m1 and M2(e, ν|C) = m2. If C is non-discriminatory, then it is possible

(but not necessary) that M1(e, ν|C) = M2(e, ν|C) = m. As before, our continuum

assumption and the law of large numbers imply that

Mg(e|C) ≡ Eν
[
Mg(e, ν|C)

]
= Mg(e, ν|C) almost surely.

That is, for a profile given e, the ex-post observed group shares will equal the ex-ante

expected shares with probability 1.

5.1 Outside observers

Our first perspective is that of an outside observer. That is, we assume that contestants

possess common knowledge about the contest type, and play the contest accordingly,

while the observer only observes the outcome of the contest. The following result asserts

that, based on outcome information as described above, it can be impossible to tell for

the observer whether the contest is discriminatory or not.

Theorem 3. Let m and σ(·) be defined as before, and suppose m ≤ m. Let CND be

a non-discriminatory contest with m prizes available, and let CD be any discriminatory

contest with group quotas m1,m2 ≤ m such that α1m1 + α2m2 = m. There exists a

profile e∗ such that the following holds:

(i) e∗ is an equilibrium in both CND and CD,

(ii) T 1(e∗|CD) = T 2(e∗|CD) = T 1(e∗|CND) = T 2(e∗|CND) = τ(m), and

(iii) M1(e∗|CD) = M1(e∗|CND) = m1 and M2(e∗|CD) = M2(e∗|CND) = m2.

The formal proof of Theorem 3 is in the Appendix. However, the result has a very

simple intuition that can be illustrated using the example of the previous section where

m = 1
2 . Set the size of the pool of available prizes to m = 1

4 and suppose that the

two groups of the population are of size α1 = α2 = 1
2 . Proposition 1 (c) states that

it is an equilibrium of CND if half of the population exerts effort σ(m) = 1 while the

other half exerts effort zero. Because it does not matter who the high-effort individuals

are, it is an equilibrium of CND if all group-1 members exert high effort and all group-

2 members exert low effort. Precisely this profile, now, is also an equilibrium of a

highly discriminatory contest with m1 = 1
2 and m2 = 0, as stated in Proposition 2.

Observational equivalence is hence the result of the fact that the efforts of a group-

1 individual and a group-2 individual can be substituted for one another while not

upsetting the equilibrium of the non-discriminatory contest.

13



This substitution works as long as m ≤ m. If m > m this is no longer feasible,

since all individuals exert high effort in CND. While the same profile will also be an

equilibrium in CD (provided m1 and m2 are high enough), if m1 6= m2 the observed

cutoff thresholds T 1(e∗|CD), T 2(e∗|CD) will be different, as will be the observed win

quotas M1(e∗|CD) = m1 and M2(e∗|CD) = m2. These differences in observed outcomes

give away the fact that CD discriminates and CND does not. The exception is the

separate-but-equal contest:

Theorem 4. Let m and σ(·) be defined as before, and suppose m > m. Let CND be a

non-discriminatory contest with m prizes available, and let CD be a separate-but-equal

contest, that is, a discriminatory contest with group quotas m1 = m2 = m. Then the

following holds:

(i) e∗ = (σ(m))i∈I is an equilibrium in both CND and CD,

(ii) T 1(e∗|CD) = T 2(e∗|CD) = T 1(e∗|CND) = T 2(e∗|CND) = τ(m), and

(iii) M1(e∗|CD) = M1(e∗|CND) = M2(e∗|CD) = M2(e∗CND) = m.

Notice that, in real contests, much less information could be available to an outside

observer than what we assume here. In particular, the assumption that one can observe

all individuals’ efforts and their signals need not hold. This makes our results very

strong: All contests that are observationally equivalent contests according to Theorem

3 or 4 would still be equivalent if any of the equivalence requirements (i), (ii), or (iii) in

the theorems were discarded.

5.2 Inside observers

We now turn to the perspective of an inside observer, by which we mean the player in the

contest themselves. We will maintain the assumption that the parameters m,α1, α2,Π, F

are common knowledge across all individuals. However, we now allow individuals to

differ with respect to what they believe about the potentially discriminatory nature of

the contest. In other words, we do away with the assumption that the contest type is

common knowledge among the players. This requires a slight change in our equilibrium

concept, which until now has been Nash equilibrium.

We start with the notion of a perception of a contest, which we define in the same

way as a contest type. That is, a perception for individual i is a tuple

C̃i = (θ̃i, m̃
1
i , m̃

2
i ),

which represents the type of contest that individual i believes she is engaged in. The

collection C̃ = (C̃i)i∈I is called a perception profile. We can then make the following

definition of an equilibrium:

14



Definition 1. A profile of efforts and perceptions (e∗, C̃∗) = (e∗i , C̃
∗
i )i∈I is a rational

perceptions equilibrium of the contest C if the following holds for all i ∈ I:

(i) e∗i maximizes the payoff Ui(e
∗
i , e
∗
−i|C̃∗i ),

(ii) θ̃∗i = D implies Mg(e∗|C) = m̃g∗
i for g = 1, 2,

(iii) θ̃∗i = ND implies T 1(e∗|C) = T 2(e∗|C).

