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Abstract. We extend the results of Blume, Brandenberger, and Dekel (1991b)
to obtain a finite characterization of perfect equilibria in terms of lexicographic
probability systems (LPSs). The LPSs we consider are defined over individual
strategy sets and thus capture the property of independence among players’
actions. Our definition of a product LPS over joint actions of the players is
shown to be canonical, in the sense that any independent LPS on joint actions
is essentially equivalent to a product LPS according to our definition.
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1. Introduction

The central idea in the literature on refinements of Nash equilibria is Selten’s
(1975) concept of a perfect equilibrium. A mixed strategy profile is perfect if
it is a best reply against each profile in a sequence of completely mixed strat-
egy profiles converging to it. For normal-form games, perfection strengthens
the admissibility criterion used in decision theory and is in fact equivalent to
it for two-player games. Admissibility – the requirement that players not use
weakly dominated strategies – is justified on the grounds that no pure strategy
of a player is considered a null event (in the sense of Savage) by his opponents
in making their decisions. Formally, a strategy is admissible if it is a best reply
against a completely mixed (possibly correlated) strategy profile. Perfection

We would like to thank Adam Brandenburger, Eddie Dekel, Arthur Robson, Peter Streufert, and
Robert Wilson for their helpful comments. Govindan acknowledges research support from the
Social Sciences and Humanities Research Council of Canada.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.2
     Für schnelle Web-Anzeige optimieren: Ja
     Piktogramme einbetten: Ja
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 600 600 ] dpi
     Papierformat: [ 595.245 841.846 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 150 dpi
     Downsampling für Bilder über: 225 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Mittel
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 150 dpi
     Downsampling für Bilder über: 225 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Mittel
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 600 dpi
     Downsampling für Bilder über: 900 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren
     Methode: Standard
Arbeitsbereiche:
     Graustufen ICC-Profil: 
     RGB ICC-Profil: sRGB IEC61966-2.1
     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Nein
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Nein
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Nein

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 600 600 ]
>> setpagedevice



imposes the additional restriction that there is a sequence of such strategy pro-
files, each uncorrelated across players, that converges to the equilibrium.

The Selten programme remained incomplete to the extent that a finite char-
acterization of perfection was not obtained. Because the definition involves
universal and existential quantifiers, a direct check for whether a strategy pro-
file is a perfect equilibrium requires, in principle, an infinite number of com-
putations. Yet, the set of perfect equilibria is semi-algebraic (cf. Blume and
Zame, 1994) and, therefore, it admits a finite characterization. In this paper,
we obtain a finite characterization in terms of lexicographic probability systems
(LPSs).

Blume, Brandenberger, and Dekel (1991b; henceforth, BBD) show that any
convergent sequence of strategy profiles induces an LPS. They use this rela-
tion between sequences and LPSs to provide a characterization of perfect
equilibria in terms of the latter. However, their characterization is not finite
and, in particular, does not assure a product form that represents indepen-
dence across players. In this paper, we continue the work of BBD to obtain an
exact finite characterization using product LPSs.

The problematic feature of the BBD characterization of perfect equilibria
is that it uses LPSs defined directly on the space of profiles of pure strategies
for all players simultaneously. A possible interpretation of their result is that
an LPS over strategy profiles represents an outside observer’s assessment,
from which beliefs of players concerning the strategies of their opponents are
then derived.1 The marginal LPS on a single player’s strategy set might thus
be viewed as the common belief of all other players about this player’s strat-
egy, if indeed it is independent of the others’. However, there is no way to
compose the marginal LPSs to recover the joint LPS if independence is vio-
lated. Hence, it is unclear to what extent the various marginals can be con-
sidered independent. Further, there is no finite procedure to check whether an
LPS over profiles of joint actions is induced by a sequence of mixed strategies.

From a conceptual viewpoint, it is desirable to obtain an equivalent for-
mulation of perfection using LPSs over individual strategy sets that are com-
posed to obtain beliefs over joint actions. Indeed, if players act independently,
as is commonly assumed in noncooperative game theory, then alternative
theories of how play would proceed, as described in LPSs, should be con-
structed from a hierarchy of alternative theories about how each individual
player would play if he were not to play his equilibrium strategy. Thus, the
primitives should be LPSs over each player’s pure strategies, not LPSs over
profiles of pure strategies.

From a practical viewpoint too, it is desirable to describe perfect equilibria
using individual LPSs: in most applications, selections from the perfect equi-
libria of a model are made based on the plausibility of the beliefs supporting
them, which in turn depend on the reasonableness of the alternate strategy
choices that are posited for each player individually. An important example is
use of the principle of forward induction as an equilibrium selection criterion.

Our aim, then, is to provide a definition of perfect equilibria using LPSs
defined over individual strategy sets (see Theorem 2.4). To do so, we introduce
a definition of product LPSs of a particular form (see Definition 2.2). This

1 This approach and interpretation have parallels in Kohlberg and Reny (1997) where a charac-
terization of consistent assessments is obtained using conditional probability systems.
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operation seems, initially, to be ad hoc. However, we show in Section 4 that
any LPS over strategy profiles that is independent across players has an equiv-
alent LPS that is obtainable using our product formula. Thus, all independent
beliefs are included in those obtained from the special form of product LPSs
used in our construction.

2. Definitions and statement of the theorem

We consider finite games in normal form. Let N ¼ f1; . . . ;Ng be the set
of players. For each n A N, let Sn be player n’s set of pure strategies, and let
Sn be his set of mixed strategies. Denote S ¼

Q
n AN Sn, and S ¼

Q
n AN Sn.

