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Abstract. We extend the results of Blume, Brandenberger, and Dekel (1991b)
to obtain a finite characterization of perfect equilibria in terms of lexicographic
probability systems (LPSs). The LPSs we consider are defined over individual
strategy sets and thus capture the property of independence among players’
actions. Our definition of a product LPS over joint actions of the players is
shown to be canonical, in the sense that any independent LPS on joint actions
is essentially equivalent to a product LPS according to our definition.
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1. Introduction

The central idea in the literature on refinements of Nash equilibria is Selten’s
(1975) concept of a perfect equilibrium. A mixed strategy profile is perfect if
it is a best reply against each profile in a sequence of completely mixed strat-
egy profiles converging to it. For normal-form games, perfection strengthens
the admissibility criterion used in decision theory and is in fact equivalent to
it for two-player games. Admissibility — the requirement that players not use
weakly dominated strategies — is justified on the grounds that no pure strategy
of a player is considered a null event (in the sense of Savage) by his opponents
in making their decisions. Formally, a strategy is admissible if it is a best reply
against a completely mixed (possibly correlated) strategy profile. Perfection
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imposes the additional restriction that there is a sequence of such strategy pro-
files, each uncorrelated across players, that converges to the equilibrium.

The Selten programme remained incomplete to the extent that a finite char-
acterization of perfection was not obtained. Because the definition involves
universal and existential quantifiers, a direct check for whether a strategy pro-
file is a perfect equilibrium requires, in principle, an infinite number of com-
putations. Yet, the set of perfect equilibria is semi-algebraic (cf. Blume and
Zame, 1994) and, therefore, it admits a finite characterization. In this paper,
we obtain a finite characterization in terms of lexicographic probability systems
(LPSs).

Blume, Brandenberger, and Dekel (1991b; henceforth, BBD) show that any
convergent sequence of strategy profiles induces an LPS. They use this rela-
tion between sequences and LPSs to provide a characterization of perfect
equilibria in terms of the latter. However, their characterization is not finite
and, in particular, does not assure a product form that represents indepen-
dence across players. In this paper, we continue the work of BBD to obtain an
exact finite characterization using product LPSs.

The problematic feature of the BBD characterization of perfect equilibria
is that it uses LPSs defined directly on the space of profiles of pure strategies
for all players simultaneously. A possible interpretation of their result is that
an LPS over strategy profiles represents an outside observer’s assessment,
from which beliefs of players concerning the strategies of their opponents are
then derived.! The marginal LPS on a single player’s strategy set might thus
be viewed as the common belief of all other players about this player’s strat-
egy, if indeed it is independent of the others’. However, there is no way to
compose the marginal LPSs to recover the joint LPS if independence is vio-
lated. Hence, it is unclear to what extent the various marginals can be con-
sidered independent. Further, there is no finite procedure to check whether an
LPS over profiles of joint actions is induced by a sequence of mixed strategies.

From a conceptual viewpoint, it is desirable to obtain an equivalent for-
mulation of perfection using LPSs over individual strategy sets that are com-
posed to obtain beliefs over joint actions. Indeed, if players act independently,
as is commonly assumed in noncooperative game theory, then alternative
theories of how play would proceed, as described in LPSs, should be con-
structed from a hierarchy of alternative theories about how each individual
player would play if he were not to play his equilibrium strategy. Thus, the
primitives should be LPSs over each player’s pure strategies, not LPSs over
profiles of pure strategies.

From a practical viewpoint too, it is desirable to describe perfect equilibria
using individual LPSs: in most applications, selections from the perfect equi-
libria of a model are made based on the plausibility of the beliefs supporting
them, which in turn depend on the reasonableness of the alternate strategy
choices that are posited for each player individually. An important example is
use of the principle of forward induction as an equilibrium selection criterion.

Our aim, then, is to provide a definition of perfect equilibria using LPSs
defined over individual strategy sets (see Theorem 2.4). To do so, we introduce
a definition of product LPSs of a particular form (see Definition 2.2). This

! This approach and interpretation have parallels in Kohlberg and Reny (1997) where a charac-
terization of consistent assessments is obtained using conditional probability systems.
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operation seems, initially, to be ad hoc. However, we show in Section 4 that
any LPS over strategy profiles that is independent across players has an equiv-
alent LPS that is obtainable using our product formula. Thus, all independent
beliefs are included in those obtained from the special form of product LPSs
used in our construction.

2. Definitions and statement of the theorem

We consider finite games in normal form. Let 4" = {1,..., N} be the set
of players. For each n e /", let S, be player n’s set of pure strategies, and let
2, be his set of mixed strategies. Denote S = [[,. ,-Su, and 2 =[],

As usual, for eachne A", welet S_, =[], ., Swand 2, =[],,., Zm- Wrth
these sets of players and strategies fixed, the space of games, call it I", is a
Euclidean space of dimension N|S| in which each point assigns to each of the
players a payoff at each of the |S| profiles of pure strategies. Given a game
G e I', and a mixed-strategy profile 6 € X, G,(o) denotes player n’s expected
payoﬁ in G from . According to Selten (1975) a mrxed-strategy proﬁle g*isa
perfect equilibrium of a game G if there exists a sequence {o* } v« of com-
pletely mixed strategy profiles (i.e., in the interior of X') converging to ¢*, and
such that for all k£, ¢* is a best reply to o¥ in the game G.