This definition has three parts. Part (i) simply says that every individual chooses

her effort to maximize the expected payoff in the contest she thinks she is playing. To

understand parts (ii) and (iii), our equilibrium concept is based on the idea that the

contestant—just like the outside observer in Section 5.1—can see the realized outcome

of the contest. That is, contestants can observe e∗ as well as T g(e∗|C) and Mg(e∗|C)

(g = 1, 2). Individuals can then utilize this information to falsify their initial perceptions

about the contest in the following sense: If the realized outcome of the actual contest is

not (with positive probability) the realized outcome in the individual’s perceived contest,

this perception cannot be part of an equilibrium. A rational perceptions equilibrium

should hence be viewed as a profile of efforts and perceptions that can persist in the long

run of the contest.

What specific restrictions does Definition 1 impose on perceptions to survive this

possibility of falsification? First, let us look at an individual who believes that the contest

discriminates with perceived group quotas m̃1
i and m̃2

i . For this individual to maintain

her perception, almost surely it must be the case that a fraction m̃1
i of individuals from

group 1 and a fraction m̃2
i of individuals from group 2 win in the actual contest C, given

the actual efforts. This restriction gives rise to part (ii) of Definition 1. Second, let us

look at an individual who believes that the contest does not discriminate. If such an

individual exists, then for her to maintain this perception it cannot happen with positive

probability that a losing contestant from one group has a higher signal than a winning

contestant from the other group, again in the actual contest C and given the actual

efforts. This restriction gives rise to part (iii) of the definition.

We have deliberately chosen the term “rational perceptions” over the term “rational

expectations.” The colloquial understanding of the term “rational expectations” is that

agents know, in equilibrium, the structural equations that govern the model containing

these agents. This is not the case here: Our equilibrium concept permits agents to

not know the contest C and instead have individual perceptions C̃i different from C.

Furthermore, individuals may or may not know that others hold perceptions that are

possibly different from their own. In particular, in a rational perceptions equilibrium

individuals may “agree to disagree” with one another about the true nature of the contest.

All that is required is that any incorrect perceptions as to the true nature of the contest

not be contradicted by the observable data generated in the correct model C, assuming

behavior that is optimal given the individuals’ (possibly incorrect) perceptions.
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The next theorem states that individual perceptions about C do not have to agree

with either C or with each other in a rational perceptions equilibrium:

Theorem 5. Let m and σ(·) be defined as before. Suppose m ≤ m and let C =

(θ,m1,m2) be any contest with m prizes available. The profile (e∗, C̃∗) is a rational per-

ceptions equilibrium of C if there exist numbers µ1, µ2 ≤ m such that α1µ2 + α2µ2 = m

if θ = ND and µg = mg (g = 1, 2) if θ = D, and the following holds:

(i) A fraction µg/m of individuals from group g spend effort e∗i = σ(m), while the rest

spend e∗i = 0,

(ii) θ̃∗i = D implies m̃g∗
i = µg (g = 1, 2).

If m > m then the following is true: (e∗, C̃∗) is a rational perceptions equilibrium of

contest C = (θ,m,m), which either does not discriminate or is a separate-but-equal

contest, if e∗ = (σ(m))i∈I and θ̃∗i = D implies m̃1∗
i = m̃2∗

i = m.

Theorem 5 states that, provided the total number of available prizes is not too large,

a very large set of effort and perception profiles can be rational perceptions equilibria.

As in Proposition 1 and 2, there will be some individuals who spend zero effort, and

others who spend effort σ(m). If the contest is discriminatory, the fraction of individuals

choosing high effort in each group must be consistent with the equilibrium of this contest

(see Proposition 2). If the contest is non-discriminatory, then the fraction of individuals

choosing high effort in each group must be consistent with the equilibrium of some

contest with the same total measure of awards. Finally, individuals who believe the

contest discriminates must agree on the perceived group quotas, and if the contest is in

fact discriminatory, the perceived quotas must equal the true quotas.

As before, when m > m it is easier to tell discriminatory and non-discriminatory

contests apart, with the exception of the separate-but-equal case. Thus, it is possible

in a rational perceptions equilibrium for some contestants to believe that the contest is

non-discriminatory, while others believe it to be a separate-but-equal contest. The true

contest must be one or the other.

