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Abstract

Candidates for U.S. presidential elections are determined through sequential elec-
tions in single states, the primaries. We develop a model in which candidates can
influence their winning probability in electoral districts by spending money on cam-
paigning. The equilibrium replicates several stylized facts very well: Campaigning is
very intensive in the first district. The outcome of the first election then creates an
asymmetry in the candidates’ incentives to campaign in the next district, which en-
dogenously increases the equilibrium probability that the first winner wins in further
districts.

On the normative side, our model offers a possible explanation for the sequential
organization: It leads (in expectation) to a lower level of advertising expenditures
than simultaneous elections. Moreover, if one of the candidates is the more effective
campaigner, sequential elections also perform better with regard to the selection of
the best candidate.
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1 Introduction

Candidates for the U.S. presidential election are determined through a sequence of elections
within each political party, the primaries. While the particular regulations vary between
states and the two major parties, the basic system is the same in both parties, starting
with the Iowa caucus and the New Hampshire primary in February, and continuing with
primaries (and very few caucuses) in almost all U.S. states, in which more than 80% of
the delegates to the national convention (that elects the party’s candidate) are chosen.

The nomination process is one of the most controversial institutions of America’s
contemporary political landscape. The most common ground for attack on the modern
primary system is the perception that its sequential structure is inherently “unfair” in
that it shifts too much power to voters in early primary states. A notion that usually
comes along with such claims is that the results of early primaries create “momentum”
that carries over to later states. 1976 Democratic primary candidate Morris Udall (who
eventually lost to Jimmy Carter) notes:

“We had thirty primaries, presumably all of them equal. After three of
those primaries, I’m convinced, it was all over. [...] I take a poll two weeks
before the (Wisconsin) primary and he (Carter) is ahead of me, two to one,
and has never been in the state except for a few quick visits. That was purely
and solely and only the product of that narrow win in New Hampshire and the
startling win in Florida.” (Witcover, 1977)

Early primary states receive considerable attention by both the political candidates
and the media. Malbin (1983) reports that in the 1980 Republican primaries George Bush
and Ronald Reagan allocated roughly 3/4 of their respective total campaign budgets to
states with primaries before March 31, although these states accounted for considerably
less than a fifth of the delegates to the Republican convention in 1980. Among all primaries
and caucuses in 1980, Iowa and New Hampshire accounted for 28% of the primary-season
coverage in the CBS evening news and the United Press newswire (Robinson and Sheehan,
1983). Similarly, Adams (1987) reports that the 1984 New Hampshire primary attracted
almost 20% of the season’s coverage in ABC, CBS, NBC, and the New York Times. More
recently, in 2004, Democratic primary candidate Howard Dean spend so much of the money
he raised on campaigning in Iowa and New Hampshire that his campaign was in serious
financial trouble after New Hampshire and could not even pay staff salaries. All these
observations are the more surprising as New Hampshire accounts for only 0.4 percent of
the U.S. population and only four out of 538 electoral votes in the presidential election,
and is far from being demographically representative for the nation’s electorate. Similarly,
Iowa accounts for only 1.0 percent percent of the U.S population and only seven electoral
votes.

The present paper has two interrelated objectives, one positive and one normative:
Firstly, we address the question how the observed sequential organization can create
sources for strategic momentum that can explain the stylized facts above. Why does
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the sequential nature of the current primary system induce candidates to campaign so
heavily at early stages and the losers of early primaries to withdraw so early from the
race? Secondly, we address the question how the temporal organization of elections af-
fects a candidate’s welfare, his expected campaign expenditures, and the probability of
winning under alternative temporal structures. The particular comparison we make is be-
tween a sequential system, such as the current presidential primaries, and a counterfactual
simultaneous system. A completely simultaneous design (a “national one-day primary”)
is a natural antipode as well as a prominent counterproposal to the sequential primary
arrangement. Therefore, it is an important and interesting question to compare these two
temporal organizations.

To this end, we develop an advertising model of political competition in which candi-
dates have to win the majority of a number of electoral districts in order to obtain a certain
prize. As in Snyder (1989), candidates can influence their probability of winning a district
by their choice of campaign expenditures in that district. In the case of a sequential pri-
mary organization, campaign expenditures are very high in early districts, but decrease
substantially at later stages, once one candidate has established a clear advantage. Se-
quential elections leave an expected rent to the candidates, which is bounded from below
by a positive constant that is independent of the number of electoral districts. In contrast,
simultaneous elections lead to complete rent dissipation if the number of electoral districts
is sufficiently high. In other words, the expected campaign expenditures are lower when
candidates face a sequential primary system. Interestingly, this cost-advantage is not so
much driven by the fact that the need to go through the entire sequence of primaries rarely
arises (and hence candidates can save on the spending in the last few primaries, as one
might suspect). Rather, it is generated by a strategic “New Hampshire Effect” that is part
of the equilibrium play: The outcome of the very first primary election creates an asym-
metry between ex-ante symmetric candidates which endogenously facilitates momentum
in later districts.

While there is no direct reason why parties should be concerned with candidates’ ex-
penditures and ex-ante expected level of rent, each party clearly has an interest that the
candidate who wins its nomination keeps resources for the following presidential campaign
against the other party’s nominee. A long standing “rule” in American politics was that a
candidate who lost his party’s primary in New Hampshire would not become president.1

An interpretation of this empirical fact is that a candidate who did not win the first pri-
mary, but eventually won his party’s nomination, had to go through a long and costly
nomination battle in his own party and lacked resources in the actual presidential cam-
paign. If this is the case, each party has an incentive to organize its candidate selection
procedure in a way that minimizes wasteful internal battles.2

If one candidate has an exogenous advantage over the other, in the sense that he is
1This “rule” was broken by Bill Clinton in 1992 and George W. Bush in 2000.
2The assumption that the organization of the primary system can be chosen by parties appears justified,

because the primary system is not part of the constitution, and therefore is subject to fewer political and

legal constraints than the following presidential election.
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more likely to win if both candidates spend the same amount, a good primary system
should also select the stronger candidate with a high probability. We examine two ways in
which such an advantage can be formalized: First, we extend the model so that candidates
have “assured districts” in which they win regardless of their opponents’ campaign expen-
ditures. For example, a candidate may be able to carry his home state’s primary without
much effort. Similarly, a candidate from a southern state may appeal to voters in other
southern primaries, and a candidate from New England may be popular throughout the
Northeast. If one player possesses a larger number of such assured districts than the other,
he has an ex-ante advantage in the primaries. Our second specification assumes that one
candidate is a stronger campaigner than his opponent, so that one campaign dollar spent
by this candidate is more effective than one dollar spent by the other candidate. Such an
efficiency advantage could reflect “soft factors” such as the candidate’s campaign organiza-
tion, management style, his endorsers, or key personnel within the campaign. With both
specifications, the probability that the advantaged player wins the nomination is close to
1 under a sequential regime, provided that the number of primary districts is sufficiently
high. A simultaneous system, on the other hand, frequently selects the weaker candidate.
Furthermore, with an exogenous difference in strength between the two candidates the
cost savings of the sequential design are even more dramatic than with like candidates.
The reason is simple: The leverage that an early victory generates in the symmetric model
does not need to be created by the candidates themselves, when one of them is already
stronger. These two advantages of a sequential primary system—lower campaign expendi-
tures and higher probability that the stronger candidate is selected—may explain why the
sequential organization has been so persistent over time, even though it is often criticized
as unfair.

Although our analysis compares mainly two extreme cases—completely sequential elec-
tions versus completely simultaneous elections—, the distinct results of the sequential case
basically apply to a mixed temporal structure as well, as long as it involves some sequential
elements at the early stages. One can argue that such an intermediate system is closer
to the modern primary races, in which there are dates (such as “Super Tuesday”) when
several states vote simultaneously. Nevertheless, even in this case, some primary states
vote in sequence at the very beginning of the nomination process. We show that this is
enough to generate (and sometimes even amplify) the momentum effect and the spending
pattern that arise in a completely sequential system.

Our paper is related to several strands of literature. Regarding the analysis of the
temporal structure of elections, Dekel and Piccione (2000) have analyzed a model of se-
quential elections in which sophisticated voters try to aggregate their private information
through voting. While, in principle, more information is available for voters in later elec-
tions, they show that the voting equilibria of sequential elections are essentially the same
as those in the case of simultaneous elections. Consequently, the temporal organization of
elections does not matter in their model.3 We provide a complementary model to theirs,

3A model of the effects of sequential voting on information aggregation in which timing matters is

Morton and Williams (1999). They perform an experiment and show that, in their setup, sequential
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which abstracts from the information aggregation aspect of voting and focuses purely on
the candidates’ actions. We demonstrate that in such a framework, where candidates
are modelled as economic agents trying to maximize their payoffs, the two organizational
forms are no longer equivalent. From the point of view of the candidates and their parties,
a sequential organization has considerable advantages over a simultaneous one.