Definition 2.1. Let X be a finite set. A lexicographic probability system (LPS)
of order K over X is a (K + 1)-tuple r = (°,...,rK) of probab111ty distribu-
tions on X. An LPS r is said to have full supporl if U —o SUpPp rF=X.

For each player n, we use p, to denote an LPS over S,. p, is interpreted
as a collection of theories (held in common by #’s opponents) about »’s strat-
egy choice: p? is the primary theory, pj the secondary theory, p? the tertiary
theory, and so on. In partlcular it is considered infinitely more likely that
player n chooses strategy pX than that he chooses p**!.

By an LPS profile of order K, we mean an N-tuple p = (py,...,py)
where for each n, p, is an LPS of order K over S,,. An LPS profile p has full
support if each p, has full support; in this case, define /(p) = max, min{k :

U;{:o supp pi. = S,}, the order of p required to get full support for all players.
Given an LPS profile, our next objective is to define for each player n
an LPS over S_,, interpreted as »’s beliefs about others’ actions. The particu-
lar construction we use has the following intuitive justification. Consider an
LPS profile p of order 1 for a 3-player game. For a player, say 1, what should
his beliefs over S; x S3 be? He believes that each of his opponents is infinitely
more likely to play his first mixed strategy than his second. If we assume that
the deviation of either player to his second strategy is independent of the
other’s deviation and equally likely, then the following LPS ,ul, of order 2
would be a reasonable assrgnment of beliefs for player I: ,u1 = p2 X pz, u =
2pY x p3) +3(pd x p); 1i = p3 x pi. (We show in Section 4 that actually
the seemrngly arbitrary equal weightings by 1 > in the formula for i is not
restrictive.) The definition below generalizes this notion to N-player games
and LPS profiles of any finite order.

Definition 2.2. Given an LPS profile p of order K, the induced lexicographic
beliefs for player n is the product LPS g, of order K(N — 1) over S_, obtained



232 S. Govindan, T. Klumpp
as follows. For k =0,...,K(N — 1),

k _ E k( ki ki k1 ky
My = C(pl X-~~Xpn71><[)n++lX~-'X[)N),
(kl7“-7kn—1-,kn+1«,<-~~,kN>
eyt th 1 kot =k

where CF is the appropriate normalizing constant.?

We will now illustrate the idea of lexicographic beliefs using a simple
example. Suppose we have a three-player game where player 1’s strategy set is
S1 = {4, B, C} and player 2’s strategy set is S» = {a,b, c}. Consider an LPS
profile of order three in which the LPSs of player 1 and 2 are as follows:

A B C a b ¢
0 0
P 1 - - p 1 - -
pt|— 4+ 1 and p'| - 1 4 (2.1)
o i S
pPl- =1 pPl- =1
where “—" replaces ““0”” for readability. The induced lexicographic beliefs for
player 3 is the product LPS of order 6 over S| x S, that is given by:
Aa Ab Ac | Ba Bb Bc| Ca Cb Cc
N e
I I
Ple & — |3 1 BT B b
C S (R s A T 1 (22)
P 1|16 16 8 |16 716
41 _ - 1 1 1 _ 1 1
' I B U A
P - - - - - 2 4 4 o
e I

Given a lexicographic belief system, the reverse operation of checking
whether it is a product LPS is a straightforward exercise. It involves solving a
finite sequence of systems of linear equations. To begin, the 0-th order beliefs
must be a product distribution. If they are, then the corresponding mixed
strategies describe the 0-th level of the LPS profile. The first level of the LPS
profile is now obtained by solving a system of linear equations, after which we
can obtain the second level, and so on. It is easy to show that there is a 1-1
correspondence between LPS profiles and the induced lexicographic beliefs.

We now define the optimality of a player’s strategy against an LPS pro-
file. As might be expected, a strategy is optimal against an LPS profile if it is
lexicographically optimal against the induced lexicographic beliefs.

Definition 2.3. Let p be an LPS profile of order K, and let u, be the lexico-

2 The assumption that the players’ deviations from their primary strategies are mutually indepen-
dent yields beliefs that are correlated. For instance, in the 3-player example above, #] is an aver-
age of two product distributions over S, X Sj.
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graphic beliefs induced by p for player n. A strategy o, € X, is a lexicographic
best reply of order k to the LPS profile p in a game G if

(Gn(o'naﬂ2> )seees Gn(o'mﬂilz{)) =L (G11(Jrlnﬂ2> )y Gn(o'r/pﬂ;]:))
for all g/ € X, where > is the lexicographic ordering on vectors.
We now state our main result.

Theorem 2.4. There exist positive integers |, K, where | < K and |, K depend
only on the cardinalities of the strategy sets, such that the following statements
are equivalent:

1) o* is a perfect equilibrium of a game G.
p q
(2) there is an LPS profile p of order K such that:
(o) p has full support, with £(p) < I;
(B) pd = a} for each player n;
(y) for each player n, o) is a lexicographic best reply of order K against p
in G.