As usual, for each n A N, we let S�n ¼
Q

m0n Sm and S�n ¼
Q

m0n Sm. With
these sets of players and strategies fixed, the space of games, call it G , is a
Euclidean space of dimension NjSj in which each point assigns to each of the
players a payo¤ at each of the jSj profiles of pure strategies. Given a game
G A G , and a mixed-strategy profile s A S, GnðsÞ denotes player n’s expected
payo¤ in G from s. According to Selten (1975) a mixed-strategy profile s� is a
perfect equilibrium of a game G if there exists a sequence fskgyk¼1 of com-
pletely mixed strategy profiles (i.e., in the interior of S) converging to s�, and
such that for all k, s� is a best reply to sk in the game G.

Definition 2.1. Let X be a finite set. A lexicographic probability system (LPS)

of order K over X is a ðK þ 1Þ-tuple r ¼ ðr0; . . . ; rKÞ of probability distribu-
tions on X. An LPS r is said to have full support if 6K

k¼0
supp rk ¼ X .

For each player n, we use rn to denote an LPS over Sn. rn is interpreted
as a collection of theories (held in common by n’s opponents) about n’s strat-
egy choice: r0

n is the primary theory, r1
n the secondary theory, r2

n the tertiary
theory, and so on. In particular, it is considered infinitely more likely that
player n chooses strategy rk

n than that he chooses rkþ1
n .

By an LPS profile of order K, we mean an N-tuple r ¼ ðr1; . . . ; rNÞ
where for each n, rn is an LPS of order K over Sn. An LPS profile r has full
support if each rn has full support; in this case, define lðrÞ ¼ maxn minfk :

6k

i¼0
supp r i

n ¼ Sng, the order of r required to get full support for all players.
Given an LPS profile, our next objective is to define for each player n

an LPS over S�n, interpreted as n’s beliefs about others’ actions. The particu-
lar construction we use has the following intuitive justification. Consider an
LPS profile r of order 1 for a 3-player game. For a player, say 1, what should
his beliefs over S2 � S3 be? He believes that each of his opponents is infinitely
more likely to play his first mixed strategy than his second. If we assume that
the deviation of either player to his second strategy is independent of the
other’s deviation and equally likely, then the following LPS, m1, of order 2
would be a reasonable assignment of beliefs for player 1: m0

1 ¼ r0
2 � r0

3 ; m1
1 ¼

1
2 ðr0

2 � r1
3Þ þ 1

2 ðr1
2 � r0

3Þ; m2
1 ¼ r1

2 � r1
3 . (We show in Section 4 that actually

the seemingly arbitrary equal weightings by 1
2 in the formula for m1

1 is not
restrictive.) The definition below generalizes this notion to N-player games
and LPS profiles of any finite order.

Definition 2.2. Given an LPS profile r of order K, the induced lexicographic
beliefs for player n is the product LPS mn of order KðN � 1Þ over S�n obtained
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as follows. For k ¼ 0; . . . ;KðN � 1Þ,

mk
n ¼

X

ðk1;...;kn�1;knþ1;...;kN Þ
k1þ���þkn�1þknþ1þ���þkN¼k

C kðrk1

1 � � � � � rkn�1

n�1 � r
knþ1

nþ1 � � � � � rkN

N Þ;

where C k is the appropriate normalizing constant.2

We will now illustrate the idea of lexicographic beliefs using a simple
example. Suppose we have a three-player game where player 1’s strategy set is
S1 ¼ fA;B;Cg and player 2’s strategy set is S2 ¼ fa; b; cg. Consider an LPS
profile of order three in which the LPSs of player 1 and 2 are as follows:

A B C a b c

r0 1 � � r0 1 � �
r1 � 1

2
1
2 and r1 � 1

2
1
2

r2 � 1 � r2 1
2

1
2 �

r3 � � 1 r3 � � 1

ð2:1Þ

where ‘‘�’’ replaces ‘‘0’’ for readability. The induced lexicographic beliefs for
player 3 is the product LPS of order 6 over S1 � S2 that is given by:

Aa Ab Ac Ba Bb Bc Ca Cb Cc

r0 1 � � � � � � � �
r1 � 1

4
1
4

1
4 � � 1

4 � �
r2 1

6
1
6 � 1

3
1

12
1
12 � 1

12
1

12

r3 � � 1
4

1
16

3
16

1
8

5
16

1
16 �

r4 � � � 1
6

1
6

1
6 � 1

6
1
3

r5 � � � � � 1
2

1
4

1
4 �

r6 � � � � � � � � 1

ð2:2Þ

Given a lexicographic belief system, the reverse operation of checking
whether it is a product LPS is a straightforward exercise. It involves solving a
finite sequence of systems of linear equations. To begin, the 0-th order beliefs
must be a product distribution. If they are, then the corresponding mixed
strategies describe the 0-th level of the LPS profile. The first level of the LPS
profile is now obtained by solving a system of linear equations, after which we
can obtain the second level, and so on. It is easy to show that there is a 1-1
correspondence between LPS profiles and the induced lexicographic beliefs.

We now define the optimality of a player’s strategy against an LPS pro-
file. As might be expected, a strategy is optimal against an LPS profile if it is
lexicographically optimal against the induced lexicographic beliefs.

Definition 2.3. Let r be an LPS profile of order K, and let mn be the lexico-

2 The assumption that the players’ deviations from their primary strategies are mutually indepen-
dent yields beliefs that are correlated. For instance, in the 3-player example above, m1

1 is an aver-
age of two product distributions over S2 � S3.
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graphic beliefs induced by r for player n. A strategy sn A Sn is a lexicographic
best reply of order k to the LPS profile r in a game G if

ðGnðsn; m
0
n ; Þ; . . . ;Gnðsn; m

k
n ÞÞbL ðGnðs 0n; m0

n ; Þ; . . . ;Gnðs 0n; mk
n ÞÞ

for all s 0n A Sn, where bL is the lexicographic ordering on vectors.