Strumpf (2002) analyzes a sequential contest model of primaries in which the focus is
on candidate behavior. His main interest is the effect of exogenous asymmetries between
districts, and he finds that candidates who have advantages in late districts are more
likely to win than candidates with an advantage in early districts. In an extension of his
model, candidates can influence their probability of winning in a way that is similar to
our model. However, Strumpf (2002) does not consider the important question how early
victories generate momentum in a sequential contest, which is the main interest of our
paper. He also does not compare simultaneous and sequential primaries, an issue which
has important normative implications.

There is by now also a substantial body of literature that focuses on applications of
contest theory to the design of sports tournaments (see, for example, Szymanski (2003) and
Harbaugh and Klumpp (2005), and the references cited therein.) While the tournament
structures considered in these papers often share some of the characteristics of primary
races, the design issues are typically different from the ones considered here. In particular,
in sporting tournaments it is often desirable to induce contestants to spend a maximal
amount of effort, or to induce an effort allocation that increases the chance of a close
contest, as this enhances the excitement level the tournament generates. For primary
elections, on the other hand, we are interested in finding a design that minimizes wasteful
campaign expenditures and avoids long, close battles as these will be very costly.

Several alternative approaches have been offered in the literature as explanation of the
stylized facts concerning primary races. On the one hand, the political science literature
contains theories of “psychological momentum” among primary voters in the sense that
voters in later states enjoy voting for candidates that were successful in earlier states (Bar-
tels, 1988). These behavioral theories lack a solid preference-based foundation resulting in
rational decisions, and are hence unsatisfactory from an economics point of view. On the
other hand, in their seminal work on informational cascades, Bikhchandani, Hirshleifer
and Welch (1991) interpret momentum in primary races as evidence of rational herding
on part of the later primary states. However, it is unclear whether primaries are really
a valid example for herding: In herding models, people are concerned with making the
right choice. In a standard model of voting, people do not so much care about whether
they themselves voted for the correct candidate, but rather whether in the end the right
candidate is selected.

Another strand of the literature on primaries is concerned with the question whether
the institution of separate primaries for a left-wing and a right-wing party lead to the
selection of extremist (vs. moderate) politicians as candidates (see Heckelman (2000),

elections help to aggregate information better than simultaneous elections.
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Swank (2001) and Oak (2001)). In these papers, only one primary takes place within each
party, so the effects of the sequential process characteristic for the presidential primaries
(the focus of our model) cannot be explored in these models.

The paper proceeds as follows. In Section 2, we present a model of the primary
system. Section 3 analyzes and compares the equilibria under different temporal regimes.
In Section 4, we further explore these issues using numerical computations. In Section 5,
we extend the model to allow for ex-ante asymmetric candidates. In Section 6, we discuss
how our model can explain several stylized facts concerning primaries. Section 7 examines
mixed primary systems involving both sequential and simultaneous stages. Section 8
concludes. We collect all proofs in Appendix A. Finally, Appendix B contains a theoretical
analysis of the limit equilibria in large sequential primary races.

2 The Model

Candidates and Electoral Districts. There are two risk neutral candidates, 1 and 2,

who compete in elections in J (odd) districts. The candidate who wins at least J∗ =
J + 1

2
elections wins the prize Π, normalized to 1 (and assumed to be equal for both candidates).

The outcome of the election in district j is a random variable from the point of view of
the candidates. They can influence the distribution of this random variable by committing
campaign funds to each district (see below). Campaign expenditures represent advertising
effort, the cost of time, etc. Let xj ≥ 0 be the amount spent by candidate 1 in district
j, and likewise let yj ≥ 0 be the amount spent by candidate 2 in j. The net utility of a
player is equal to the prize (if he wins) minus the campaign expenditures: If candidate 1
wins at least J∗ districts, he obtains a payoff of 1−

∑J
j=1 xj , otherwise he gets −

∑J
j=1 xj .

The payoff for candidate 2 is defined analogously. The rent dissipation rate, defined as
the fraction of the prize that is spent by the two candidates together in their effort to win
it, is

∑
xj +

∑
yj .

Campaign Technology. Given the spending profile (xj , yj), the probability that a
candidate wins election j is determined by a campaign technology f : R2

+ → [0, 1], that is,
candidate 1 wins with probability

f(x, y) =
xα

xα + yα
, (1)

if x > 0 or y > 0, and f(0, 0) = 1/2. Observe that f is continuously differentiable on R2
++,

homogeneous of degree 0 in (x, y), increasing and strictly concave in x, and decreasing and
strictly convex in y. Candidates are symmetric: f (x, y) = 1 − f (y, x) for all x, y.4 The
parameter α is a measure for the marginal effect of campaign spending, and we assume
that α ∈ (0, 1]. If α is very low, the winning probability is close to 1/2 (as long as both
candidates spend a positive amount) and largely independent of the candidates’ spending.
The higher is α, the higher is the marginal effect of campaign spending on the outcome

4In section 5, we consider the case of asymmetric candidates.
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(and consequently, both candidates have a higher incentive to spend when α is large). The
assumption that α ≤ 1 guarantees that f is globally concave.

Temporal Structure. There are two basic ways to organize J elections temporally:
They can be held sequentially (as in the present presidential primary system), or simul-
taneously. In the sequential elections game Gseq

J , the candidates first choose campaign
expenditure levels x1 and y1 in district 1. Then, they observe the outcome in district 1
and move on to district 2, where they choose x2 and y2, and so on until a candidate has
accumulated the required majority of J∗ districts. Within each district j, xj and yj are
chosen simultaneously.

In the simultaneous election game Gsim
J , candidates choose all xj and yj (j = 1, . . . , J)

simultaneously. Then, the outcomes in all districts are observed and the candidate who
has gained at least the required majority J∗ wins the prize.

Combinations of these two basic structures are also possible; for example, one could
start with n sequential elections and hold the remaining J − n elections simultaneously.
We view the current primary structure as mainly sequential, although there are certain
simultaneous elements added to it (e.g., on “Super Tuesday”, where several states hold
their primaries simultaneously). The focus of our analysis is on the comparison between the
completely simultaneous and the completely sequential case; the issue of mixed temporal
arrangements will be addressed briefly in section 7.

Related literature. Similar rent-seeking models have been used in the literature. For
a single district, our approach was first formulated by Tullock (1980) as an all-pay auction
model of lobbying. There, two bidders compete for a prize by submitting monetary bids
(bribes) to a bureaucrat who has the power to allocate a political favor. The bureaucrat
picks winning probabilities according to the exogenously given functional form and draws
the winner. All bidders have to pay their submitted bids, regardless of whether they won
the prize or not. Here, we use all-pay auctions as a model of political competition in
elections, where campaign expenditures are naturally not recoverable.

To examine the effect of campaign spending on election outcomes, Snyder (1989) uses
this model as well. He analyzes the campaign expenditure allocation game between two
parties, which compete in a number of districts (e.g., Republicans and Democrats in an
election for the House of Representatives). His focus is on the effect different objective
functions of the parties have on the allocation of campaign resources (e.g., what happens
if parties wish to maximize the expected number of seats, or the probability that they win
the majority in the house?).

Our model is also related to Szentes and Rosenthal (2003a, 2003b), who study all pay
majority auction games. The objective of players in their paper is to win a majority of
objects in simultaneous auctions. Interpreting objects as districts, bidders as candidates,
and bids as campaign expenditures, this auction resembles our simultaneous primaries
game. However, Szentes and Rosenthal assume that the player who bids the most for a
particular objects wins that object with certainty, which corresponds to α → ∞ in our
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model. In a rather involved proof, Szentes and Rosenthal (2003a) characterize a mixed
strategy equilibrium. The equilibria of our model (where α ≤ 1) are very different from
Szentes and Rosenthal’s; we characterize them in Section 3.2.

3 Equilibrium in the symmetric case

3.1 An example: Three districts

Before we turn to a complete analysis of simultaneous and sequential elections, it is in-
structive to look at a simple example in which candidates compete in only three districts.
Many of the differences between sequential and simultaneous primaries can be seen in this
simple setup already. To further simplify the analysis, we also temporarily set α = 1.

Consider the sequential case first. We begin by examining the election in the last
district. Clearly, if one candidate has won the previous two elections, the race is decided
and both candidates choose expenditures of zero. Otherwise, if each candidate has won a
single district before, the third district is contested and candidate 1 solves

max
x3

x3

x3 + y3
− x3.

Note that expenditures in previous districts are sunk costs and can be ignored. For
candidate 2 an analogous maximization problem obtains, and in the symmetric equilibrium
of this subgame candidates choose x3 = y3 = 1/4 and have an expected continuation utility
of 1/2− 1/4 = 1/4.