5.3 Geometry of observational equivalence

The relationship between these observationally equivalent contests has a simple geometric

representation that is depicted in Figure 2. The vertical dimension in Figure 2 represents

the size m of available prizes in a non-discriminatory contest CND. The two horizontal

dimensions represent the group quotas m1 and m2 in a discriminatory contest CD. The

shaded area in the figure and the line from (m,m,m) to (1, 1, 1) contain all points

(m,m1,m2) such that CD and CND are observationally equivalent (from both the outside

and inside perspective).9

9The shaded area is the intersection of the plane {(m,m1,m2) : α1m1 + α2m2 = m} and the cube
[0,m]3. For m > m, we are left with the line segment along which m1 = m2 = m.
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Figure 2: Observationally equivalent contests

For a given m < m there is a continuum of pairs (m1,m2) such that the point

(m,m1,m2) lies in the shaded plane depicted in Figure 2. Assuming the actual contest

is non-discriminatory, this implies that a continuum of rational perceptions equilibria

exists in which some or all individuals believe that the contest discriminates with group

quotas m1 and m2. We do not take a position on which of these equilibria should be

regarded as more reasonable than others—with the possible exception of equilibria that

arise as focal points in cases where the contests has actually discriminated in the past.

(Focal points were discussed in the introduction.) Our point is that a large number of

outcomes and perceptions can be supported in equilibrium of our contest model.

However, the equilibrium indeterminacy inherent in the model does seem to be con-

sistent with the different observed patterns of inter-group differences across societies.

Consider the labor market outcomes of minorities. In some societies, minority groups

are under-represented in high-wage or high-prestige jobs, relative to their proportion

in the population. However, in other societies minorities are over-represented in these

positions. African-Americans in the United States are an example of the former, while

ethnic Chinese in many parts of Southeast Asia are an example of the latter. Of course,

these patterns can have many causes and explanations. In the following, we examine

what our contest model has to say about the representation of minorities among the

contest winners.
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Suppose that group 1 is the majority and group 2 is the minority (α1 > 1
2 > α2).

Figure 2 is drawn for this case. For each group g, denote by

rg(e|C) =
αgMg(e|C)

m
,

the fraction of prizes that is obtained by members of group g in contest C and profile

e. For simplicity, consider the case rg ∈ {0, 1}. That is, all prizes are won by just

one group. Such severe misrepresentation occurs along the the two sides of the shaded

region in Figure 2 where m1 = 0 or m2 = 0. For example, we have r1 = 1 and r2 = 0

along the line segment from (0, 0, 0) to (α1m,m, 0), and r1 = 0 and r2 = 1 along

the line segment from (0, 0, 0) to (α2m, 0,m). Observe now that for all m ∈ (0, α1m)

there exists an equilibrium of the non-discriminatory contest with m prizes that features

severe over-representation of the majority group, and severe under-representation of the

minority-group. Likewise, for all m ∈ (0, α2m), there exists an equilibrium that features

the reverse misrepresentation. Since α1 > α2, it is “easier” for the minority group to be

under-represented in a non-discriminatory contest than it is for the majority group.10

6 Extensions

In the preceding sections, we developed a contest model with the possibility of dis-

crimination and established two related results: The potential difficulty for an outside

observer to distinguish discriminatory contests from non-discriminatory ones (Theorem

3 and 4), and the possibility that the contestants themselves may not be able to tell the

two contests apart (Theorem 5).

Whenever our equivalence results apply, two conditions are satisfied: First, all in-

dividuals are indifferent between exerting effort and not exerting effort. Second, all

individuals receive the same expected payoff, namely zero. The first feature may seem

unrealistic. For example, there are motivated students from every race or gender, and

these individuals are unlikely to be indifferent between studying and not studying. The

second feature raises the question why one should be concerned with whether or not the

contest is discriminatory, or perceived as such, given that everyone receives the same

welfare.

In this section, we address both issues. We demonstrate that it is possible to break

both individidual indifference and equality in welfare, while maintaining the model’s core

structure and observational equivalence results.

10That is, minority under-representation can arise in equilibrium of a larger set of non-discriminatory
contests than majority under-representation. In particular, for intermediate values of m the minority
can be severely under-represented, while the same is no longer possible for the majority.
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6.1 Individual heterogeneity

To address the issue of individual indifference, we relax the assumption that individuals

are homogenous in all aspects except their group label. Instead, we now let individuals

differ in economically relevant characteristics, such as their valuation of winning a prize

or their cost of effort. Groups are still symmetric in the sense that the distribution of

individual types in group 1 is the same as in group 2.

Notice that the equivalence results in the previous section relied on the substitutabil-

ity of effort across groups. This substitutability, in turn, was driven by the fact that (for

a low enough m) all individuals were indifferent between exerting effort and not exerting

effort. If individuals are heterogenous in economic characteristics, the indifference con-

dition will apply to a smaller number of marginal individuals only, across which effort

could be substituted. With a sufficiently high degree of heterogeneity—say, if individuals

characteristics were continuously distributed in the population—these marginal individ-

uals would be too few for their behavior to affect aggregate outcomes. In other words,

if any inter-group outcome differences were observed then these could only be explained

by actual discrimination.