We now state our main result.

Theorem 2.4. There exist positive integers l;K, where l a K and l;K depend
only on the cardinalities of the strategy sets, such that the following statements
are equivalent:

(1) s� is a perfect equilibrium of a game G.
(2) there is an LPS profile r of order K such that:

(a) r has full support, with lðrÞa l;
(b) r0

n ¼ s�n for each player n;
(g) for each player n, s�n is a lexicographic best reply of order K against r

in G.

3. Proof of the theorem

In this section we prove Theorem 2.4 using three claims. The first claim estab-
lishes an equivalence between LPSs and certain polynomial functions of one
variable; this result is crucial, both for the proof of Theorem 2.4 and for our
characterization of independence in Section 4. The other two claims are tech-
nical and their proofs are in the Appendix.

We begin with some definitions concerning polynomials. For a polynomial
(or more generally a power series) f ðtÞ ¼ a0 þ a1t1 þ a2t2 þ � � � in a single
variable t, the order of f , denoted oð f Þ, is the smallest integer i for which
ai 0 0. (The order of the zero function is y.) We say that f > 0 if aoð f Þ > 0.

Let k ¼
P

n AN jSnj. Given a polynomial function h : R! Rk, for each
player n A N and pure strategy sn A Sn we will write hsn

¼
P

i hsn; i
t i for

the corresponding coordinate function. The order of h is given by oðhÞ1
maxn; sn

oðhsn
Þ. For every game G, and every player n, the payo¤ function Gn

has an obvious extension from strategy profiles to polynomial functions h,
given by GnðhÞ ¼

P
s GnðsÞ

Q
m hsm

. We say that a strategy tn for player n is
a best reply of order k against a polynomial h in a game G if for all ~ssn A Sn,
Gnð~ssn; h�nÞ � Gnðtn; h�nÞ is either nonpositive or of order at least k þ 1. If
k ¼y, we say that tn is a best reply against h.

Claim 3.1. Statement 2 of Theorem 2.4 is equivalent to the existence of a poly-
nomial function h : R! Rk such that

(a) hsn
> 0 for all n; sn, with oðhÞa l;

(b) hð0Þ ¼ s�;
(c) for each player n, s�n is a best reply of order K against h in G.

Proof: Given an LPS profile r satisfying the conditions of Statement 2 of
Theorem 2.4, the polynomial function defined by hn ¼

PK
i¼0 tir i

n satisfies the
conditions of the Claim. So it remains to establish the su‰ciency of these
conditions.
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Given a polynomial h satisfying conditions (a) to (c) of the Claim, ob-
serve first that every function of the form ð

P
i hsn; i

ðctÞ iÞn; sn
(for c > 0) or

ðð1þ
P

i>0 cn; it
iÞhnÞn AN, satisfies (a) to (c). Indeed, for c > 0, h is obtained

from the function ð
P

i hsn; i
ðctÞ iÞn; sn

by a positive transformation of the vari-
able t. Hence, the latter satisfies conditions (a) to (c) i¤ h does. To prove that
the second type of transformation also produces a polynomial with properties
(a) to (c), consider a function z ¼ ðð1þ

P
i>0 cn; it

iÞhnÞn AN. Obviously, zð0Þ ¼
hð0Þ ¼ s�, and z satisfies (b). For each n, 1þ

P
i>0 cn; it

i is a positive polyno-
mial with order 0; since, for each n; sn, hsn

is positive and has order no more
than l, zsn

is also positive and oðzsn
Þ ¼ oðhsn

Þa l. Thus z satisfies (a). Finally,
for each n, sn, Gnðsn; z�nÞ�Gnðs�n ; z�nÞ ¼

Q
m0nð1þ

P
i>0 cm;it

iÞðGnðsn; h�nÞ�
Gnðs�n ; h�nÞÞ. Therefore Gnðsn; z�nÞ�Gnðs�n ; z�nÞ and Gnðsn; h�nÞ�Gnðs�n ; h�nÞ
have the same sign and the same order. Thus, z satisfies (c) as well.

We use a sequence of three transformations of the sort given in the previ-
ous paragraph to obtain a function z such that for each n, and 0 a k a K , the
vector ðzsn;kÞsn ASn

is a probability distribution. The result then follows
immediately.

The first transformation ensures that for all n; sn and 0 a i a K , hsn; i
b 0

and hn; i 1
P

sn ASn
hsn; i

> 0. The construction is done inductively. By (b), this
condition is obviously true for i ¼ 0. Assume now that the function h is such
that for each n; sn, and i < k, hsn; i

b 0 and hn; i > 0. If for some n; sn, we have
that hsn;k

< 0, then by (a), there exists i < k such that hsn; i
> 0. Therefore, there

exists a constant c > 0 such that for the function ð1þ ctþ � � � þ ctkÞh, the co-
e‰cients of tk are all nonnegative and hn;k > 0 for all n.

The next transformation gives us that
PK

i¼1 hn; i < 1 for all n. To obtain
this, choose c > 0 su‰ciently small and consider the function xðtÞ ¼ hðctÞ.

Finally, we choose positive constants cn; i for n A N, 1 a i a K such that
for the function zn ¼ ð1þ

PK
i¼1 cn; it

iÞhn, the vector of coe‰cients ðzsn;kÞsn ASn
is

a probability distribution for all 1 a k a K. (The constants in zn equal those
in hn and therefore yield a probability distribution.) Observe that the constants
have to satisfy the condition:

1þ
XK

i¼1

cn; it
i

 !

1þ
X

j>0

hn; j t
j

 !