3. Proof of the theorem

In this section we prove Theorem 2.4 using three claims. The first claim estab-
lishes an equivalence between LPSs and certain polynomial functions of one
variable; this result is crucial, both for the proof of Theorem 2.4 and for our
characterization of independence in Section 4. The other two claims are tech-
nical and their proofs are in the Appendix.

We begin with some definitions concerning polynomials. For a polynomial
(or more generally a power series) f(f) = ap + ait' +ayt> +--- in a single
variable 7, the order of f, denoted o(f), is the smallest integer i for which
a; # 0. (The order of the zero function is c0.) We say that f > 0 if @, > 0.

Let x =3, |Su|. Given a polynomial function #: IR — R, for each
player ne /" and pure strategy s, €S, we will write n, =5 .5, ;' for
the corresponding coordinate function. The order of 7 is given by o(y) =
max,, s, o(1, ). For every game G, and every player n, the payoff function G,
has an obvious extension from strategy profiles to polynomial functions 7,
given by G,(n) = > Gu(s) [],,1,,- We say that a strategy 7, for player n is
a best reply of order k against a polynomial # in a game G if for all §, € S,,,
G, (Sy,1m_,) — Gu(tn,m_,) is either nonpositive or of order at least k + 1. If
k = oo, we say that 7, is a best reply against 7.

Claim 3.1. Statement 2 of Theorem 2.4 is equivalent to the existence of a poly-
nomial function n : R — R* such that

(a) n,, >0 for all n,s,, with o(n) < I;

(b) (0) = o*;
(c) for each player n, g} is a best reply of order K against y in G.

Proof: Given an LPS profile p satisfying the conditions of Statement 2 of
Theorem 2.4, the polynomial function defined by 7, = 32X ¢/p! satisfies the
conditions of the Claim. So it remains to establish the sufficiency of these
conditions.



234 S. Govindan, T. Klumpp

Given a polynomial # satisfying conditions (a) to (c) of the Claim, ob-
serve first that every function of the form (3,7, ;(c?)"), (for ¢>0) o
(14X nit ) pe 4 satisfies (a) to (c). Indeed “for ¢ >0, 5 is obtamed
from the function (3,7, (ct)’ )n 5, by a positive transformation of the vari-
able 7. Hence, the latter satisfies conditions (a) to (c) iff # does. To prove that
the second type of transformation also produces a polynomial with properties
(a) to (c), consider a function { = ((1+ >, ¢n.it")1,) e 4 Obviously, {(0) =
17(0) = o*, and ( satisfies (b). For each n, 1 + >, ¢, ;' is a positive polyno-
mial with order 0; since, for each n,s,, 7, is positive and has order no more
than /, {;, is also positive and o({;,) = o(#,,) < /. Thus  satisfies (a). Finally,
for each n, s, Gn(sm C—n) - Gn(O';, 711) = Hm;en(l + Zi>0 Cmﬁill)(Gn(Sna 77—n) -
G.(a;,n_,)). Theretore G,(s,,{_,) — Gu(o;;, () and G, (sn,7_,) — Gu(oyi,11_,,)
have the same sign and the same order. Thus, { satisfies (c) as well.

We use a sequence of three transformations of the sort given in the previ-
ous paragraph to obtain a function { such that for each n, and 0 < k < K, the
vector ({, k), es, 18 a probability distribution. The result then follows
immediately.

The first transformation ensures that for all n,s, and 0 <i < K, 5, ; >0
and 77, ; = Y s N, ; > 0. The construction is done inductively. By (b), this
condition is obviously true for i = 0. Assume now that the function # is such
that for each n,s,, and i < k, 5, ; > 0 and 7, ; > 0. If for some n,s,, we have
thatz, , <0, then by (a), there exists / < k such that 15,1 > 0. Therefore there
exists a constant ¢ > 0 such that for the function (1 + ¢z + - - - + ct¥)y, the co-
efficients of ¥ are all nonnegative and 7, , > 0 for all n.

The next transformation gives us that ZK1 i1, <1 for all n. To obtain
this, choose ¢ > 0 sufficiently small and consider the function &() = #(ct).

Fmally, we choose pos1t1ve constants ¢, ; forne 47, 1 <i < K such that
for the function ¢, = (1 + 8, ¢uit))1,, the vector of coefficients (Cok)s, e s,

a probability distribution for all 1 < k < K. (The constants in ¢, equal those
in 77, and therefore yield a probability distribution.) Observe that the constants
have to satisfy the condition:

K
<1 +ch,,~z"> <l—|—2ﬁn,_/ﬂ'> 1ttt K
i=1

>0

The choice of constants is made inductively, as follows Define ¢,,1 =1 —17,, ;.
We have that 0 < ¢, ; < 1 foralln,as 0 <7, < YK g < L. Now assume
that we have chosen constants 0 < ¢,; <1 for all n» and 1 <i < k. We can
choose ¢, k41 to be the number 1 — (¢, k77,1 + -+ + Cn 171k + 7 11)- Since the
fn.i’s, the ¢, ;’s and Z, | 7,; are strictly between Oand 1,0 < ¢y iffy g + -+ +
Cn 1 Ty k T 1 < lei, i1y < 1. Therefore, ¢, x+1 is also between 0 and 1.
With our choice of the constants ¢, ;, the coeﬂicients of { give us the LPS
required by Statement 2. O