In order to maintain the equivalence results of Theorems 3 and 5 in the presence of

heterogenous individuals, therefore, some discreteness in the type distribution is required.

Thus, let us assume that within each group g = 1, 2 there is a fraction βH of individuals

whose valuation of winning a prize is ΠH , a fraction βM whose valuation is ΠM , and a

fraction βL = 1− βH − βM whose valuation is ΠL (with ΠH > ΠM > ΠL > 0). We call

these individuals H-types, M -types, and L-types, respectively.11 For simplicity, let us

also fix a uniform noise distribution over [0, ε] and a quadratic cost function c(e) = 1
2e

2

throughout.

Non-discriminatory contests. Consider first a non-dscriminatory contest with m

prizes, and suppose that every H-type exerts the same positive effort σH , a fraction

λ ∈ (0, 1) of M -types exerts positive effort σM , and all other individuals exert zero effort.

As in the original model, there exist a uniform threshold τ such that only individuals with

signals above τ win. Assuming that τ > ε (so a zero effort has no chance of winning),

the capacity constraint (3) can be written as

βH (1− (τ − σH)) + λβM (1− F (τ − σM )) = m. (8)

Denote by Uθ(ei|τ) = (1− F (τ − ei)) Πθ − c(ei) the expected payoff function for a

θ-type (θ ∈ {H,M,L}), given signal threshold τ . As before, Uθ(ei|τ) will have two

local maxima, one at zero and one at σθ > 0. The first-order condition for an interior

11The assumption that heterogeneity arises from different valuations is without loss of generality: By
scaling the payoff functions, all individuals can have the same valuation Π but different effort costs,
namely γHc(·), γMc(·), and γLc(·) (with γH < γM < γL).
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payoff maximum for a θ-type is f(τ − σθ)Πθ − c′(σθ) = 0, and using our functional form

assumptions on f and c this implies σθ = Πθ/ε. Substituting σθ into (8) and solving, we

get τ (as a function of λ):

τ = ε ·
βH

[
1 +

ΠH

ε2

]
+ λβM

[
1 +

ΠM

ε2

]
−m

βH + λβM
. (9)

Next, for a fraction λ ∈ (0, 1) of M -types to exert effort σM , M -type individuals must

be indifferent between spending σM = ΠM/ε and spending zero. Thus, we need

UM (σM |τ) =

(
1− 1

ε

[
τ − ΠM

ε

])
ΠM −

1

2

(
ΠM

ε

)2

= 0. (10)

Using (9) in (10) and performing some algebra, we can solve for the equilibrium fraction

of M -types who exert positive effort:

λ(m) =
m− βHB
βMA

, (11)

where A = 1−ΠM

[
1 + ΠM/(2ε

2)
]

+ ΠM/ε
2 and B = 1−ΠM

[
1 + ΠM/(2ε

2)
]

+ ΠH/ε
2.

Finally, plugging (11) back into (9) we obtain the equilibrium cutoff signal above which

an individual wins a prize. After simplifying, this cutoff can be written as

τ∗ =
ΠM (2ε2 + ΠM )

2ε
. (12)

Under some conditions on the parameters of the extended model, analogous to the pre-

vious condition m < m, we have λ(m) ∈ (0, 1) and τ∗ > ε as initially presumed.

By construction, in both contests the M -types are indifferent between exerting effort

σM = ΠM/ε and effort zero, as both yield a zero expected payoff. On the other hand,

the expected payoff for H-types from effort σH = ΠH/ε is positive:

UH(σH |τ∗) = (1− F (τ∗ − σH))ΠH − c(σH) > (1− F (τ∗ − σM ))ΠH − c(σM )

> (1− F (τ∗ − σM ))ΠM − c(σM ) = UM (σM |τ∗) = 0,

where the first inequality follows from the first-order condition for H-types and the

second from ΠH > ΠM . In a similar manner one can show that UL(σL|τ∗) < 0. Thus,

it is strictly optimal for H-types to spend σH > 0, and strictly optimal for L-types to

spend zero.
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Discriminatory contests. Let us now turn to a discriminatory contest with group-

specific award quotas m1 and m2. Applying (11) to each group separately, a fraction

λg(mg) =
mg − βHB
βMA

(13)

of M -type individuals in group g ∈ {1, 2} spends effort σM . In the aggregate, then, a

fraction α1λ1(m1)+α2λ2(m2) of M -types spend effort σM in the discriminatory contest.

Now recally that in the non-discriminatory contest with m prizes, this number was λ(m);

furthermore, it did not matter whether how many of the high-effort M -types belonged to

group 1 and group 2. Thus, the equilibrium effort profile of the discriminatory contest is

an equilibrium of the non-discriminatory contest as long as α1λ1(m1)+α2λ2(m2) = λ(m).