¼ 1þ tþ � � � þ tK þ � � �

The choice of constants is made inductively, as follows. Define cn;1 ¼ 1� hn;1.
We have that 0 < cn;1 < 1 for all n, as 0 < hn;1 a

PK
i¼1 hn;k < 1. Now assume

that we have chosen constants 0 < cn; i < 1 for all n and 1 a i a k. We can
choose cn;kþ1 to be the number 1� ðcn;khn;1 þ � � � þ cn;1hn;k þ hn;kþ1Þ. Since the
hn; i’s, the cn; i’s and

PK
i¼1 hn; i are strictly between 0 and 1, 0 < cn;khn;1 þ � � � þ

cn;1hn;k þ hn;kþ1 a
PK

i¼1 hn; i < 1. Therefore, cn;kþ1 is also between 0 and 1.
With our choice of the constants cn; i, the coe‰cients of z give us the LPS
required by Statement 2. r

Suppose that a strategy profile s is not a perfect equilibrium of a game G.
Then there exists a closed neighbourhood U of s in S such that s is not a best
reply against any completely mixed strategy in U. For each t A U , let gðtÞ ¼
minn; sn

tsn
and let f ðtÞ ¼ maxn; sn

Gnðt�n; snÞ � GnðtÞ. Then, f �1ð0ÞJ g�1ð0Þ
and Łojasiewicz’s Inequality (cf. Lemma A.1 in the Appendix) implies that
there exist an integer ms and a constant c such that gms a cf . If h were a
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strictly positive polynomial such that hð0Þ ¼ s, then for all su‰ciently small
t > 0, hðtÞ A U and, by our previous argument, oð f ðhÞÞa oðhÞms. In other
words, s cannot be a best reply of order oðhÞms against against h. The fol-
lowing Claim states that we can take this integer ms to be independent of the
strategy profile s and the game G.

Claim 3.2. There exists a positive integer m such that the following condition is
su‰cient for a strategy profile s to be a perfect equilibrium of a game G: there
exists a polynomial function hg 0 with hð0Þ ¼ s and such that s is a best reply
of order oðhÞm against h in G.

Consider a perfect equilibrium s. By definition, it is a best reply against a
sequence of completely mixed strategy profiles converging to it. Therefore, by
the Nash Curve Selection Lemma (Cf. Proposition 8.1.13 of Bochnak, Coste,
and Roy, 1998) there exists an analytic function h : ½0; eÞ ! S such that: (i)
h is strictly positive with order, say, ls; (ii) hð0Þ ¼ s; and (iii) s is a best reply
against h. Claim 3.3 below asserts the existence of a uniform upper bound on ls.

Claim 3.3. There exists a positive integer l such that the following condition is
necessary for a strategy profile s to be a perfect equilibrium of a game G: there
exists an analytic function h : ½0; eÞ ! Rk

þ such that oðhÞa l, hð0Þ ¼ s, and s is
a best reply to hðtÞ for all t A ½0; eÞ.

We are now ready to prove the Theorem. By Claim 3.1, it is su‰cient
to prove that Statement 1 of Theorem 2.4 is equivalent to the existence of a
polynomial h with properties (a) to (c). Let now m and l be as in Claims 3.2
and 3.3, respectively. Define K to be lm. Given a strategy profile s�, if there
exists a polynomial function h satisfying the conditions of Claim 3.1, then by
Claim 3.2, it is perfect. To prove the necessity of Statement 2, suppose s� is
a perfect equilibrium. Then by Claim 3.3, there exists an analytic function
h : ½0; eÞ ! Rk

þ such that oðhÞa l, hð0Þ ¼ s�, and s� is a best reply against
hðtÞ for all small t. The polynomial obtained by truncating h to its first K þ 1
terms satisfies (a) to (c) of Claim 3.1.

4. Independence

In this section, we examine the issue of independence for LPSs defined on
product spaces. Specifically, we give a definition of independence and show
that any LPS that is independent is equivalent to one that is obtained using
the product rule of Definition 2.2. Thus, the product formula is not ad hoc,
but rather a canonical representation of independent beliefs.

The definition of independence here is a version of what BBD (1991a)
call strong independence. However, the non-Archimedean field we use is the
ordered field RðtÞ of rational functions in one indeterminate.3 The ordering
on RðtÞ is given by the following. First, as in Section 3, we say that a poly-
nomial f ¼

P
i ait

i is positive if aoð f Þ > 0, where oð f Þ is the order of f . Then,
a rational function f ðtÞ=gðtÞ is positive if f ðtÞgðtÞ > 0. This field was first
employed in game theory by Hammond (1994) who argued that it would be an

3 The conclusions of this Section would be valid for the field of Puiseux series (which contains
RðtÞ) but not for the field < of hyperreals used by BBD.
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appropriate field for studying refinements, since it is in some sense the smallest
and simplest ordered field that is both non-Archimedean and an extension of
R. RðtÞ truly captures the notion of infinitesimals – for example, the ‘‘number’’
t is positive but smaller than every positive real number.

Definition 4.1. Let X be a finite set, and let r ¼ ðr0; r1; . . . ; rKÞ be an LPS of
order K over X.

(1) An RðtÞ-valued probability distribution on X is a function P : X ! RðtÞ
such that PðxÞb 0 for all x and

P
x AX PðxÞ ¼ 1.

(2) An RðtÞ-valued probability distribution P on X is equivalent to r if there
exist positive polynomials f 0; f 1; . . . ; f K such that oð f 0Þ < oð f 1Þ < � � � <
oð f KÞ and

P ¼
XK

i¼0

f i

 !�1 XK

j¼0

f jr j

 !