Suppose that a strategy profile ¢ is not a perfect equilibrium of a game G.
Then there exists a closed neighbourhood U of ¢ in 2 such that ¢ is not a best
reply against any completely mixed strategy in U. For each 7 € U, let ¢g(7) =
min, ;, 7, and let f(7) = max,, s, Gy(t—u,y) — Gu(7). Then, f~'(0) = g~1(0)
and Lojasiewicz’s Inequality (cf. Lemma A.l in the Appendix) implies that
there exist an integer m, and a constant ¢ such that g™ < ¢f. If  were a
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strictly positive polynomial such that #(0) = o, then for all sufficiently small
t >0, n(t) € U and, by our previous argument, o(f (7)) < o(n)m,. In other
words, ¢ cannot be a best reply of order o(y)m, against against 7. The fol-
lowing Claim states that we can take this integer m, to be independent of the
strategy profile o and the game G.

Claim 3.2. There exists a positive integer m such that the following condition is
sufficient for a strategy profile o to be a perfect equilibrium of a game G: there
exists a polynomial function > 0 with n(0) = o and such that o is a best reply
of order o(n)m against n in G.

Consider a perfect equilibrium ¢. By definition, it is a best reply against a
sequence of completely mixed strategy profiles converging to it. Therefore, by
the Nash Curve Selection Lemma (Cf. Proposition 8.1.13 of Bochnak, Coste,
and Roy, 1998) there exists an analytic function 7 : [0,¢) — X such that: (i)
n is strictly positive with order, say, /,; (ii) #(0) = o; and (iii) o is a best reply
against . Claim 3.3 below asserts the existence of a uniform upper bound on /,.

Claim 3.3. There exists a positive integer [ such that the following condition is
necessary for a strategy profile o to be a perfect equilibrium of a game G: there
exists an analytic function i : [0,&) — R, such that o(n) <1, n(0) = o, and 7 is
a best reply to 5(t) for all t € [0,¢).

We are now ready to prove the Theorem. By Claim 3.1, it is sufficient
to prove that Statement 1 of Theorem 2.4 is equivalent to the existence of a
polynomial # with properties (a) to (c). Let now m and / be as in Claims 3.2
and 3.3, respectively. Define K to be /m. Given a strategy profile a*, if there
exists a polynomial function # satisfying the conditions of Claim 3.1, then by
Claim 3.2, it is perfect. To prove the necessity of Statement 2, suppose o* is
a perfect equilibrium. Then by Claim 3.3, there exists an analytic function
1 :10,e) — RY such that o(y7) </, #(0) = ¢*, and ¢* is a best reply against
n(t) for all small ¢. The polynomial obtained by truncating # to its first K + 1
terms satisfies (a) to (c) of Claim 3.1.

4. Independence

In this section, we examine the issue of independence for LPSs defined on
product spaces. Specifically, we give a definition of independence and show
that any LPS that is independent is equivalent to one that is obtained using
the product rule of Definition 2.2. Thus, the product formula is not ad hoc,
but rather a canonical representation of independent beliefs.

The definition of independence here is a version of what BBD (1991a)
call strong independence. However, the non-Archimedean field we use is the
ordered field R(7) of rational functions in one indeterminate.® The ordering
on IR(?) is given by the following. First, as in Section 3, we say that a poly-
nomial /=Y, a;t' is positive if a,(s) > 0, where o(f) is the order of f. Then,
a rational function f(¢)/g(t) is positive if f(#)g(z) > 0. This field was first
employed in game theory by Hammond (1994) who argued that it would be an

3 The conclusions of this Section would be valid for the field of Puiseux series (which contains
IR(7)) but not for the field R of hyperreals used by BBD.



236 S. Govindan, T. Klumpp

appropriate field for studying refinements, since it is in some sense the smallest
and simplest ordered field that is both non-Archimedean and an extension of
R. IR(¢) truly captures the notion of infinitesimals — for example, the ‘“‘number”
t is positive but smaller than every positive real number.

Definition 4.1. Let X be a finite set, and let r = (%, r!, ..., rK) be an LPS of
order K over X.

(1) An IR(7)-valued probability distribution on X is a function P: X — IR(?)
such that P(x) > 0 for all xand >, _y P(x) = 1.

(2) An RR(#)-valued probability distribution P on X is equivalent to r if there
exist positive polynomials f°, f1,..., fX such that o(f°) < o(f") < --- <
o(f¥) and

The reason for deeming P equivalent to r in the definition above is purely
decision-theoretic.* BBD (1991a, Theorem 3.1) show that in an Anscombe-
Aumann type subjective expected utility framework with a weakened Archi-
medean axiom, one obtains an LPS over the state space, instead of a unique
probability distribution. An equivalent IR(¢)-valued distribution P can also
be interpreted as representing an agent’s subjective beliefs, in the sense that
if we allow R(#)-valued utility functions, this agent’s preferences can be rep-
resented using a utility function that involves taking expectations (of a real-
valued utility function) w.r.t. P — see BBD, 1991a, Theorem 6.1.