Going one step back to the second election, observe that the two candidates are nec-
essarily asymmetric—one of them, say candidate 1, has won the first district while the
other one, say candidate 2, has lost it. In the second election, candidate 1 solves

max
x2

x2

x2 + y2
· 1 +

y2

x2 + y2
· 1
4
− x2,

because with probability x2
x2+y2

he wins the second primary and hence the nomination of
value 1, and with the opposite probability he gets the continuation utility of 1/4 calculated
above. (Any campaign expenditures from the first election are sunk and do not enter the
second-district problem). Candidate 2 solves

max
y

y2

x2 + y2
· 1
4
− y2.

The equilibrium in this round is then x2 = 9
64 and y2 = 3

64 , which yields expected contin-
uation utilities at stage 2 of u1 = 43/64 and u2 = 1/64, respectively.

As in the analysis of the last round above, the two candidates are symmetric in the first
round and choose a campaign expenditure equal to 1/4 of the difference of the continuation
utilities of the front runner and the second candidate: x1 = y1 = 21/128. To summarize,
the subgame perfect equilibrium calls for expenditures of .164 initially, and going into the
second election for .141 for the front-runner and .047 for the runner-up of the first district.
Should the race be tied after two elections, both candidates spend .25 in the last district.
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There are two interesting features of this equilibrium. First, a first-district victory
generates momentum in the second district: Since the front-runner outspends his opponent
by a margin of 3 to 1 in the second election, he wins that election with probability 75%.
Although the campaign technology is still the same for both candidates in the second
district, the front runner chooses a higher spending level in the second district than the
other candidate and consequently has a higher probability of winning. The reason is
that the difference of the continuation values is higher for the first-district winner: In the
second district, he plays for the difference between winning the whole race (a value of 1)
and being head-to-head in the third district (continuation value 1/4). For the first-district
loser, the relevant difference is between winning the second district and hence tying (value
1/4) and losing the second district and being out of the race (value 0).

Second, spending in the first district (2 × .164 = .328) is higher than in the second
district, where the front runner and the second candidate spend .141 + .047 = .188. In
the last district, each candidate spends .25, but only if this election is pivotal. As we
have shown, the probability of a tied race after two election is only 25%. The expected
campaign expenditures in the third district are therefore .25 × 2 × .25 = .125, and the
expected sum of campaign expenditures over all districts and candidates is .64. Hence, the
equilibrium has a very pronounced front-loaded spending profile: Although all districts
have the same weight and all have the same, concave technology, candidates spend more
to win in the first district than in the second district, and more in the second district than
they do in expectation in the third district.

Now consider simultaneous elections in all three districts. To win the overall race, a
candidate needs to win either 2 or 3 districts. If candidates spread their expenditures
evenly over the districts (we will show later that this is indeed optimal), the objective is

max
x

(
x

x+ y

)2

+
3x2y

(x+ y)3
− 3x.

The first order condition is

(3x2 + 6xy)(x+ y)− 3(x3 + 3x2y)
(x+ y)4

− 3 = 0,

and using symmetry this yields x = y = 1/8. Total expenditures in a simultaneous election
campaign (i.e. across all candidates and districts) are therefore .75, which is more than
in the sequential structure. (The difference may seem modest, but we shall show below
that in the general J-district case it becomes dramatic). A sequential system therefore
leads to less spending (on expectation), which is an attractive feature if parties want their
nominees to have resources left for the general election campaign.

3.2 Simultaneous elections with J districts

We now turn to the analysis of the general J-district case. We start with the simultaneous
election game, in order to highlight the problem of excessive campaigning under this
organizational form. We then analyze the sequential election game in Section 3.3.
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A pure strategy for a player in Gsim
J is a point x ∈ RJ

+. A mixed strategy is a point
p ∈ ∆, where ∆ is the set of all probability distributions over RN

+ . Depending on J , these
sets can be rather high dimensional. A particularly simply form of strategies, however, is
described in the following definition:

Definition 1. Candidate 1 (2) plays a uniform campaign strategy if he chooses x ∈ R+

(y ≥ 0) according to some cumulative distribution Λ1 (Λ2), and then sets xj = x (yj = y)
for all j. An equilibrium of Gsim

J in which both players choose uniform campaign strategies
is called a uniform campaign equilibrium (UCE).

Note that a uniform campaign strategy can be pure (if Λ is degenerate) or mixed. The
word “uniform” in Definition 1 means that the total investment level is equally distrib-
uted across districts, and not that Λi is a uniform distribution. We will often refer to a
symmetric UCE (SUCE), using the word “symmetric” in the usual sense to indicate that
both players use the same strategy (Λ1 = Λ2).

Proposition 1. Every equilibrium of Gsim
J is a uniform campaign equilibrium. Further-

more, all UCE for a given J have the same payoffs.

The proof of Proposition 1 is in the Appendix. The advantage of uniform campaign
strategies is that the dimensionality of the players’ strategy spaces is reduced from J

to 1. The first result of Proposition 1 therefore considerably simplifies the analysis of
the simultaneous elections game. The second result shows that for each J the game has
essentially a unique equilibrium, in the sense that all equilibria are payoff-equivalent.

For the time being, we focus on pure strategy equilibria. We will show that a pure
strategy UCE exists only if J is sufficiently small. Given two pure uniform campaign
strategies x, y ∈ R+, candidate 1’s payoff is

u1(x, y) = F (x, y)− Jx, (2)

where

F (x, y) =
J∑

k=J∗

(
J

k

)
xαkyα(J−k)

(xα + yα)J
(3)

is the overall winning probability for candidate 1: He wins the prize if he wins in k ≥ J∗

districts. To find a SUCE in pure strategies, differentiating (2) with respect to x, invoking
symmetry (y = x) and simplifying yields the following first order condition:(

J − 1
J−1

2

) (
1
2

)J−1 α

4x
= 1. (4)

(In Appendix A, we show that the second order condition for a local maximum holds.)
The first two terms,

(J−1
J−1

2

) (
1
2

)J−1 represent the probability that, given equal spending
by both opponents in each district, exactly one half of the J − 1 districts are won by
candidate 1, and the other half by candidate 2: In this case (and only in this case),
the outcome in the last district is pivotal. The third term, α

4x , is the marginal effect of
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additional spending in the last district on the winning probability there. To see this,
differentiate the winning probability in that district, xα

xα+yα , with respect to x and use
symmetry (y = x). In summary, the marginal benefit of spending in any district j is
the marginal increase in probability of winning district j times the probability of j being
pivotal. At the optimum, this marginal benefit of spending has to be equal to its marginal
cost, which is 1. Consequently, a pure strategy UCE (if it exists) is given by

x = y =
α

2J+1

(
J − 1
J−1

2

)
. (5)

Since the equilibrium payoff for each candidate in a symmetric UCE is 1
2 − Jx, the value

for x as given by (5) must satisfy x ≤ 1
2J in order for a pure strategy equilibrium to exist.

Hence, (5) constitutes an equilibrium if and only if

α ≤ 2J
/
J

(
J − 1
J−1

2

)
. (6)

In the appendix, we show that the right hand side of this inequality is decreasing in J and
goes to zero for J → ∞. Thus, (6) implicitly defines for each α a maximum number of
districts K(α) for which a pure strategy symmetric UCE exists.5

The intuition why a pure strategy UCE fails to exist if J is too large is as follows:
Independent of J , a candidate needs to win just one more district than his opponent.
Suppose that J is large and both candidates spend the same amount, which cannot be
larger than 1/2. Now, if player 1 increases his total campaign spending by a small amount
and distributes the additional spending equally over all districts, he wins every district
with a slightly higher probability than his opponent. While player 1 wins only slightly
more than half of the districts in expectation, the law of large numbers implies that he
wins the majority of districts with probability close to one. Hence, for large J , a symmetric
pure strategy profile cannot be an equilibrium.

If a pure strategy equilibrium exists, then by (5) each candidate’s payoff is given by

1
2
− J

α

2J+1

(
J − 1
J−1

2

)
, (7)

which is generically positive for J ≤ K(α). If the number of districts is larger than K(α),
we will show that a mixed strategy equilibria exists, and that the candidates’ expected
rent is completely dissipated in equilibrium. Proposition 2 collects these results:

5While there is no closed form solution for K(α), the right hand side can be approximated by using

Sterling’s formula (n! ≈ (n/e)n
√

2πn) to obtain

2J

��
J−1
2e

� J−1
2

q
2π J−1

2

�2

�
J
e

�J √
2πJ

=
e−(J−1)(J − 1)J

√
2π

JJe−J
√
J

=
√

2πe

�
J − 1

J

�J
1√
J
≈
r

2π

J
.

Solving for J yields the approximation K(α) ≈ 2π
α2 .
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Proposition 2. There exists a decreasing function K : (0, 1] → R, implicitly defined by
equality in (6), such that

(a) if J ≤ K(α), a symmetric UCE in pure strategies exists. Rents are (generically) not
fully dissipated in this equilibrium.