:

The reason for deeming P equivalent to r in the definition above is purely
decision-theoretic.4 BBD (1991a, Theorem 3.1) show that in an Anscombe-
Aumann type subjective expected utility framework with a weakened Archi-
medean axiom, one obtains an LPS over the state space, instead of a unique
probability distribution. An equivalent RðtÞ-valued distribution P can also
be interpreted as representing an agent’s subjective beliefs, in the sense that
if we allow RðtÞ-valued utility functions, this agent’s preferences can be rep-
resented using a utility function that involves taking expectations (of a real-
valued utility function) w.r.t. P – see BBD, 1991a, Theorem 6.1.

Let S ¼
Q

n Sn be a finite state space. (For example, S is the set of all pure
strategy profiles in a game.) Let m ¼ ðm0; m1; . . . ; mKÞ be an LPS on S.

Definition 4.2. m is an independent LPS if there exists an equivalent RðtÞ-
valued probability distribution on S that is a product distribution.

Observe that the product formula given in Definition 2.2 induces an
independent LPS on strategy profiles. Indeed, let r ¼ ðr1; . . . ; rNÞ be an LPS
profile of order K. For each n, let Pn ¼ ð

PK
i¼0 tiÞ�1ð

PK
k¼0 tkrk

n Þ. Then, for each
player n,

Q
m0n Pm is equivalent to his beliefs mn over S�n. More generally,

given positive coe‰cients an; i for each n and 0 a i a K , the LPS mn over S�n

given by

mk
n ¼

X

ðk1;...;kn�1;knþ1;...;kN Þ
k1þ���þkn�1þknþ1þ���þkN¼k

C k
Y

m0n

am;km
rkm

m

 !

where C k is the appropriate normalizing constant, is an independent LPS.
Our notion of independence is closely related to BBD’s notion of strong

independence for LPSs (see BBD, p. 90). m is strongly independent if there
exists an equivalent <-valued distribution that is a product distribution.
(Here < is the space of hyperreals.) Equivalently, m is strongly independent
if there exists a sequence lðnÞ in ð0; 1ÞK converging to zero such that for each

4 The notion of equivalence here (and in Definition 4.3) is not the standard mathematical one,
since it is not symmetric.
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n, the nested convex combination ð1� l1ðnÞÞm0 þ l1ðnÞ½ð1� l2ðnÞÞm1 þ l2ðnÞ �
½� � � þ lðK�1ÞðnÞ½ð1� lKðnÞÞmK�1 þ lKðnÞmK ��� is a product distribution. Since
RðtÞH<, we have that an LPS m that is independent under our definition is
also strongly independent. However, the converse is not true. For example
consider distributions on each Sn that have values in the ring of analytic func-
tions, at least one of which is not a rational function. The resulting product is
clearly strongly independent but not independent in the sense of Definition 4.2.

Definition 4.3. Let m be an LPS of order K over S. We say that an LPS n of order
L is equivalent to m if there exists a monotonic function p : f0; 1; . . . ;Kg !
f0; 1; . . . ;Lg such that for each 0 a l a L, n l ¼

P
k:pðkÞal akmk for some set of

constants ak with the property that ak > 0 if pðkÞ ¼ l.

As with RðtÞ-valued distributions, this equivalence stems from decision-
theoretic considerations: BBD (1991a, Theorem 3.1) identify this class of LPSs
as the set of distributions that arise from preferences. The following Proposi-
tion gives a characterization of independent LPSs in terms of our product
formula.

Proposition 4.4. Let m be an independent LPS of order K over S. Then there
exists an equivalent LPS n of order L b K and an LPS profile r ¼ ðr1; . . . ; rNÞ
of order L such that n is obtained from r using the formula in Definition 2.2.

Proof: We can assume without loss of generality that m has full support.
Since m is independent, there exist positive polynomials f 0; f 1; . . . ; f K , with
oð f 0Þ < oð f 1Þ < � � � < oð f KÞ, and for each n; sn, a positive polynomial hsn

¼P
ib0 hsn; i

t i such that for each s ¼ ðs1; . . . ; sNÞ A S,
PK

j¼0 f jm jðsÞ ¼
Q

n hsn
. We

can choose the polynomials such that f 0 and the hn’s have 1 as their constant
term. (In particular, all of them have order zero.) Let L ¼ oð f KÞ. Clearly,
oðhÞa L.

By a quasi LPS of order L, we mean a collection n ¼ ðn0; n1; . . . ; nLÞ where
n i A RjSj for all i. From the polynomial h, form now a quasi LPS nh as follows:
for each s ¼ ðs1; . . . ; sNÞ A S, and 0 a i a L, let n i

hðsÞ be the coe‰cient of ti

in
Q

n hsn
(or equivalently the coe‰cient of ti in

PK
j¼0 f jm jðsÞ). Observe that,

modulo a normalization, the formula for obtaining nh from h is the same as
the product formula in Definition 2.2. Let p : f0; 1; . . . Kg ! f0; 1; . . . Lg be
the function pð jÞ ¼ oð f jÞ. Then each vector n i

h is a linear combination of
vectors m j, for j such that pð jÞa i, that assigns a positive weight to p�1ðiÞ, if
it exists, since the f j’s are positive. Thus nh is ‘‘equivalent’’ to m in the sense of
Definition 4.3.

We claim now that the two types of transformations that were used in the
proof of Claim 3.1 induce quasi LPSs that are equivalent to m. Consider first
the transformation xðtÞ ¼ hðctÞ (c > 0). The quasi LPS nx obtained from x has
the property that for each l, n l

x ¼ cln l
h. Hence nx is equivalent to m. For the

transformation vn ¼ ð1þ
P

i>0 cn; it
iÞhn, we have for each l,

n l
v ¼

X

i1þ���iNþj¼l

Y

n

cn; in

 !

n j
h;

where cn;0 ¼ 1 for all n. Therefore, nv is also equivalent to m.
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Apply the transformations of Claim 3.1 to obtain a polynomial z such that
for each n, and 0 a i a L, the coe‰cients zsn; i form a probability distribution
over Sn. The product formula gives an LPS n of order L which, by the previ-
ous arguments, is equivalent to m. r

There is an odd aspect to Proposition 4.4, in that the LPS profile r – from
which the LPS n is obtained using the product formula – has the same order as
n.5 Applying the product formula to r, though, yields an LPS of order LN.
The question then arises as to whether this larger LPS is also equivalent to m.
The answer, in general, is no. If, however, none of the polynomials f j has a
term with a negative coe‰cient, then one can obtain the following sharper
statement: there exists an LPS profile r of order lb K=N such that the cor-
responding LPS n over S of order lN is equivalent to m.