Let S =[], S, be a finite state space (For example, S is the set of all pure
strategy profiles in a game.) Let u = (u°, 1!, ..., uX) be an LPS on S.

Definition 4.2. yx is an independent LPS if there exists an equivalent R()-
valued probability distribution on S that is a product distribution.

Observe that the product formula given in Definition 2.2 induces an
independent LPS on strategy profiles. Indeed, let p= (pl, ...,py) be an LPS
profile of order K Foreachn, let P, = (3.5, 1) ' (K, *pF). Then, for each
player n, Hm 4n Pm 1s equivalent to his beliefs x, over S,,, More generally,
g1ven positive coeﬂic1ents ay,; for each n and 0 < i < K, the LPS yu, over S_,
given by

k _ E : k | I kim
My = C ( Am, ki, P, m” >
(k],u.,k”,],k,,+1,4...kwr> m#n

ke tky 1k o Hhy=k

where C* is the appropriate normalizing constant, is an independent LPS.
Our notion of independence is closely related to BBD’s notion of strong
independence for LPSs (see BBD, p. 90). u is strongly independent if there
exists an equivalent R-valued distribution that is a product distribution.
(Here R is the space of hyperreals) Equ1valently, u is strongly independent
if there exists a sequence A(n) in (0,1)* converging to zero such that for each

+ The notion of equivalence here (and in Definition 4.3) is not the standard mathematical one,
since it is not symmetric.
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n, the nested convex combination (1 — A1 (n))u® + A (n)[(1 — 2 (n))u' + A2(n) -
[+ Ag-ny(m)[(1 = Ag (n)) ™" + Ak (n)u®]]] is a product distribution. Since
R(7) = R, we have that an LPS g that is independent under our definition is
also strongly independent. However, the converse is not true. For example
consider distributions on each S, that have values in the ring of analytic func-
tions, at least one of which is not a rational function. The resulting product is
clearly strongly independent but not independent in the sense of Definition 4.2.

Definition 4.3. Let 1 be an LPS of order K over S. We say that an LPS v of order
L is equivalent to u if there exists a monotonic function = : {0,1,..., K} —
{0,1,..., L} such that for each 0 </ < L, v/ = 37, ), axpi* for some set of

constants a; with the property that a; > 0 if z(k) = /.

As with R(#)-valued distributions, this equivalence stems from decision-
theoretic considerations: BBD (1991a, Theorem 3.1) identify this class of LPSs
as the set of distributions that arise from preferences. The following Proposi-
tion gives a characterization of independent LPSs in terms of our product
formula.

Proposition 4.4. Let i be an independent LPS of order K over S. Then there
exists an equivalent LPS v of order L > K and an LPS profile p = (py,...,py)
of order L such that v is obtained from p using the formula in Definition 2.2.

Proof: We can assume without loss of generality that x has full support.
Since x is independent, there exist positive polynomials 0, £, ..., /X with
o(f°) <o(f") <--- <o(f¥), and for each n,s,, a positive polynomial 77, =
> is0M, it such that for each s = (s1,...,sy) € S, Zjlio Sl (s) =T11,n, We
can choose the polynomials such that f° and the #,’s have 1 as their constant
term. (In particular, all of them have order zero.) Let L = o(fX). Clearly,
o(n) < L.

By a quasi LPS of order L, we mean a collection v = (v, v!, ... vL) where
vi e RIS for all i. From the polynomial #, form now a quasi LPS vy as follows:
for each s = (s1,...,sv) € S, and 0 <i < L, let v;(s) be the coefficient of '
in T, n,, (or equivalently the coefficient of /" in ].Iio f7u/(s)). Observe that,
modulo a normalization, the formula for obtaining v, from # is the same as
the product formula in Definition 2.2. Let z: {0,1,...K} — {0,1,...L} be
the function 7(j) = o(f”/). Then each vector v! is a linear combination of
vectors u/, for j such that () < i, that assigns a positive weight to 7~! (i), if
it exists, since the f/’s are positive. Thus v, is “equivalent” to y in the sense of
Definition 4.3.

We claim now that the two types of transformations that were used in the
proof of Claim 3.1 induce quasi LPSs that are equivalent to u. Consider first
the transformation &(¢) = #(ct) (¢ > 0). The quasi LPS v obtained from ¢ has
the property that for each /, v: = ¢'v;. Hence v¢ is equivalent to u. For the
transformation ¢, = (1 4+ >, ¢x,it')n7,, we have for each /,

I _ )y
V.= E <| | cnﬁ,”> vy,
iitiy =l \ 1

where ¢, o = 1 for all n. Therefore, v, is also equivalent to .
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Apply the transformations of Claim 3.1 to obtain a polynomial { such that
for each n, and 0 < i < L, the coefficients { ; form a probability distribution
over S,,. The product formula gives an LPS v of order L which, by the previ-
ous arguments, is equivalent to u. O

There is an odd aspect to Proposition 4.4, in that the LPS profile p — from
which the LPS v is obtained using the product formula — has the same order as
v.> Applying the product formula to p, though, yields an LPS of order LN.
The question then arises as to whether this larger LPS is also equivalent to .
The answer, in general, is no. If, however, none of the polynomials f/ has a
term with a negative coefficient, then one can obtain the following sharper
statement: there exists an LPS profile p of order / > K/N such that the cor-
responding LPS v over S of order /N is equivalent to u.