Using (11) and (13), we can write this equality as

1

βMA

(
a1m1 + α2m2 − βHB

)
=

1

βMA
(m− βHB) .

After cancelling common terms, this reduces to α1m1 +α2m2 = m, our original relation

among discriminatory and non-discriminatory contests. By shifting efforts across M -

types in both groups, the outcome of a non-discriminatory contest can hence be made to

resemble that of a discriminatory contest with group quotas m1 and m2. In both contests

individuals win if their signal is above τ∗, so that the fraction of winners in group g = 1, 2

is the same in either case. It is therefore possible to extend our observational equivalence

results to the heterogeneous case.12

6.2 Welfare considerations

Let us now turn to the second issue, ex-ante equality in payoffs across groups. Let C be

a contest type and let e be an effort profile. For each g ∈ {1, 2} define

W g(e|C) =
1

αg

∫
i∈Ig

Ui(e|C) di

to be the average payoff of an individual in group g under effort profile e, given a contest

type C. In the equilibria characterized in Theorems 3–5, W 1(e|C) = W 2(e|C). Despite

this ex-ante equality in welfare in our model, we believe there are reasons why one might

worry about discrimination and ex-post inequality.

12Doing so requires an additional restriction, however. Recall that, in the baseline model, the prize
quotas had to be sufficiently small to generate asymmetric equilibria (i.e., m,m1,m2 < m). In the
extended model, such an upper bound alone is insufficient and an additional lower bound is needed.
In particular, (11) and (13) imply that βHB ≤ m1,m2,m ≤ βHB + βMA. The reason why both an
upper and a lower bound are needed is that all H-types choose the same positive effort σH . If too few
prizes were available in a contest this would not be an equilibrium. Instead, the H-types would choose
asymmetric efforts and be indifferent, while both the M -types and the L-types would strictly prefer zero
efforts.
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Externalities. Most importantly, in reality there are likely to be positive externalities

of both efforts (e.g., years of schooling) and prize wins (e.g., wages) within groups. A

particularly compelling case can be made for families. If g denotes race, and interracial

families are uncommon, then individuals belonging to the same family will also belong

to the same group g. If we further think of efforts as parental education and prizes as

parental income, then ex-post racial inequality implies that children in the disadvan-

taged group will have poorer and less educated parents on average than children in the

advantaged group. To the extent that parental education and parental income matter for

a child’s development, the fact that parents may have been ex-ante indifferent between

investing zero effort or a postive amount is irrelevant as far as their childrens’ welfare is

concerned. Similar externalities can arise in the form of neighborhood effects if residen-

tial neighborhoods are segregated by race, or in the form of peer effects if schools are

segregated.

Such intra-group externalities can easily be incorporated into our model by changing

individual payoffs from Ui(e|C) to

Ûi(e|C) = Ui(e|C) + φ
(
eg(i)(e|C),Mg(i)(e|C)

)
,

where eg denotes the average effort and Mg the fraction of winners in group g, and φ is

an increasing function. Clearly, individual incentives and decisions will not be affected

by this change. However, the average welfare of group g now becomes

Ŵ g(e|C) =
1

αg

∫
i∈Ig

Ûi(e|C) di = W g(e|C) + φ
(
eg(e|C),Mg(e|C)

)
,

and it is easy to see that, even if W g(e|C) is the same for both groups, Ŵ g(e|C) will be

larger in the group that generates more effort and more winners. In this case, it does not

seem unreasonable for policy makers to take the effects of discrimination into account if

they are concerned with the distribution of benefits across individuals.

Psychological effects. Even if outcomes are distributed equally across groups there

may be reasons to be concerned with whether the institutions which generate these

outcomes are discriminatory, or perceived as such. Consider, for example, a separate-

but-equal contest C = (D,m,m). This contest will always yield equal outcomes across

groups in our model (and thus W 1(e|C) = W 2(e|C)), but it does so by distinguishing the

groups. Making this distinction can itself be undesirable. For instance, in its landmark

Brown v. Board of Education decision the U.S. Supreme Court notes:

Does segregation of children in public schools solely on the basis of race, even

though the physical facilities and other “tangible” factors may be equal, deprive

the children of the minority group of equal educational opportunities? We believe

that it does. [...] Segregation of white and colored children in public schools has
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a detrimental effect upon the colored children. The impact is greater when it has

the sanction of the law; for the policy of separating the races is usually interpreted

as denoting the inferiority of the negro group. A sense of inferiority affects the

motivation of a child to learn. Segregation with the sanction of law, therefore, has

a tendency to retard the educational and mental development of negro children and

to deprive them of some of the benefits they would receive in a racially integrated

school system. (United States Supreme Court, 1954.)

If these psychological factors play a role, then discrimination will affect individual

welfare directly, even if it is of the separate-but-equal form. In addition, the mere

perception of discrimination has also been shown to have adverse effects on individuals’

mental health (Sellers and Shelton, 2003).