The above observations suggest that we should perhaps strengthen the
conditions for an RðtÞ-valued probability distribution to be equivalent to an
LPS by requiring that the polynomials f j not contain any negative terms.6
From the view point of decision theory, there seems to be no justification for
such a strengthening.

5. Extensions and an example

Since extensive-form perfect equilibria are the perfect equilibria of the agent-
normal form, our result extends to a characterization of the former as well.
When we apply our methods to sequential equilibria (Kreps and Wilson, 1982)
we get precisely the characterization of sequential equilibria in terms of con-
ditional probability systems as in McLennan (1989). To see this, take an LPS
profile of behavioural strategies for an extensive-form game. Now compute the
induced lexicographic beliefs at each information set of each player, using the
product operation given in Definition 2.2. The 0-th order beliefs of the system
yield the relevant components of the conditional probability system associated
with the LPS profile.7 Sequential rationality requires optimality of order zero
at each information set given the lexicographic beliefs and the equilibrium
strategies of the opponents. Since only the 0-th order beliefs matter, the LPS
profile can be taken such that various levels have disjoint supports.

It can also be shown that proper equilibria (Myerson, 1978) have a char-
acterization of the form given in Theorem 2.4. The only additional constraint
is that if a pure strategy sn for player n does worse (lexicographically) than
another pure strategy ~ssn (for the same player) against the LPS profile r, then
minfk : rk

n ðsnÞ > 0g > minfk : rk
n ð~ssnÞ > 0g.

Theorem 2.4 is not the most economical characterization possible. To
see this, remark that equilibria in completely mixed strategies are always per-
fect; and yet, we require even those to be supported by higher order beliefs. To

5 This feature shows up in Theorem 2.4 as well, where r has order K and the equilibrium is
required to be a best reply only of order K – and not KðN � 1Þ – against r.
6 Hammond (1994) considers precisely such functions, which he calls rational probability func-
tions.
7 Because beliefs are obtained using the product formula, we obtain the necessary condition for
consistent assessments given by Kreps and Ramey (1987), namely that beliefs at each information
set are obtained by averaging over a finite number of product distributions induced by behav-
ioural strategy profiles.
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take care of this redundancy in beliefs, consider the following variation of our
result. Let m and l be as in Claims 3.2 and 3.3, respectively. A strategy profile
s is a perfect equilibrium of a game G if there exists an LPS profile r of order
L a lm such that: ðaÞ r has full support, with lðrÞa l; ðbÞ r0 ¼ s; and ðgÞ s is
a best reply of order minðLðN � 1Þ; lðrÞmÞ against r. It was for the sake of
conceptual clarity that we chose to state the Theorem the way we did.

Our characterization is only essentially finite. The fact that we do not have
an explicit formula for l or K means that we are still faced with an arbitrarily
high number of computations in practice. We hope that future research can
provide tight bounds on K and l.

We conclude with an example comparing the LPSs obtained in BBD and
the ones used here. For simplicity in presentation, we merely look at a sequence
of mixed strategies without any reference to perfection. Suppose there are two
players, 1 and 2, with S1 ¼ fA;B;Cg and S2 ¼ fa; b; cg. Assume that ðA; aÞ is
a perfect equilibrium and parameterize the probability with which each pure
strategy is played in a sequence of trembles by rational functions of t:

1

1þ tþ t2 þ t3
f1; :5tþ t2; :5tþ t3g and

1

1þ tþ t2 þ t3
f1þ :5t2; :5tþ :5t2; :5tþ t3g: ð5:1Þ

Using the model developed here, the LPS profile we get is given by Equation
2.1 in Section 2 and the induced product LPS over S1 � S2 is given by Equa-
tion 2.2.

By contrast, applying BBD’s algorithm (see proof of Proposition 2 in
BBD), we derive the following LPS over the joint action space:

Aa Ab Ac Ba Bb Bc Ca Cb Cc

r0 1 � � � � � � � �
r1 � 1

4
1
4

1
4 � � 1

4 � �
r2 � 1

5 � 2
5

1
10

1
10 � 1

10
1

10

r3 � � � 1
4

1
4

1
5

1
20

3
20

1
10

r4 � � � 1
6

1
6

1
6 � 1

6
1
3

r5 � � � � � 3
14 � 3

14
4
7

r6 � � � � � � � � 1

ð5:2Þ

The induced marginal LPSs over the individual strategy sets are given by:

A B C a b c

r0 1 � � r0 1 � �
r1 1

2
1
4

1
4 r1 1

2
1
4

1
4

r2 1
5

3
5

1
5 and r2 2

5
2
5

1
5

r3 � 7
10

3
10 r3 3

10
4

10
3

10

r4 � 1
2

1
2 r4 1

6
1
3

1
2

r5 � 3
14

11
14 r5 � 3

14
11
14

r6 � � 1 r6 � � 1

ð5:3Þ
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Appendix A

This appendix contains proofs of Claims 3.2 and 3.3. We begin by stating
(without proof ) a useful Lemma from semi-algebraic geometry – cf. Bochnak,
Coste, and Roy, 1998, Corollary 2.6.7.