The above observations suggest that we should perhaps strengthen the
conditions for an R(#)-valued probability distribution to be equivalent to an
LPS by requiring that the polynomials f/ not contain any negative terms.®
From the view point of decision theory, there seems to be no justification for
such a strengthening.

5. Extensions and an example

Since extensive-form perfect equilibria are the perfect equilibria of the agent-
normal form, our result extends to a characterization of the former as well.
When we apply our methods to sequential equilibria (Kreps and Wilson, 1982)
we get precisely the characterization of sequential equilibria in terms of con-
ditional probability systems as in McLennan (1989). To see this, take an LPS
profile of behavioural strategies for an extensive-form game. Now compute the
induced lexicographic beliefs at each information set of each player, using the
product operation given in Definition 2.2. The 0-th order beliefs of the system
yield the relevant components of the conditional probability system associated
with the LPS profile.” Sequential rationality requires optimality of order zero
at each information set given the lexicographic beliefs and the equilibrium
strategies of the opponents. Since only the 0-th order beliefs matter, the LPS
profile can be taken such that various levels have disjoint supports.

It can also be shown that proper equilibria (Myerson, 1978) have a char-
acterization of the form given in Theorem 2.4. The only additional constraint
is that if a pure strategy s, for player n does worse (lexicographically) than
another pure strategy 3, (for the same player) against the LPS profile p, then
min{k : pX(s,) > 0} > min{k : p¥(5,) > 0}.

Theorem 2.4 is not the most economical characterization possible. To
see this, remark that equilibria in completely mixed strategies are always per-
fect; and yet, we require even those to be supported by higher order beliefs. To

5 This feature shows up in Theorem 2.4 as well, where p has order K and the equilibrium is
required to be a best reply only of order K — and not K(N — 1) — against p.

¢ Hammond (1994) considers precisely such functions, which he calls rational probability func-
tions.

7 Because beliefs are obtained using the product formula, we obtain the necessary condition for
consistent assessments given by Kreps and Ramey (1987), namely that beliefs at each information
set are obtained by averaging over a finite number of product distributions induced by behav-
ioural strategy profiles.
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take care of this redundancy in beliefs, consider the following variation of our
result. Let m and / be as in Claims 3.2 and 3.3, respectively. A strategy profile
o 1s a perfect equilibrium of a game G if there exists an LPS profile p of order
L < Im such that: («) p has full support, with Z(p) < I; (B) p°® = o; and (y) o is
a best reply of order min(L(N — 1),/(p)m) against p. It was for the sake of
conceptual clarity that we chose to state the Theorem the way we did.

Our characterization is only essentially finite. The fact that we do not have
an explicit formula for / or K means that we are still faced with an arbitrarily
high number of computations in practice. We hope that future research can
provide tight bounds on K and /.

We conclude with an example comparing the LPSs obtained in BBD and
the ones used here. For simplicity in presentation, we merely look at a sequence
of mixed strategies without any reference to perfection. Suppose there are two
players, 1 and 2, with S| = {4, B, C} and S, = {a, b, c}. Assume that (4, a) is
a perfect equilibrium and parameterize the probability with which each pure
strategy is played in a sequence of trembles by rational functions of ¢:

1
m{l,St—l—tz,St—FZS} aIld
1
m{1 +.502,.5t 4 .5¢%, .5t + £°}. (5.1)

Using the model developed here, the LPS profile we get is given by Equation
2.1 in Section 2 and the induced product LPS over S; x S, is given by Equa-
tion 2.2.

By contrast, applying BBD’s algorithm (see proof of Proposition 2 in
BBD), we derive the following LPS over the joint action space:

Aa Ab Ac | Ba Bb Bc| Ca Cb Cc
PRl - - - - -1 = - =
1 1 1 1 1
P - 7 3 i T~ i -~
2 1 |2 1 1| 1 1
N : A S N R (52)
P - - |3 4 5|20 20 10 '
41 1 1 1| - 1 1
e foE g ¢
L e e v A v A
Pl - - -l =- - —-]1- =1

The induced marginal LPSs over the individual strategy sets are given by:

A B C a b ¢
O I A I B
P2 1 3 Pl 2 4 1
Pl L) 1
PRI I PRl R (5.3)
10 10 10 10 10
I O A
Pl oh Pl %o
Pl - -1 Pl - -1
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Appendix A

This appendix contains proofs of Claims 3.2 and 3.3. We begin by stating
(without proof) a useful Lemma from semi-algebraic geometry — cf. Bochnak,
Coste, and Roy, 1998, Corollary 2.6.7.