Like externalities, such effects can be incorporated into individual payoff functions

easily. Let C̃i = (θ̃i, m̃
1
i , m̃

2
i ) be a perception for individual i and set

Ûi(e, C̃i|C) = Ui(e|C) +

{
φ(m̃g(i)) if θ̃i = ND,

0 otherwise,

where φ is a function representing possible detrimental effect for individual who per-

ceives being discriminated against. If individuals in one group perceive the contest as

discriminatory while individuals in the other groups do not, welfare will not be equal

across groups even if prizes are equitably awarded.13

7 Conclusion

We developed a model of a contest with a continuum of prizes and players. The contest

allowed for the possibility of discrimination against sub-groups of the population. We

showed that discriminatory contest rules can be impossible to detect from observational

data by both outside and inside observers.

Applying this contest model to labor markets, our results suggest that the presence

of discrimination can be difficult to determine based on employment statistics typically

available to government agencies or courts. For the same reason, individual labor mar-

ket participants may rationally disagree about the presence or absence of discrimination

in labor markets. Our model also suggests that competition and anti-discrimination

policies may not eliminate outcome disparities in previously discriminatory situations,

even under the stringent assumption that there are no economically relevant differences

across population groups. These results are driven by the multiplicity of equilibria

in non-discriminatory contests. In contrast to the statistical discrimination literature,

13For example, the “a sense of inferiority” experienced by an individual who believes to be engaged in
a separate but equal contest can be modeled using this specification: Let φ be weakly increasing with a
discontinuity at m, such that φ(m̃g(i)) < 0 for m̃g(i) ≤ m and φ(m̃g(i)) ≥ 0 for m̃g(i) > m.
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however, this multiplicity is not due to informational asymmetries. In particular, non-

discriminatory contests can lead to seemingly discriminatory outcomes even if individual

efforts, idiosyncratic random shocks, and final qualifications are perfectly observed.

Our work leaves a number of interesting questions for future research. On the the-

oretical side, it seems promising to investigate alternative forms of discrimination. For

example, the contest could be such that one group competes for all prizes, while the

other can compete for a subset of prizes only. Applied to the labor market, this situa-

tion would arise if, say, white applicants are considered for both managerial and manual

labor positions, while black applicants are excluded from managerial jobs. Alternatively,

the contest might be such that one group is “handicapped” in the sense that effort in-

vestments by members of this group are discounted by a certain factor relative to efforts

from the other group. Second, one could explicitly introduce dynamics to the model,

along with the possibility of changing perceptions over time. Such a model would pro-

vide a setting in which a rich set of policies can be studied. For example, the effects of

temporary affirmative action on both labor market outcomes as well as perceptions of

the labor market could be examined in such a dynamic model.

On the empirical side, our model remains to be tested against competing theories

which can also explain unequal outcomes in labor markets and other areas. In the

context of law enforcement, the literature has examined the question whether outcome

inequalities across groups constitute evidence of racial prejudice (i.e., preference-based

discrimination) instead of racial profiling (i.e., statistical discrimination). In particu-

lar, some authors have pointed to several difficulties in making this assessment using

available outcome data (Knowles et al, 2001; Anwar and Fang, 2006). These difficulties

occur because of variables that affect individual decisions but are not observed by the

researcher. For example, arrest data usually do not contain all the information a police

officer observes when making an arrest. As we have demonstrated in this paper, even

if all individuals’ characteristics are observed, color-conscious and color-blind contests

can be distinguishable in their outcomes. Thus, it remains to be seen if, and to which

extent, our theoretical model can be tested empirically.
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Appendix

Proof of Proposition 1

Step 1. Inspection of the expected payoff function. First, notice that the proba-

bility of winning with effort ei ≤ τ(m) − ε is zero, and the probability of winning with

effort ei ≥ τ(m)− is one. Thus, the payoff U(ei|τ(m)) can be expressed as follows:

U(ei|τ(m)) =


−c(ei) if ei < τ(m)− ε,

(1− F (τ(m)− ei))Π− c(ei) if ei ∈ [τ(m)− ε, τ(m)],

Π− c(ei) if ei > τ(m).

(14)

Notice that U(ei|τ(m)) is continuous and strictly concave in ei on each of these three

parts separately, and has an interior local maximum at σ(m) ∈ [τ(m)− ε, τ(m)]. Thus,

since c is strictly increasing, U(ei|τ(m)) has either exactly one local maximum at σ(m)

(this will be the case if τ(m) ≤ ε, or exactly two local maxima at σ(m) and zero (this

will be the case if τ(m) > ε). Furthermore, if there is a local maximum at zero, then it

has a payoff level of −c(0) = 0.