Lemma A.1. (Łojasiewicz’s Inequality) Let X HRm be a compact, semi-
algebraic set. Suppose f : X ! R and g : X ! R are continuous semi-
algebraic functions with f �1ð0ÞJ g�1ð0Þ. Then there exists a constant c A R
and an integer k > 0 such that jgðxÞjk a cj f ðxÞj for all x A X .

Our proof technique exploits the semi-algebraic structure of the graphs of
the equilibrium correspondence and the best reply correspondence. Therefore,
we first develop some machinery. Remark that Claims 3.2 and 3.3 depend on
the game G only through its best reply correspondence. Since best reply cor-
respondences are preserved under positive a‰ne transformations of the payo¤
functions, there is no loss of generality in assuming that the space of games G
is the unit cube in RNjSj. Let E be the graph of the Nash equilibrium corre-
spondence, i.e.,

E ¼ fðG; sÞ A G � S j s is a Nash equilibrium of Gg:

Let PHE be the graph of the perfect equilibrium correspondence. Both E and
P are semi-algebraic subsets of G � S. (See, for instance, Blume and Zame,
1994.) Furthermore, E is compact.

For y A Rk, and n A N, let yn ¼
P

sn ASn
ysn

. Given s A S, and y A Rk with

yn > �1 for all n, define sðyÞ ¼ snþyn

1þyn

� �

n
. Observe that a strategy profile s is a

perfect equilibrium of a game G i¤ there exists a sequence of y’s in Rk
þþ con-

verging to zero such that s is a best reply against sðyÞ all along the sequence.
Let

X ¼ fððG; sÞ; yÞ A E � ½�1; 1�k j yn b�1=2 En; and sðyÞ A Sg;

and let qX ¼ fððG; sÞ; yÞ A X j sðyÞ A qSg, where qS is the topological
boundary of S in the a‰ne space generated by S. X is easily verified to be a
compact, semi-algebraic set. Also, E � f0gHX . Denote by p the natural
projection from X onto E. For each n; sn, let

X 0
sn
¼ fðG; s; yÞ A X j ysn

¼ 0g;

and

X 1
sn
¼ fðG; s; yÞ A X j sn is a best reply to sðyÞ in Gg:

By the Generic Local Triviality Theorem (cf. Bochnak, Coste, and Roy,
1998, Theorem 9.3.2) there exist: (i) a partition of E into a finite number
of semi-algebraic subsets E1; . . . E k; (ii) for each 1 a i a k, a triple of semi-
algebraic fibres ðF i; qF i; f f i

0 gÞ; and (iii) for each i, a homeomorphism
hi : E i � ðF i; qF i; f f i

0 gÞ ! ðp�1ðE iÞ; p�1ðE iÞX qX ;E i � f0gÞ such that
p � hiððG; sÞ; f Þ ¼ ðG; sÞ for all ððG; sÞ; f Þ A E i � F i. Moreover, the trivial-
ization can be made compatible with each X j

sn
for n; sn and j ¼ 0; 1, in the
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sense that for 1 a i a k, there exists a semi-algebraic set F ij
sn
HF i such that

hiðE i � F ij
sn
Þ ¼ p�1ðE iÞXX j

sn
.

Triangulate E such that (i) both P and the sets E i are all unions of interiors
of simplices, and (ii) the support function is constant over the interior of each
simplex, i.e., for any two points ðG; sÞ and ðG 0; s 0Þ belonging to the interior of
a simplex t, suppðsnÞ ¼ suppðs 0nÞ1SnðtÞ for all n. Call the space of this tri-
angulation E. We use d to denote the distance function on E that is induced by
the triangulation. For each i, triangulate the fibre F i such that both qF i and
the sets F ij

sn
are all subcomplexes, and f i

0 is a vertex. Take still a barycentric
subdivision, so that the subcomplexes of the original triangulation are now
full. (Thus the intersection of any one of these subcomplexes with a simplex of
the refined triangulation is a face of the simplex.) Call the space of this trian-
gulation F i. Finally, given a simplex t, we use t0 to denote its interior.

Proof of Claim 3.2: Let Q be the (nonempty) collection of simplices t of E
such that t0 PP. By virtue of our triangulation, t A Q implies t0 XP ¼q.
Fix now t A Q. There exists a unique i such that t0 JE i. Let F i

0 be the (non-
empty) set of simplices of F i that have f f i

0 g as a vertex and are not contained
in qF i. Choose n A F i

0 . Let n0 ¼ nX qF i. n0 is then a proper face of n. Since the
equilibria in t0 are not perfect, ð7

n AN; sn ASnðtÞ F
i1

sn
ÞJ n0. To see this, remark

that the intersection of each of the sets F i1
sn

with n is a face of n (that contains
f i
0 as a vertex, since points in t0 are equilibria with support SðtÞ). Thus, if

their common intersection was not contained in n0, it would contain a vertex
f i
1 A nnn0 and hence also the simplex ½ f i

0 ; f i
1 �. The image of ðt0 � ð f i

0 ; f i
1 ÞÞ

under hi would then render all equilibria in t0 perfect, contradicting the
assumption that t0 XP ¼q. Therefore, ð7

n AN; sn ASnðtÞ F ij
sn
ÞJ n0. For each

player n, denote by unðtÞ the uniform mixture over SnðtÞ. Let Yt;n be the
closure of hiðt0 � nÞ in X. Define j;c : Yt;n ! Rþ as follows: first, for
ððG; sÞ; yÞ A hiðt0 � nÞ let

jðG; s; yÞ ¼ dððG; sÞ; tnt0Þ max
n; sn

Gnðsn; s�nðyÞÞ � GnðunðtÞ; s�nðyÞÞ
� �

and

cðG; s; yÞ ¼ dððG; sÞ; tnt0Þ min
n; sn

sn; sn
þ yn; sn

� �
;

next, let j and c be zero everywhere else. It is easily checked that j and c are
continuous functions. Moreover, j�1ð0ÞJc�1ð0Þ, since ð7

n AN; sn ASnðtÞ F ij
sn
ÞJ

n0. By the Łojasiewicz inequality now, there exists an integer mðt; nÞ > 0 and a
constant cðt; nÞ > 0 such that cðt; mÞj b cmðt; nÞ. Let m (resp. c) be the maxi-
mum over all t A Q and n A F i