Lemma A.1. (Lojasiewicz’s Inequality) Let X < R™ be a compact, semi-
algebraic set. Suppose f:X — IR and g: X — IR are continuous semi-
algebraic functions with f~'(0) < g’l( ). Then there exists a constant ¢ € R
and an integer k > 0 such that |g(x)|* < c|f(x)| for all x € X.

Our proof technique exploits the semi-algebraic structure of the graphs of
the equilibrium correspondence and the best reply correspondence. Therefore,
we first develop some machinery. Remark that Claims 3.2 and 3.3 depend on
the game G only through its best reply correspondence. Since best reply cor-
respondences are preserved under positive affine transformations of the payoff
functions, there is no loss of generality in assuming that the space of games I
is the unit cube in RV, Let E be the graph of the Nash equilibrium corre-
spondence, i.c.,

E={(G,0) e I' x 2| g is a Nash equilibrium of G}.

Let P < E be the graph of the perfect equilibrium correspondence. Both E and
P are semi-algebraic subsets of I" x 2. (See, for instance, Blume and Zame,
1994.) Furthermore, E is compact.

For0eR*,andne A4, let0, =) ¢ 0;. Givence 2, and O e R* with

0, > —1 for all n, define a(0) = (”1":(;’) . Observe that a strategy profile ¢ is a
n/n

perfect equilibrium of a game G 1iff there exists a sequence of ¢’s in ]Rf 4 con-
verging to zero such that o is a best reply against g(6) all along the sequence.
Let

X ={((G,0),0) e E x [-1,1]"|0, = —1/2 ¥n, and ¢(0) € X'},

and let 0X ={((G,0),0) e X |a(0) € 02}, where 02 is the topological
boundary of X' in the affine space generated by 2. X is easily verified to be a
compact, semi-algebraic set. Also, E x {0} = X. Denote by p the natural
projection from X onto E. For each n, s,, let

Xs‘z = {(Ga0-7 H) € X|05n = O}’
and
Xfi ={(G,0,0) € X|s, is a best reply to ¢(0) in G}.

By the Generic Local Triviality Theorem (cf. Bochnak, Coste, and Roy,
1998, Theorem 9.3.2) there ex1st () a partition of E into a finite number
of semi-algebraic subsets E!, k: (ii) for each 1 <i <k, a triple of semi-
algebraic fibres (F',0F", { f0 }), and (111) for each i, a homeomorphism
hi:E'x (F',0F" {fi}) — (p™"(E"), p""(E") n0X,E" x {0}) such that
pohi((G,o), f) = (G,0o) for all ((G,0),f) € E' x F'. Moreover, the trivial-
ization can be made compatlble with each X} f for n,s, and j = 0,1, in the
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sense that for 1 </ <k, there exists a semi-algebraic set F/ 7 < F' such that
h'(E" x FI) = I(E)mX/

Trlangulate E such that (i ( ) both P and the sets E' are all unions of interiors
of simplices, and (ii) the support function is constant over the interior of each
simplex, i.e., for any two points (G, o) and (G', ¢’) belonging to the interior of
a simplex 7, supp(a,) = supp(ag,) = S,(t) for all n. Call the space of this tri-
angulation &. We use d to denote the distance function on E that is induced by
the triangulation. For each i, triangulate the fibre F # such that both 0F and
the sets F/ are all subcomplexes and f{ is a vertex. Take still a barycentric
subd1v1s1on so that the subcomplexes of the original triangulation are now
full. (Thus the intersection of any one of these subcomplexes with a simplex of
the refined triangulation is a face of the simplex.) Call the space of this trian-
gulation .Z . Finally, given a simplex 7, we use 7° to denote its interior.

Proof of Claim 3.2: Let Q be the (nonempty) collection of simplices T of &
such that t° ¢ P. By virtue of our triangulation, 7 € Q implies t° N P = (.
Fix now 7 € Q. There exists a unique 7 such that t* = E’. Let Z " be the (non-
empty) set of simplices of 7 " that have { fo} as a vertex and are not contained
in 0F. Choose v e 7. Let vg = v n 0F . vy is then a proper face of v. Since the

equilibria in 7 are not perfect, ([, . - e Sz )EV’:) < vo. To see this, remark

that the intersection of each of the sets F! il with v is a face of v (that contains
J¢ as a vertex, since points in 70 are equlllbrla with support S(z)). Thus, if
their common intersection was not contained in vy, it would contain a vertex
fi e v\vo and hence also the simplex [fy, f]. The image of (z° x (f, /)
under /' would then render all equilibria in 7° perfect, contradicting the
assumption that 1% N P = . Therefore, ((),. , SeSi(0) FJ) = v. For each

player n, denote by u,(r) the uniform mixture over S,(r). Let Y, be the
closure of A/(z° x v) in X. Define ¢,y : Y., — R, as follows: first, for

((G,a),0) € h'(z" x v) let

9(G.0.0) = d((G.0). 7\e") (max Gi(s5m. 0 (6)) — Gn<un<r>,an<9>>)

n, s,

and

U(G.0.0) = d((6.0).\0") (i 0., + 0, )
next, let ¢ and y be zero everywhere else. It is easﬂy checked that ¢ and  are

continuous functions. Moreover, ¢~ (0) = ~'(0), since (A et >st{ ) <

vo. By the Lojasiewicz inequality now, there ex1sts an integer m(z,v) > 0 and a
constant ¢(z,v) > 0 such that ¢(, ,u)(p > ") Let m (resp. ¢) be the maxi-
mum over all 7€ Q and v e &, of m(z,v) (resp. ¢(z,v)).