(b) If J > K(α), a pure strategy equilibrium does not exist, but symmetric UCE in
mixed strategies exists. This equilibrium involves full rent dissipation: E(

∑
xj) =

E(
∑
yj) = 1/2, and candidates’ expected rent is vsim

J = 0 for all J > K(α).

Intuitively, players have a strong incentive to “outcampaign” their opponent, as J
grows, because the marginal effect of spending on the probability to win the whole race
increases. This is very similar to the effect of an increase of α for a fixed number of districts,
and also leads to complete rent dissipation. In fact, for J → ∞, our game approaches
the standard all-pay auction in which candidates choose their overall expenditures and
the candidate with the higher expenditure wins. This observation alone implies that
equilibrium payoffs in the limit (for J →∞) must be zero. However, our result is stronger,
as there exists a finite number K(α) such that vsim

J = 0 for all J > K(α). The intuition
why K decreases in α is as follows: A high value of α means that the marginal effect
of campaigning per district is high. Consequently, for high α, the number of districts
from which on the pure strategy UCE vanishes is smaller than for small α, so that K is
decreasing.

3.3 Sequential Elections

The sequential election game with J districts, Gseq
J , can be analyzed using backward

induction. After j − 1 elections have been held, call a state for a candidate a tuple
(j, k) where k is the number of elections won by the candidate so far. Consequently, the
opponent is in state (j, j− k− 1). Let xj,k be the candidate’s spending in state (j, k), and
vj,k his continuation value.6 The value vseq

J = v1,0 is then the value of the game Gseq
J .

The continuation value does not take account of any prior investments, because these
have to be considered as sunk costs by the candidates. A useful consequence of the sunk
cost property is that, if we extend the game from Gseq

J to Gseq
J+2, all we have to do is to

introduce a number of new states and relabel. That is, vj,k becomes vj+2,k+1, and likewise
xj,k becomes xj+2,k+1. For instance, the problem when each candidate has won exactly
one election in Gseq

J+2 is the same as the problem at the very beginning of Gseq
J .

Given (j, k), we can now set up a pair of Bellman equations, one for each player:

vj,k = max
xj,k

{
xαj,k

xαj,k + xαj,j−k−1

vj+1,k+1 +
xαj,j−k−1

xαj,k + xαj,j−k−1

vj+1,k − xj,k

}
(8)

6In this section, it is notationally more convenient to denote both candidates’ spending by x. Since the

subscripts indicate the respective state candidates are in, no confusion should arise.
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and

vj,j−k−1 = max
xj,j−k−1

{
xαj,j−k−1

xαj,k + xαj,j−k−1

vj+1,j−k

+
xαj,k

xαj,k + xαj,j−k−1

vj+1,j−k−1 − xj,j−k−1

}
. (9)

When we set vj,J∗ = 1 for j = J∗, . . . , J + 1 and vj,j−J∗−1 = 0 for j = J∗ + 1, . . . , J + 1,
the Bellman equations become a finite horizon dynamic programming problem.

Since it is always feasible for a candidate to spend zero, we have vj,k ≥ 0 for all j, k, and,
as shown in the proof of Proposition 3 in the Appendix, vj,k ≥ vj,k−1 and vj,k ≥ vj+1,k.
Together with the fact that 0 < α ≤ 1, this implies that the right-hand side of each
Bellman equation is strictly concave in its respective decision variable.

Define ∆j,k = vj,k−vj,k−1 to be the difference in the continuation payoff from winning
the stage election in state (j, k) and losing it, and let

θj,k =
∆j+1,j−k
∆j+1,k+1

.

Taking first order conditions of (8) and (9), the ratio of the candidates’ expenditures is
xj,j−k−1

xj,k
= θj,k.

Using this relation in the first order conditions, the unique solutions of the first order
conditions are

xj,k = α
θαj,k

(1 + θαj,k)
2
∆j+1,k+1 and xj,j−k−1 = α

θαj,k
(1 + θαj,k)

2
∆j+1,j−k. (10)

Due to the strict concavity of the Bellman equations, the first order necessary conditions
are also sufficient. Since on each stage of the game, there is a unique continuation equilib-
rium, the usual backwards induction argument shows that the subgame perfect equilibrium
of game Gseq

J is unique.
It is easy to show that sequential elections leave candidates with a rent, even if there

are very many districts; thus, sequential elections are at least asymptotically better than
simultaneous elections. Call (j, k) symmetric if j is odd and k = j−1

2 . (In particular, the
initial state (1, 0) of every Gseq

J is symmetric.) In symmetric (j, k), θj,k = 1, so that

xj,k = xj,j−k−1 =
1
4
α∆j+1,k+1.

Since each candidate is equally likely to win the stage election, we have

vj,k =
(

1
2
− 1

4
α

)
vj+1,k+1 +

(
1
2

+
1
4
α

)
vj+1,k

≥
(

1
2
− 1

4
α

)
vj+1,k+1 ≥

1
4
vj+1,k+1 ≥

1
4
vj+2,k+1.

Using vJ+1,J∗+1 = 1, we have vseq
J ≥ 4−J

∗
> 0. The following Proposition summarizes our

results:
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Proposition 3. For all J , the sequential elections game Gseq
J has a unique subgame perfect

equilibrium in pure strategies. Furthermore, for any number of districts J , vseq
J > 0.

A general closed form solution for the SGPE strategies and payoffs is desirable, as it
would allow as to investigate how the equilibrium strategies and the value of the game
depend on the parameters J and α. Unfortunately, such a solution is difficult to obtain
for all but a very small number of districts. The next Section therefore contains numerical
results that shed light on a number of interesting questions we are unable to address
analytically.

We are nevertheless able to offer further theoretical results concerning the limiting
behavior of Gseq

J as J becomes large. In particular, we can show that the sequential game
is closely related to a sequence of contests that aborts once a candidate is ahead in the
race by a certain pre-specified margin. Although such a race is potentially infinite, it
will end in finite time with probability one. It is possible to characterize equilibria in this
contest and show that both payoffs and strategies in our original sequential game converge
to those in the modified game. Due to the complex nature of these results, we present
them in Appendix B instead of the main text.

4 Numerical Results

In this section, we present quantitative results obtained from the numerical computation
of the SGPE in the sequential game and the UCE of the simultaneous game. We use
the following notation: As before, vsim

J is the equilibrium payoff to a candidate of the
simultaneous game Gseq

J , and Σxsim is the expected sum of expenditures per candidate.
Similarly, vseq

J and Σxseq are the value and the expected expenditures for Gsim
J . For the

sequential game, we also report several strategy component: x1,0 are expenditures in the
first primary district, and x2,1 (resp. x2,0) are expenditures in the second primary district
after having won (resp. lost) the first election. Finally, P denotes the probability that a
candidate wins the entire race, conditional on a victory in the first district.

In Table 1, we present subgame perfect equilibria of the sequential game and the UCE
of the simultaneous game, for the case of α = 1 and different values of J . SGPE in Gseq

J

were computed by backward induction. Pure strategy UCE of Gsim
J and their values are

readily obtained from (5). From Proposition 2, we know already that vsim
J = 0 in mixed

strategy equilibria, so that we don’t need to calculate mixed equilibrium strategies.7

The ex ante expected rent of a candidate in the sequential organization, vseq
J , is al-

ways substantially higher than the rent in the simultaneous organization, and converges to
approximately 0.1838. Hence about 37% of the maximum possible rent is not dissipated
by the candidates, even for a number of districts where rent dissipation is complete in
a simultaneous organization of primaries. Consequently, the expected total campaigning
expenditures in the sequential organization converge to 0.6324. In the simultaneous or-

7However, it is possible to confirm Proposition 2 by computing the UCE in discretized versions of Gsim
J ,

using the computer software GAMBIT.
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J 1 3 5 7 9 . . . 19 . . . 49 . . . 99
vsim
J .250 .125 .031 0 0 . . . 0 . . . 0 . . . 0

Σxsim .250 .375 .469 .500 .500 .500 .500 .500
vseq
J .250 .180 .181 .184 .184 . . . .184 . . . .184 . . . .184

Σxseq .250 .320 .319 .316 .316 .316 .316 .316
x1,0 .250 .164 .175 .178 .178 . . . .178 . . . .178 . . . .178
x2,1 .141 .119 .121 .122 .122 .122 .122
x2,0 .047 .027 .027 .028 .028 .028 .028
P 1 .875 .909 .907 .905 .905 .905 .905

Table 1: Campaign equilibria with α = 1 (K(1) = 5)

ganization, these expected expenditures are 1 for J ≥ 7. In the very first district of the
sequential primary race, both candidates spend 0.1775, respectively, which is about 56%
of their total expected expenditures. Note that the proportion of campaign expenditures
in the first district to total expenditures is essentially the same, whether there are 19,
49 or 99 districts. Hence, campaigning in the first district is fierce even if this district is
seemingly unimportant in terms of its weight in the overall race.8

In the second district, the situation is necessarily asymmetric and second district ex-
penditures for both candidates are considerably lower. The first-district winner spends
0.1218, while the runner-up reduces his expenditures to 0.0279. The probability that the
candidate who won the first district wins the second district as well is therefore about
81.4%. Should this candidate win the second district as well, a similar asymmetry effect
can be observed again, endogenously furthering the advantage of the winner: Relative
to his opponent, the front runner outspends his opponent so that yet another victory is
almost guaranteed. For example, if one candidate has won the first 3 elections, the can-
didate who has fallen behind spends about 1/5000 of the front runner’s expenditures in
that district, virtually conceding the race to his opponent. Yet, this increase in relative
spending by the race leader occurs at much lower absolute levels, keeping overall campaign
expenditures low. Thus, once a candidate has managed to establish an early lead, he will
in all likelihood win the entire race, and with little use of further campaign resources.