Step 2. Monotonicity of payoffs in m. We will now focus on the local maximum

at σ(m). Let U∗(m) = Ui((σ(m))j∈I) the payoff to every individual if every individual

exerts effort σ(m). Since the probability that an individual wins a prize, (1−F (τ(m)−
σ(m))), is then equal to m by construction, we can write

U∗(m) = mΠ− c(σ(m)). (15)

We show that U∗ increases in m. By Assumption 1, σ(m) is differentiable on (0, 1), and

thus U∗ is differentiable with

d

dm
U∗(m) = Π− c′(σ(m))

d

dm
σ(m). (16)

This is positive if and only if

c′(σ(m))
d

dm
σ(m) < Π. (17)

Differentiating both sides of (5) with respect to m (using the inverse function theorem

for F−1), we have

d

dm
σ(m) = − Π

c′′(σ(m))

f ′(F−1(1−m))

f(F−1(1−m))

=
Π

c′′(σ(m))

f ′(F−1(1−m))

c′(σ(m))/Π
. (18)
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Using (18) in (17), dividing both sides by Π, substituting F−1(1 −m) = τ(m) − σ(m)

and rearranging, the condition (17) becomes

f ′(τ(m)− σ(m)) > − 1

Π
c′′(σ(m)). (19)

By Assumption 1 (iv) this is satisfied; U∗(m) thus strictly increases in m.

Step 3. Construction of m. The value of m is now set so that U∗(m) = 0. Define

σ(0) = lim
m→0

σ(m) = [c′]−1(f(ε)Π) > 0,

σ(1) = lim
m→1

σ(m) = [c′]−1(f(0)Π) > 0.

Define U∗(0) and U∗(1) accordingly, using σ(0) and σ(1) in (15).14 Since U∗(m) is

continuous and strictly increasing in m, for there to be m ∈ (0, 1) such that U∗(m) = 0,

we need U∗(0) < 0 and U∗(1) > 0. The first condition is satisfied since σ(0) > 0 implies

U∗(0) = −c(σ(0)) < 0.

The second condition is satisfied if

U∗(1) = Π− c(σ(1)) > 0.

Since c is strictly convex we have

c(σ(1)) < σ(1)c′(σ(1)) = σ(1)c′([c′]−1(f(0)Π)) = σ(1)f(0)Π

and hence

U∗(1) > Π(1− σ(1)f(0)).

Assumption 1 (iii) implies that σ(1) = [c′]−1(f(0)Π) ≤ 1/f(0); thus U∗(1) is guaranteed

to be positive. Therefore, there exists m such that U∗(m) = 0, or mΠ = c(σ(m)).

Step 4. Verification of equilibria. We now finish the proof. Recall that U(ei|τ(m))

has up to two local maxima: One at σ(m), and another at zero if τ(m) > ε with

associated payoff zero. Suppose first that m ≥ m. Then U(σ(m)|τ(m)) = U∗(m) ≥ 0,

so that deviating to zero will always result in a weakly lower payoff than exerting effort

σ(m). Hence, exerting effort σ(m) is a best response for all individuals. This proves part

(a) of the result.

14These are not payoffs in games where m = 0 or m = 1, but the limit of payoffs in games where
m→ 0 or m→ 1.
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Now suppose that 0 < m < m. In this case, σ(m) > 0 and U(σ(m)|τ(m)) = U∗(m) <

0. By spending zero effort, an individual receives at least a zero payoff; thus σ(m) is not

a symmetric equilibrium effort anymore. To construct an asymmetric equilibrium, we

claim first that τ(m) > ε. To see that this so, suppose to the contrary that τ(m) ≤ ε, in

which case 0 ∈ [τ(m) − ε, τ(m)]. Recall that U(ei|τ(m)) is continuous, strictly concave

on (τ(m)− ε, τ(m)), and maximized on this interval at σ(m) with a value of zero. Thus,

it follows that U(0|τ(m)) < 0. However, by spending zero effort a player is guaranteed

at least a zero payoff, a contradiction. Therefore, τ(m) > ε.

Next, observe that τ(m) > ε implies that a player who spends zero effort against this

threshold has a zero chance of winning and therefore obtains a payoff of zero. Thus, if

τ(m) is the minimum signal needed for winning, every player is indifferent between spend-

ing zero and spending σ(m). Since these are the only two local maxima of U(ei|τ(m)), all

other effort levels will result in a negative payoff. If a measure λ(m) = m/m of individ-

uals spends σ(m) while the rest spends zero, then a measure mλ(m) = m of players will

obtain signals ti ≥ τ(m), so that τ(m) is in fact the minimum winning signal, making

the effort choices optimal for all players. This proves part (b) of the result.

Finally, to prove (c), suppose m < m and assume every individual spends σ(m) with

probability λ(m) and zero with probability 1 − λ(m) (where λ(m) = m/m is defined

as before). Because there is a continuum of individuals, exactly a fraction λ(m) of

individuals will spend σ(m). As shown above, this means that any one individual is then

indifferent between spending zero (and not winning) and spending σ(m) and winning

with probability m (with all other effort levels strictly worse). Thus it is a best response

for this individual to randomize between σ(m) and zero with probabilities λ(m) and

1− λ(m); making the profile a symmetric mixed strategy quilibrium.