Let # > 0 be a polynomial function such that #(0) = 6. We will show that
if ¢ is not a perfect equilibrium of a game G, then it cannot be a best reply
of order o(n)m against 5. Observe that this statement is trivially true if o is
not a Nash equilibrium, as ¢ would not even be a best reply of order zero
then. Therefore, let us assume that ¢ is a Nash, but not a perfect, equilibrium.
Then (G, o) belongs to the interior of some 7 € Q. Define 0(¢) = 5(¢) — 0. For
sufficiently small ¢ > 0, ((G,0),0(¢)) belongs to a set Y., of the sort con-



242 S. Govindan, T. Klumpp

structed above. Therefore cp(G,0,0(1)) = (G, 0,0(1))". Since the order of
(Y(G,0,0(t))) (viewed as a polynomial in ¢) is o(#), o cannot be a best reply of
order o(n)m. ]

Proof of Claim 3.3: Let 2 be the set of simplices of & whose interiors belong
to P. Fix 7 € 2. There exists i such that t° belongs to E?. Choose now a point
(G°,6%) e 1°. Since ¢° is a perfect equilibrium of G, there exists a sequence

0" in (0, 1)* converging to zero such that ¢ is a best reply against ¢°(6%) (for
all k) in the game G°. By passing to a subsequence if necessary, there exists
a simplex v € # ' such that (G°,¢°,0%) € i ((G°,0°),v) for all k. Obviously,
Fl'nv=vforall nand s, € S,(r). And, f{ is one of the vertices of v. More-
over, v N F is a proper face of v for all n, s,. Since t° x v’ is connected, this
last fact 1mplies that for all (G, q,0) € h'(z” x v"), 0 € R . Pick now a point
/{1in v’ By the above mentioned properties of v, the hne segment w joining fyf
and f|' in the simplex v is such that for each (G a,0)eh’ (z% x (,u\{fo})) ()
Op,s, > 0 for all n, s, (thus ¢(0) € 2\02); and (ii) o is a best reply against o(0)
in the game G. For simplicity, we will identify the line segment u with [0, 1]
and denote a typical element of this set by x.

Define 4:7x [0,1] — RY as follows: first, for (G,a,x) e’ ><[ 1], let
MG, a,x) be the d((G, o), r\r )0 where 0 is such that (G 0,0) = h'(G,o,x);
elsewhere let A be zero. A is continuous. Also, for each n 2 Sns )Ln 5 (0) =
(z x {0}) U ((z\7°) x [0, 1]). Therefore, by the Lowasiewicz Inequality, there
exists a positive 1nteger ¢ and a constant ¢ such that for all n, s, ¢4, (G, 0,x) >
(x*)(d((G, ), \e)".

For each n,s,, let A, be the set of ((G,0),x,y) e’ x (0,1) x R, for
which there exists 6 such that 7(G,0,x) =0 and 05, = y. Aps 13 a lower
dimensional semi- algebraic set of I' x X x IR?. Hence there exists a finite
integer J such that A, is a finite union over 1 < j<J of sets of the form
{(G,o,x,y) | F{(-)=0,4"() >0,...¢"(-) > 0}, where F/ and the g’s are
polynomials. Since for each (G,0) € ‘L'O the set of (x, y) st (G,0,x,y) € An,s
is a 1-dimensional set, the total degree in x and y of each F/ / is nonzero. Let
dy, be the maximum over j of this total degree.

By the Nash Curve Selection Lemma (loc. cit) there exist, for each
(G,0) € 7° and for each n,s,, analytic functions x, y : (—¢,&) — R such that
x(0) = »(0) =0, and (G,a,x(¢), y(t)) € A, for all z> 0 (in particular there
exists j s.t. FJ(G,a,x(1), y(7)) is zero for all 7). We can also assume that
x = t" for some positive integer r < d;,, because x(¢) is nonzero and the total
degree of FS/ in x and y is no more than d;,. Therefore, by the Lowasiewicz
Inequality, the order of y is no more than ¢d, .

Let /(7) = (Xpsds, )q. By the previous paragraph, there exists for each
(G,0) €’ an analytic function {:(—d,6) — R* such that (i) {(0) = 0;
(i) (G,0,L(2)) e h'((G,0) x (0,1)) for all ¢>0; and (iii) o({) < /(7). Let
n =0+ Then 7 is a positive analytic function of order no more than
/(7) and against which ¢ is a best reply. To finish the proof, take / to be
max;c /(7). O
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