This result sheds light on the question why sequential elections are cheaper for the
candidates than simultaneous ones. A superficial explanation is that, with sequential
elections, one candidate may collect enough electoral districts even before the end of the
primary sequence, in which case candidates can save on expenditures in the last districts.
However, if this explanation were all there is, then doubling the number of districts should
result in a substantial cost increase, because the number of districts required for victory

8Note that convergence is effectively completed for J = 19. For large J , the SGPE strategies in Gseq
J

become stationary, so that the SGPE in these games converges to a Markov perfect equilibrium (MPE),

in which strategies are measurable with respect to the lead one candidate has over the other. Intuitively,

large games become very similar to each other, and candidates use very similar continuation strategies in

Gseq
99 as they do in, say, Gseq

97 .
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also doubles. This is not the case in our model, and the reason is that the cost savings
are due to the endogenous momentum or “New Hampshire effect” that is part of the
equilibrium play: The outcome of the first election creates an asymmetry between ex-ante
symmetric candidates, which triggers different spending patterns in subsequent primaries.
Because it is now less likely for the candidate who has fallen behind to win, the absolute
level of campaign expenditures decreases sharply.9

While the winner of the first election always spends more than his opponent in the
second election and hence will likely expand his lead, it could of course happen that the
first-district runner up wins the second district. We would then see vigorous campaigning
in the third district, and, more generally, in all districts in which the candidates have won
the same number of districts. In light of our model, the campaign expenditures in the
New Hampshire presidential primary are high not so much because it is the first primary
state, but rather because no candidate has yet established a clear lead in the race. In later
stages, such a head-to-head situation with high expenditures is possible, but improbable.

To examine the effect of a change in the campaign technology, we present results for
α = 0.5 in Table 2.10 In both simultaneous and sequential primaries, a decrease in α

leads to (weakly) less rent dissipation. Intuitively, as advertising becomes marginally less
effective, candidates spend less aggressively.

J 1 3 5 7 9 . . . 19 . . . 49 . . . 99
vsim
J .375 .313 .266 .227 .192 . . . .060 . . . 0 . . . 0

Σxsim .125 .188 .234 .273 .308 .441 .500 .500
vseq
J .375 .317 .279 .252 .235 . . . .224 . . . .226 . . . .226

Σxseq .125 .183 .221 .248 .265 .277 .274 .274
x1,0 .125 .067 .054 .049 .047 . . . .051 . . . .051 . . . .051
x2,1 .077 .063 .058 .056 .062 .062 .062
x2,2 .046 .035 .030 .027 .025 .025 .025
P 1 .782 .740 .729 .729 .755 .753 .753

Table 2: Campaign equilibria with α = 0.5 (K(0.5) = 23)

Also, first district spending decreases relative to total spending. For example, for 49
districts, spending in the first district as a proportion of total expected spending declines
to about 19% from approximately 56% for α = 1. While a lower value of α leads to
lower total campaign expenditures in all districts, the effect on the ratio of first-district
spending to total spending is more involved. Consider a 3 district race. If α is high, a large
proportion of the continuation rent is dissipated in the third district in case that district
is contested, which happens when the candidates are tied after two rounds. Anticipating
costly third-round competition, the loser of the first district will choose not to campaign

9This result is somewhat reminiscent of Che and Gale (2000a), who—in a context of lobbying games—

show that asymmetry between lobbyists increases the expected rents in equilibrium. In our model, the

sequential structure of primaries is used to create this asymmetry endogenously.
10Further results for α = 0.25 and α = 0.75 are available from the authors.
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very intensely in the second district. Consequently, once an advantage is established, the
front runner will likely be the eventual winner. This strategic effect makes it vital to win
the first district. If, instead, α is low, a fixed advantage over the opponent becomes less
valuable: In this case, the winning probability is close to 1/2 for both candidates in every
district, and so winning the first district becomes less important, because it is harder (in
equilibrium) to maintain this advantage after it has been established.

5 Asymmetric Candidates

In our basic model, both candidates are symmetric with respect to their ability to trans-
form campaign expenditures into electoral victories. In practice, a crucial function of the
primaries is to select the better campaigner as the party’s nominee (in the hope that this
increases the party’s winning probability in the general election).

At first sight, it may seem that, while sequential elections are cheap, they could have
a disadvantage relative to simultaneous ones in this dimension: From the last section,
we know that the very few first districts are crucial in a sequential primary system. If
the worse campaigner is lucky enough to win in the first districts, then an endogenous
momentum may start that carries him to victory. On the other hand, in a simultaneous
primary system, no “mistaken momentum” can develop in favor of the weaker campaigner.

In this section, we show that these concerns are unfounded, at least if we assume that
the candidates’ campaign effectiveness is common knowledge among the candidates. The
intuitive reason is that the “mistaken momentum” argument above assumes that both
candidates behave in the same symmetric way as they do in the basic model, that is, even
a better candidate would effectively give up if he loses by chance in the first few districts.
If this were true, then sequential elections would indeed generate a substantial probability
for selecting the weaker candidate. However, this is not the case in the equilibrium of the
sequential game when candidates are asymmetric. In equilibrium, the stronger campaigner
behaves essentially already in the beginning as if he had an advantage in terms of districts
won. If, by any chance, the weaker candidate should win in one of the early districts, then
the effect is similar to the lagging candidate catching up on the leading candidate in the
basic model: The fight gets harder as both candidates increase their expenditures, but it
is not the case that the stronger candidate gives up (provided that the sequence is long
enough to make up later for early losses).

In order to introduce an exogenously given advantage of one candidate over the other,
we explore two different ways of modelling such an asymmetry. The first one is that
candidate 1 has a number of “assured districts” that he wins irrespective of campaign
expenditures; this model has the advantage of being quite tractable. The second one is that
candidate 1 uses each unit of campaign resources more effectively. This appraoch is more
appealing as a model of a good campaigner, but results have to be derived numerically.
Our results show that, under both specifications, the sequential primary system leads to
a higher probability that the better campaigner is selected than the simultaneous system.
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5.1 Assured districts

One simple way to model asymmetry is to assume that candidate 1 wins a fraction 0 <
ρ < 1/2 of the districts irrespective of campaign expenditures. These districts are assured
for candidate 1. It is common knowledge which of the J districts are assured for candidate
1, so that neither candidate will spend anything there. In the (1 − ρ)J other districts,
the election technology is the same as in our basic model. For reasons of tractability, we
restrict ourselves to the asymptotic case of J →∞.11

Consider first the simultaneous election system. In the ρJ uncontested districts both
candidates choose a spending level of 0. In order to win a majority, candidate 1 needs
to win (slightly more than) a share of 1

2 = ρ + (1 − ρ) 1−2ρ
2(1−ρ) of districts, which implies

that of the (1− ρ)J contested districts, candidate 1 has to win a share of 1−2ρ
2(1−ρ) . If both

candidates play asymmetric uniform strategies in the contested districts,12 then candidate
1 wins the nomination if

xα

xα + yα
>

1− 2ρ
2(1− ρ)

, (11)

which we can simplify to x > (1 − 2ρ)1/αy. If the inequality sign in (11) is reversed,
candidate 2 wins. For J → ∞, this game is an asymmetric all-pay auction, and we can
use the standard methods for solving all-pay auction games to characterize the equilibria
in the simultaneous election game. We then get the following result:

Proposition 4. In the model with assured districts and simultaneous elections, the fol-

lowing holds as J → ∞: Candidate 1’s ex ante utility goes to 1 − (1 − 2ρ)1/α < 1, and

candidate 2’s ex ante utility goes to 0. Furthermore, the probability that candidate 1 wins

goes to 1− (1−2ρ)1/α

2 < 1.