Proof of Theorem 3

Consider the contest CD = (D,m1,m2) and let e be an effort profile. By definition of a

discriminatory contest, M1(e|CD) = m1 and M2(e|CD) = m2 for any e, including any

equilibrium profile e∗. Since σ(1) < 1/f(0) we can use Proposition 2 to fix such a profile

e∗, and because m1,m2 ≤ m we use the profile described in Proposition 2 (b): A fraction

mg/m of group g ∈ {1, 2} spends effort σ(m) and wins if σ(m)+νi ≥ τ(m) = T g(e∗|CD),

while the remaining population spends zero effort (and never wins).

The fraction of the total population spending effort σ(m) in profile e∗ is therefore

α1m1/m + α2m2/m = m/m. Since m ≤ m, Proposition 1 (b) implies that this is

also an equilibrium of CND; this proves (i). Proposition 1 (c) also states that a high-

effort individual wins in CND if σ(m) + νi ≥ τ(m). Since CND is non-discriminatory,

this implies T 1(e∗|CND) = T 2(e∗|CND) = τ(m). Because this equals T 1(e∗|CD) and

T 2(e∗|CD), we have proven (ii). Finally, in ε∗ the fraction of high-effort individuals

in group-g is mg/m. Each of these individuals wins if σ(m) + νi ≥ τ(m), which has
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probability m. Thus, a fraction mg of the individuals in group g obtains winning signals,

so Mg(e∗|CND) = mg = Mg(e∗|CD) for g = 1, 2. This proves (iii).

Proof of Theorem 4

Consider the contest CND with m > m prizes. Proposition 1 (a) implies that e∗ =

(σ(m))i∈I is an equilibrium profile, with observed signal thresholds T 1(e∗|CND) =

T 2(e∗|CND) = τ(m). Since the profile is symmetric, a fraction m of individuals in

each group wins; hence M1(e∗|CND) = M2(e∗|CND) = m. Next, consider the separate-

but-equal contest CD = (D,m,m). Proposition 2 (a) implies that e∗ is an equilibrium in

CD as well (which proves (i)), with observed signal thresholds T 1(e∗|CD) = T 2(e∗|CD) =

τ(m) for both groups (which proves (ii)). Furthermore, M1(e∗|CD) = M2(e∗|CD) = m

(this is true in CD = (D,m,m) for all effort profiles, not only e∗), which proves (iii).

Proof of Theorem 5

Consider first the case m ≤ m. If the actual contest C is non-discriminatory, choose µ1

and µ2 to satisfy µ1, µ2 ≤ m and α1µ1 + α2µ2 = m, where m is the measure of prizes

available in C. If the actual contest C is discriminatory, choose µ1 = m1 and µ2 = m2,

where m1 and m2 are the shares allocated to group 1 and group 2 in C. Now let e∗ be

as described in condition (i) of the theorem: A fraction µg/m of individuals from group

g spends effort e∗i = σ(m), while the rest spend e∗i = 0. Further, let C̃∗ be as described

in condition (ii) of the theorem: For every individual who perceives a discriminatory

contest (if there are any), set m̃g∗
i = µg for g = 1, 2.

Using Proposition 1 and 2, the effort profile is an equilibrium in every contest that

is part of the perception profile C̃∗. Thus, e∗i maximizes Ui(e
∗
i |C̃∗i ) for every i, even if

C̃∗i 6= C. This shows that (e∗, C̃∗) satisfies condition (i) in Definition 1. Note that e∗i is

also an equilibrium of the actual contest C. Theorem 3 then implies that Mg(e∗|C) = µg,

and since m̃g∗
i = µg if θ̃∗i = D by construction, condition (ii) in Definition 1 is met as well.

Finally, Theorem 3 implies that T 1(e∗|C) = T 2(e∗|C), so condition (iii) in Definition 1

is satisfied. This shows that (e∗, C̃∗) is a rational perceptions equilibrium of C.

Now consider m > m and a contests C that is either non-discriminatory (CND) or

separate-but-equal (CD = (D,m,m)). The theorem requires all individuals to spend

ε∗i = σ(m), have perceptions C̃∗i ∈ {CND, CD}. Since e∗ = (σ(m))i∈I is an equilibrium

in both CND and CD (Proposition 1 and 2), condition (i) of Definition 1 is satisfied.

Theorem 4 implies M1(e∗|CD) = M2(e∗|CD) = M1(e∗|CND) = M2(e∗|CND) = m and

T 1(e∗|CD) = T 2(e∗|CD) = T 1(e∗|CND) = T 2(e∗|CND) = τ(m), so conditions (ii) and

(iii) hold as well.
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