0 of mðt; nÞ (resp. cðt; nÞÞ.
Let hg 0 be a polynomial function such that hð0Þ ¼ s. We will show that

if s is not a perfect equilibrium of a game G, then it cannot be a best reply
of order oðhÞm against h. Observe that this statement is trivially true if s is
not a Nash equilibrium, as s would not even be a best reply of order zero
then. Therefore, let us assume that s is a Nash, but not a perfect, equilibrium.
Then ðG; sÞ belongs to the interior of some t A Q. Define yðtÞ ¼ hðtÞ � s. For
su‰ciently small t > 0, ððG; sÞ; yðtÞÞ belongs to a set Yt;n of the sort con-
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structed above. Therefore cjðG; s; yðtÞÞb cðG; s; yðtÞÞm. Since the order of
ðcðG; s; yðtÞÞÞ (viewed as a polynomial in t) is oðhÞ, s cannot be a best reply of
order oðhÞm. r

Proof of Claim 3.3: Let P be the set of simplices of E whose interiors belong
to P. Fix t A P. There exists i such that t0 belongs to E i. Choose now a point
ðG0; s0Þ A t0. Since s0 is a perfect equilibrium of G0, there exists a sequence

yk in ð0; 1Þk converging to zero such that s0 is a best reply against s0ðykÞ (for
all k) in the game G0. By passing to a subsequence, if necessary, there exists
a simplex n A F i such that ðG0; s0; ykÞ A hiððG0; s0Þ; n0Þ for all k. Obviously,
F i1

sn
X n ¼ n for all n and sn A SnðtÞ. And, f i

0 is one of the vertices of n. More-
over, nXF i0

sn
is a proper face of n for all n; sn. Since t0 � n0 is connected, this

last fact implies that for all ðG; s; yÞ A hiðt0 � n0Þ, y A Rk
þþ. Pick now a point

f i
1 in n0. By the above mentioned properties of n, the line segment m joining f i

0
and f i

1 in the simplex n is such that for each ðG; s; yÞ A hiðt0 � ðmnf f i
0 gÞÞ: (i)

yn; sn
> 0 for all n; sn (thus sðyÞ A SnqS); and (ii) s is a best reply against sðyÞ

in the game G. For simplicity, we will identify the line segment m with ½0; 1�
and denote a typical element of this set by x.

Define l : t� ½0; 1� ! Rk
þ as follows: first, for ðG; s; xÞ A t0 � ½0; 1�, let

lðG; s; xÞ be the dððG; sÞ; tnt0Þy where y is such that ðG; s; yÞ ¼ hiðG; s; xÞ;
elsewhere, let l be zero. l is continuous. Also, for each n; sn, l�1

n; sn
ð0Þ ¼

ðt� f0gÞW ððtnt0Þ � ½0; 1�Þ. Therefore, by the Łowasiewicz Inequality, there
exists a positive integer q and a constant c such that for all n; sn, clsn

ðG; s; xÞb
ðxqÞðdððG; sÞ; tnt0ÞÞq.

For each n; sn, let Asn
be the set of ððG; sÞ; x; yÞ A t0 � ð0; 1Þ �Rþþ for

which there exists y such that hiðG; s; xÞ ¼ y and ysn
¼ y. An; s is a lower

dimensional semi-algebraic set of G � S �R2. Hence there exists a finite
integer J such that Asn

is a finite union over 1 a j a J of sets of the form
fðG; s; x; yÞ jF j

sn
ð�Þ ¼ 0; g1ð�Þ > 0; . . . gMj ð�Þ > 0g, where F j

sn
and the g’s are

polynomials. Since for each ðG; sÞ A t0, the set of ðx; yÞ s.t. ðG; s; x; yÞ A An; s

is a 1-dimensional set, the total degree in x and y of each F j
sn

is nonzero. Let
dsn

be the maximum over j of this total degree.
By the Nash Curve Selection Lemma (loc. cit) there exist, for each

ðG; sÞ A t0 and for each n; sn, analytic functions x; y : ð�e; eÞ ! R such that
xð0Þ ¼ yð0Þ ¼ 0, and ðG; s; xðtÞ; yðtÞÞ A Asn

for all t > 0 (in particular there
exists j s.t. F j

sn
ðG; s; xðtÞ; yðtÞÞ is zero for all t). We can also assume that

x ¼ tr for some positive integer r a dsn
, because xðtÞ is nonzero and the total

degree of F j
sn

in x and y is no more than dsn
. Therefore, by the Łowasiewicz

Inequality, the order of y is no more than qdsn
.

Let lðtÞ ¼ ð�n; sn
dsn
Þq. By the previous paragraph, there exists for each

ðG; sÞ A t0 an analytic function z : ð�d; dÞ ! Rk such that (i) zð0Þ ¼ 0;
(ii) ðG; s; zðtÞÞ A hiððG; sÞ � ð0; 1ÞÞ for all t > 0; and (iii) oðzÞa lðtÞ. Let
h ¼ sþ z. Then h is a positive analytic function of order no more than
lðtÞ and against which s is a best reply. To finish the proof, take l to be
maxt AP lðtÞ. r
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