With a sequential organization of primaries, we can assume without loss of generality
that the first ρJ elections are the uncontested ones. No change arises if the uncontested
elections take place at any later time, because it is known from the beginning that candi-
date 1 will win in these districts. Candidate 1 wins the nomination if he wins more than
(1
2 − ρ)J of the last (1 − ρ)J districts. The initial value of the game for candidate 1 is

therefore equal to the continuation value vρJ+1,ρJ+1 in the symmetric game. With the
relative advantage ρ fixed and J → ∞, candidate 1’s absolute advantage gets very large.
As we show in Appendix B, a candidate who leads the race by a sufficiently high absolute
margin receives a continuation payoff of approximately 1. Since the continuation utility is
equal to the probability of winning the prize, minus the expected expenditures, this also
shows that candidate 1 wins the nomination with probability close to 1.

11The assumption that only candidate 1 has assured districts is entirely innocuous. In general, if ρi

denotes the fraction of districts assured for candidate i = 1, 2,with 0 < ρ2 < ρ1 < 1/2, candidate 1 still

has an advantage over 2. This advantage can be expressed as a single number ρ ≡ (ρ1 − ρ2)/(1− 2ρ2), a

renormalization that makes the general model equivalent to the one presented in this section.
12Using the same procedure as in section 3.2, it is straightforward to show that a uniform equilibrium

exists.

17



Proposition 5. In the model with assured districts and sequential elections, the following

holds as J →∞: Candidate 1’s ex ante utility goes to 1 and candidate 2’s ex ante utility

goes to 0 as J increases. Furthermore, the probability that candidate 1 wins goes to 1.

To sum up, in both regimes, asymmetry between candidates reduces (expected) rent
dissipation. This is a result similar to Che and Gale (2000a, 2000b). However, in our
model the exogeneous asymmetry is reinforced in the sequential organization through the
endogenous asymmetry creating a “preemption effect,” and so the effect of asymmetry is
more forceful in a sequential organization.

5.2 Asymmetric campaign efficiencies

An alternative approach for introducing asymmetries into the model is to assume that
candidate 1 is a more effective campaigner, in the sense that each unit of campaign re-
sources spent by him is worth as much as ψ > 1 units spent by candidate 2. Specifically,
we assume that in each district the probability that candidate 1 wins is given by

f̃(x, y) =
(ψx)α

(ψx)α + yα
. (12)

If x = y > 0, this probability is ψ/(1+ψ) > 1/2. We also assume that f̃(0, 0) = ψ/(1+ψ).
As ψ > 1, candidate 1 again has an advantage over candidate 2. In contrast to the previous
specification, however, the advantage is now in terms of the marginal effects of campaign
resources, rather than in terms of the fraction of assured districts.

With simultaneous elections, one can apply the same arguments as in the basic model
to show that a uniform campaign equilibrium exists. As J →∞, the law of large numbers
implies that candidate 1 wins the nomination if and only if he spends just slightly more
than y/ψ per district, so that the uniform equilibrium approaches the mixed strategy
equilibrium of an asymmetric all-pay auction. The following proposition, proved in the
appendix, shows that in simultaneous elections with asymmetric candidates, rents are
not completely dissipated (even if J → ∞), and the stronger candidate is selected with
probability greater than one half.

Proposition 6. In the model with asymmetric campaign efficiencies and simultaneous

elections, the following holds as J →∞: Candidate 1’s ex ante utility goes to 1− 1
ψ < 1,

and candidate 2’s ex ante utility goes to 0. Furthermore, the probability that candidate 1

wins goes to
[
1− 1

2ψ

]
∈ (1

2 , 1).

For sequential elections, we have to compute the equilibria numerically. Table 3 com-
pares simultaneous and sequential elections for the case ψ = 1.2, α = 1, and various values
for J (results do not qualitatively depend on this particular set of parameters). We report
the rents left to the candidates, expected expenditures, and the probability that candidate
1 wins (P sim

1 and P seq
1 ). The sequential system is clearly better, both in terms of selection

probability as in terms of rent dissipation.13

13The results for the simultaneous game were computed in GAMBIT, using a discretized version of the
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J 1 3 5 7 9 . . . 19 . . . 49 . . . 99
vsim
J .504 .280 .179 .173 .155 . . . .167 . . . .169 . . . .169

Σxsim .496 .720 .821 .827 .845 .833 .831 .831
P sim

1 .545 .568 .597 .589 .572 .584 .586 .586
vseq
J .504 .389 .440 .505 .571 . . . .888 . . . 1.00 . . . 1.00

Σxseq .496 .611 .560 .495 .429 .111 0.00 0.00
P seq

1 .545 .615 .692 .754 .810 .970 1.00 1.00

Table 3: Equilibrium outcomes with asymmetric campaign efficiencies (α = 1, ψ = 1.2)

While the probability that the better candidate wins stays below 60% in a simultane-
ous system, the corresponding probability approaches 1 in the sequential system, if the
sequence is long enough to make up for possible initial losses. In equilibrium, both can-
didates behave in the beginning as if the better candidate had an advantage in terms of
districts won. Both candidates spend only a small amount, with candidate 1 spending
relatively more than candidate 2. Since candidate 1 also has a campaign efficiency ad-
vantage, he is very likely to win the first election. If he wins the first election, then a
momentum effect similar to the one in the symmetric case occurs. As seen in Table 3, the
stronger candidate wins with probability close to one, and at a very low overall cost.

It is of course possible, albeit unlikely, that candidate 1 loses in some early districts.
If this happens, it has the effect of reducing the ex-ante asymmetry of the contest: While
candidate 1 is still the stronger campaigner, candidate 2 has had a headstart. In order
to win the nomination now, candidate 1 must win a larger number of the remaining
districts than candidate 2, offsetting his efficiency advantage. The fight gets harder as both
candidates increase their expenditures, but it is not the case that the stronger candidate
gives up (provided that the sequence is long enough to make up later for early losses).

For example, consider the case J = 19, and the same values for α and ψ used as
in Table 3. In the very first district, candidate 1 spends x1,0 = .052 and candidate 2
spends y1,0 = .006, so that the chance that candidate 1 wins the first district is more than
91%. However, if candidate 2 happens to win the first district, then in the second election
they will spend x2,0 = .189 and y2,1 = .129, so costly campaigning is observed once the
stronger campaigner has fallen behind. Should candidate 2 win also in the second election
(which now has a chance of more than 36%), the spending profile in the third election is
x3,0 = .056 and y3,2 = .173. After a third win spending declines very rapidly, and in all
likelihood, candidate 2 will be carried by the momentum effect to win the nomination.
However, the likelihood of this path that leads to the nomination of the wrong candidate
is relatively small.

Finally, a word of caution regarding the interpretation of the results is in order. We

continuous game with 51 possible values between 0 and 1/J for x and y. The slight discrepancy between

the theoretical limit result in Proposition 6 (i.e., vsim
J should be 1/6) and the results in Table 3 with a

large number of districts, e.g. J = 99, is due to discretization.
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have assumed in this section that candidates’ campaign effectiveness is common knowledge,
and this may very well be an important assumption. It is conceivable that, if candidates
don’t know their own and their opponent’s effectiveness, a simultaneous election may be
good in selecting the right candidate. Suppose, for instance, that uncertainty about effec-
tiveness is so large that there is a symmetric pure strategy equilibrium in the simultaneous
election game with many districts.14 In this case, the candidate who turns out to be the
better campaigner wins almost certainly in a simultaneous primary system.

On the other hand, the outcome in a sequential system is not obvious. Results in early
districts lead to updating about the effectiveness of candidates, and it may be that this
learning goes (at least initially) in the wrong direction: Early victories of the inefficient
campaigner may lead to the belief that the inefficient campaigner is actually more effi-
cient, and then a momentum effect may develop that carries the inefficient campaigner
to victory.15 The learning dynamics make the model very complicated to analyze, but a
different result with respect to the selection properties of the simultaneous and sequential
system is at least conceivable.

6 Discussion and Relation to Stylized Facts

Our model sheds light on a number of stylized facts regarding the nomination process, such
as the existence of campaign momentum and the allocation of a large share of campaign
funds to early primary states. In this section, we relate the predictions of our model to
these stylized facts. We discuss the tendency of many states to move their primary dates
up in the calendar, as well as alternative explanations of the stylized facts.

6.1 Momentum Effects

Most observers and political analysts agree that “momentum effects” exist in primary
races and are important for the determination of the winner. It is less clear how exactly
such momentum emerges. This paper provides an answer to this question: The candidate
who is (through pure luck in our basic model) successful in the first few primary elections
is very likely to be successful in later primaries, too, even though both candidates have the
same technology of converting money or effort into electoral success. Thus, in our model
early successes are a good predictor of who will eventually win the nomination.

Table 4 gives an overview of the ten races between 1976 and 2004 in which no competi-
14Assume, for example, that candidate 1’s ψ is unknown and drawn from a uniform distribution on [0, 2].

Candidate 2’s effectiveness is still normalized to 1. In this case, there is a unique pure strategy equilibrium

in which both candidates spend 1/4.
15On the other hand, if the number of districts is sufficiently big, almost perfect information about

campaign effectiveness is probably obtained relatively early, and then our results from this section apply,

so that sequential elections also choose the correct candidate in the limit. However, it is at least conceivable

that simultaneous elections could outperform sequential ones for an intermediate number of districts.
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tor was sitting U.S. president.16 For each race, we indicate the New Hampshire winner and
the eventual nominee. The last two columns contain the percentage of primaries won by
the eventual nominee for early primaries (February and March) and late primaries (April
and May).

Primary NH Winner Nominee Feb + Mar Apr + May
D-1976 Carter (28%) Carter 0.67 0.60
R-1980 Reagan (50%) Reagan 0.73 0.86
D-1984 Hart (37%) Mondale 0.40 0.42
D-1988 Dukakis (36%) Dukakis 0.36 1.00
R-1988 Bush (38%) Bush 0.91 1.00
D-1992 Tsongas (33%) Clinton 0.58 1.00
R-1996 Buchanan (27%) Dole 0.90 1.00
D-2000 Gore (52%) Gore 1.00 1.00
R-2000 McCain (49%) Bush 0.79 1.00
D-2004 Kerry (39%) Kerry 0.92 0.90

Table 4: Percentage of early vs. late primaries won by nominee

One implication of our model is that winning the first primary makes it more likely to
win the nomination. Out of the ten races in Table 4, six were such that the winner of the
New Hampshire primary was the eventual nominee. Although this seems hardly indicative
of the existence of momentum effects described in this paper, one needs to keep in mind
that in most of these races there were more than two candidates in the New Hampshire
primary. To provide a feel for the number of viable NH candidates, the winners’ vote
shares are given in brackets. Hence, the fact that about half the nominees in Table 4 also
won the New Hampshire primary means that an early win is in fact a good predictor of
an overall win.

There is, of course, an obvious alternative explanation, namely that one candidate is a
“better” candidate than his competitors, in the sense that he is more likely to win, in New
Hampshire or elsewhere. As we have shown in the preceding section, momentum effects
also emerge in the sequential game between two asymmetric candidates. Asymmetries
alone (i.e. not considering strategic play) can explain why New Hampshire winners are
more likely to be selected as nominees, but they do not predict momentum. That is,
the ex-post probability of winning a late primary, conditional on winning the entire race,
would be the same as the probability of winning an early primary. On the other hand,
in our model the probability of the nominee winning an early primary is lower than the
probability of winning a late primary, because the advantage in terms of districts already
won is bigger later in the race than in the beginning. Therefore, a prediction that is
robust to whether the candidates are equally strong or not, is that that the nominee of a

16Sources: Cook (2000), Washington Post 2000 presidential primary coverage, and CNN.com 2004 De-

mocratic primary coverage.
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race should win a larger fraction of the later elections than of the earlier elections. The
data appear to support this momentum hypothesis: In six of the ten races in Table 4,
the percentage of primaries won by the eventual nominee was higher after April 1st than
before.

6.2 Campaign spending profile

As mentioned in the introduction, candidates as well as the media place a disproportionate
emphasis on early primary states. For example, in the 1980 Republican primaries George
Bush and Ronald Reagan allocated roughly 75% of their respective total campaign budgets
to states with primaries before March 31, although these states accounted for considerably
less than one fifth of the delegates to the Republican convention. Our model predicts that
candidates will spend a large amount of resources whenever the race is tied or very close;
in particular, expenditures will be large in early primary states (assuming candidates of
equal strength). For example, for α = 0.5 and 49 districts, each candidate’s total expected
campaign expenditure is 0.2739, and the expenditure in the first district alone is 0.051,
or about 19% of the total expected campaign expenditure. One can also compute the
number of districts after which the candidates have, on expectation, spent a fraction of
75% of their total expenditures. For example, for 49 districts and α = 1, more than 75%
of the total expenditures are allocated in the first two districts alone (4% of all districts).
For α = 0.75, the first three districts (6%), and for α = 0.5, the first seven districts
(14%) account for this share. Given that our model is stylized and does not capture many
aspects that may be empirically important, we do not wish to overextent these quantitative
results as a claim that we “match the data.” Still, the disproportionate share of campaign
resources allocated to early primary states is consistent with our model.

6.3 Movement of primary dates

Over the years, states have tended to move their primaries up to earlier dates. In 1976,
the percentage of all primary voters who voted by the end of March was 22.6%. In 1992,
this number had increased almost twofold, to 42.5%. In the 2004 election, 35 states, or
78% of the US population, voted before the end of March.17 A common explanation for
this competition among states for early primary dates is that each state would like to see
those candidates being nominated which best represent the preferences of its residents.
This explanation, of course, requires that early primary outcomes are in fact influential
for the future direction of the race. Whether or not this can be the case in a theoretical
model critically depends on whether candidates are included as decision making agents
or not. In a model that abstracts from candidate behavior, Dekel and Piccione (2000)
show that the equilibria of sequential elections are equivalent to those of simultaneous
elections. Consequently, the position of any state in a sequence of elections is irrelevant
for the election outcome. Our model of candidate behavior, on the other hand, suggests

17See http://www.fec.gov/pages/2004pdates.htm.
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that there exists a motivation for moving up state primary dates, as the temporal position
of elections does matter.

Beyond being consistent with observable data, however, our theory (through its nor-
mative aspects) also has policy implications concerning the optimal design of primary
contests. In the preceding sections it has been shown that the cost and selection advan-
tages of the sequential system are intricately linked to strategic momentum effects and the
resulting front-loading of spending profiles. We argue that the observed tendency toward
earlier election dates might in turn lead to a gradual change from sequential to essential
simultaneous primaries, with all its associated disadvantages. A sequential organization
basically requires that candidates can observe the outcome of an election before they com-
mit resources to further campaigns. If elections are separated by short time intervals only,
it seems unlikely that this is still a practical possibility. It can be expected that the disad-
vantages of simultaneous primaries, such as high rent dissipation rates and poor selection
properties, would transpire in a formally sequential but temporally dense environment,
too.

The problem of inefficient competition for early dates has spurred a discussion on
alternative primary designs in the organization of the secretaries of state of the 50 U.S.
states. One particular proposal is a system of regional primaries, in which the caucus and
primary dates in Iowa and New Hampshire would remain unchanged; the other states are
divided into four groups (Northeast, South, Midwest and West). All states in a group
hold their primaries at the same day, starting with the first group one month after New
Hampshire. The next group follows after an interval of one month, and so on. Which
group goes first would rotate in a 16-year cycle. The stated reason for the cycle is fairness:
Since the region with the first group primary is perceived as decisive, every state would
enjoy this advantage once during the cycle.

6.4 Alternative models of primaries

Our model is not the only explanation for the momentum effects that are so typical of the
U.S. presidential primary system, or the very fact that we observe sequential primaries.
We will now discuss two popular alternative theories, but argue that neither one actually
provides a satisfactory explanation for the existence of the sequential primary system.

One prominent alternative explanation for momentum effects is the bandwagon theory,
which is related to models of herd behavior. It assumes that voters possess only incomplete
information regarding the candidates’ qualities and like to vote for the candidate whom
they believe to be the best. Like our model, this simple setup generates momentum:
An early victory by one candidate makes it more likely that this candidate is the better
nominee, so voters in later districts become more willing to vote for him. Thus, the
momentum prediction in itself is insufficient to distinguish between the model in this
paper and the bandwagon story directly. However, there are other implications of the
two models that are different. Most importantly, in the bandwagon model each party
should prefer to hold a simultaneous primary. In a simultaneous primary, voters cannot
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condition their decision on previous election outcomes and therefore more citizens vote
informatively. From the Condorcet jury theorem, we know that this raises the probability
of a correct choice. In other words, every model that portrays momentum as consequence
of herding on the part of the voters faces the challenge to explain why, if this is true,
parties organize primaries in a way that leads to herding and hence imperfect information
aggregation. On the other hand, in our model a sequential organization is preferable even
as far as the selection of the best candidate is concerned.

An argument that is often used to explain why parties choose sequential primaries, and,
in particular, why they start in small states like Iowa and New Hampshire, is the grassroots
theory of primaries: According to this theory, parties use primary elections as a screening
mechanism to see how candidates fare when directly interacting with voters. However,
given that candidates in presidential elections rely heavily and increasingly on mass media
for their campaigns, why should the parties put much emphasis on direct voter-candidate
interaction in the primaries? With respect to candidate selection, it would be desirable
that the campaign technologies used in primary campaigns resemble most closely those
that are used later on in the presidential campaign. In many cases, the different skills
tested in direct voter interaction and mass media appearances are correlated, but if the
special nature of New Hampshire campaigning does in fact make a difference, then the
grassroots effect is more likely to select the wrong candidate in a sequential than the
simultaneous system. For this reason, we would argue that this feature is best interpreted
as a drawback of the sequential system, rather than the reason for why parties chose it.

7 General Temporal Structures

While the basic structure of the U.S. primaries is sequential, it is not completely so:
Some states hold their primaries on the same day as other states; the most important
such day being “Super Tuesday.” For example, in 1992, eight states (among them big
states like Texas and Florida) held their primaries on that day. Typically, going into the
Super Tuesday election, one candidate has a clearly established lead. The race is usually
conceded by one candidate shortly afterwards.

Our basic contest model of primaries can be extended to allow for such temporal
structures. Adding a simultaneous stage to an otherwise sequential race introduces an
implicit threat of a fierce battle should the race still be close when this stage is reached.
This threat can shorten the overall length of the race. With symmetric candidates, consider
an organization in which the first two primaries are held sequentially and then, at a third
period, the remaining “many” districts vote simultaneously. By “many”, we mean more
than K(α), such that, if both candidates go head-to-head into the third election period,
only a mixed strategy equilibrium involving full rent dissipation exists. Assume further
that, after every election period, the candidate who has fallen behind can withdraw from
the race, and will do so, if (and only if) he has a zero continuation utility. If he concedes,
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then the remaining elections automatically go to his opponent.18

Consider the candidate’s incentives after the first election has taken place. The best
possible outcome in the second district for the first-round loser is to win and equalize the
score. Then, both candidates are head-to-head in the final simultaneous election round.
As we have shown, the complete rent will be dissipated in this final round, so that the
continuation utility after a first-round loss will be as bad as giving up once the third round
is reached, namely zero. This ensures that the candidate who loses the first election will
give up, securing that the front runner does not have to spend any resources at the second
and third stage. When both candidates follow this line of reasoning, they will know that,
effectively, the only contested election is the first one, and that its winner will be the
winner of the whole race. Consequently, they will spend α/4 in the first district, and the
loser of that first election will immediately give up. Thus, a mixed structure that starts
with few sequential elections followed by a final, simultaneous round leaves even more
expected rent to the candidates than a completely sequential structure.19

This result raises the question which temporal structure minimizes expected expen-
ditures by the candidates. For the case of many districts we conjecture that the organi-
zational form just presented is actually optimal. After all, the effective fight is reduced
to the very first district, and it seems plausible that any other organization that induces
a contest in more districts should be more expensive; however we do not have a formal
proof for this conjecture. For small J , this scheme does not work since the lagging can-
didate does not give up before Super Tuesday. Here, the optimal organizational form can
just be determined by brute force, namely by computing the equilibria numerically for all
possible arrangements. No general pattern emerges, however. For α = 0.5, the optimal
organization for J = 3, 5, 7, 9 and 11 is completely sequential. However, for α = 1 and
J = 7, the optimal organization consists of sequential elections in the first 4 districts,
followed by a simultaneous election in the remaining districts. For α = 1 and J = 9, the
optimal organization starts with 2 sequential single district elections, followed by three
multi-district elections in 2, 3 and 2 districts, respectively.20

It should be noted that whether a mixed temporal structure is desirable also depends
on whether the candidates are symmetric or not. If the candidates are asymmetric and
there are sufficiently many districts, we have shown in Section 5 that a completely se-
quential organization selects the stronger player with probability close to one, and leaves
an expected rent of close to one. Introducing a simultaneous stage to such a race is most
likely to result in a welfare loss and a higher nomination probability for the weaker player.

18Note that adding such a withdrawal option to the completely sequential model would not change the

equilibrium outcome, since every candidate has a positive continuation utility at each stage.
19In view of this result, it is a bit ironic that Super-Tuesday was introduced in 1988 by Southern states

with the “hope that by holding their votes on the same day, they would increase the influence of the

South in selecting presidential candidates and downplay the importance of the earlier New Hampshire

primaries”. (Source: BBC, http://news.bbc.co.uk/1/hi/in depth/americas/2000/us elections/glossary/q-

s/652376.stm.) In our model, influence is actually shifted to the earlier primary states and away from the

states that participate in Super-Tuesday.
20The complete numerical results for all cases mentioned can be obtained from the authors upon request.
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8 Conclusion

We develop a campaigning model of primary elections in which candidates can influence
their probability of winning in different districts. The equilibrium in this model has many
features that are present in reality: Candidates spend a disproportionate amount in early
districts as compared to late districts (or, more generally, spending is high whenever the
race is close). The winners of early districts is endogenously more likely to win later
districts than the loser, not because voters react to performance in previous elections, but
rather because of equilibrium candidate spending behavior. In addition to reproducing
these stylized facts from primary races, our model also provides a rationale for why political
parties have chosen a sequential organization of primary elections: First, it induces lower
expected expenditures and higher expected rents than a simultaneous structure. Moreover,
if one candidate has an ex-ante advantage over the other, either in terms of campaign
effectiveness or in the number of assured districts, a sequential organization selects the
stronger candidate with probability close to one, provided there are sufficiently many
districts.

Like every model, ours had to abstract from a number of issues that are certainly
important in reality. First, we have assumed that there are only two candidates running
for the nomination. While this simplifies the exposition, the qualitative features of the
model remain intact with more than two candidates: Campaigning is intense whenever at
least two candidates are tied, and front runners spend more than other candidates and
therefore are more likely to win.

Second, in analyzing and explaining candidate behavior, we had to abstract from voting
as a strategic decision. Our reduced form approach to capture the effects of campaign effort
choice by the candidates prevents us from studying those informational aspects of elections
that concern voters’ uncertainty about candidates’ qualifications. Other informational
issues, however, concern the possibility of the candidates’ uncertainty about each other’s
characteristics. For example, in the case of asymmetric campaign strength, candidates in
our model are informed of the value of the parameter ψ. If they only possess a prior belief
about this value, but do not know its realization, a sequential arrangement of elections
would give rise to learning on the part of the candidates. In a simultaneous organization,
on the other hand, no learning would take place. It is unclear how this kind of uncertainty
would affect our results.

One simplification in our model, whose relaxation, we believe, would not alter our
results in any fundamental way, is the assumption that all electoral districts are of equal
size. The fact that New Hampshire, as the first primary state, is small compared to later
states still has interesting implications. Because of the extensive campaign effort that
arises in early primaries, placing small states at the beginning of the sequence appears to
provide further evidence that the observed organization is indeed chosen in order to keep
overall campaign costs as small as possible.

An interesting but analytically rather challenging extension of our model would be to
consider candidates who face additional hard budget constraints. That is, they maximize
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the same objective function as in our model, but cannot spend more than a certain amount
of resources.21 Our result that total expected campaign spending is lower in a sequential
structure than a simultaneous one is still very likely to hold in this new setting. More
interesting, will expenditures be lower or higher, if players face hard budget constraints?
The answer to this question might not be as obvious and clearcut as it appears. Che and
Gale (2000) have shown that spending limits in lobbying models might actually increase
the players’ equilibrium spending if their valuations are asymmetric. Also, if players are
asymmetric with respect to their hard budget constraint (and otherwise equal), will the
candidate who has the advantage win “almost always” provided that there are many
districts, as in section 5? Primary candidates often differ substantially in their spending
possibilities—an example is the 2000 Republican nomination race, in which John McCain
was victorious in New Hampshire, but eventually lost the race to George W. Bush who
had considerably higher campaign funds. These interesting questions are left for further
research.

21The reason why the sequential case is difficult to analyze with this extension is that the number of

victories up to a certain district does not uniquely capture the state of the game, but rather the sequence,

in which victories were achieved, matters. Consider the 3 district case. With symmetric candidates, both

of them will spend the same in the first district, while in the second district they will spend different

amounts. If the budget constraint is binding in the third district for the candidate who has less money,

then candidates will spend different amounts in the third district. Hence, it matters for the spending in

the third district whether candidate 1 or 2 won the first district.
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Appendix A: Proofs

The order of proofs is as follows. First, we establish some technical results, to be used later. Then
we prove Propositions 2, 1, and 3. The reason for this order is that the proof of Proposition 1
depends on Proposition 2.

Preliminaries

Lemma 1. Suppose player 2 plays a (pure or mixed) uniform strategy. Then, any non-uniform
pure strategy x = (x1, x2, . . . , xJ) is dominated for player 1 by the uniform strategy with the same
total expenditure, X = (

P
xi

J ,
P
xi

J , . . . ,
P
xi

J ).

Lemma 2. If Λ is a symmetric UCE in Gsim
J , then inf supp(Λ) > 0.

Lemma 3. The function F , as defined in (3) satisfies the following monotone likelihood ratio
property:

F (x′, y′)
F (x, y′)

>
F (x′, y)
F (x, y)

for all x′ > x and y′ > y.

Lemma 4. Suppose J > K(α). For each x > 0 there exists ϑ (x) > 1 such that

F (x′, x)
F (x, x)

>
x′

x
,

for all x′ ∈ (x, ϑ(x)x). Furthermore, let Λ be a symmetric UCE. There exists a constant ϑ̄ > 1
such that ϑ(x) ≥ ϑ̄ for all x ∈ supp(Λ).

Proof of Lemma 1. Fix player 2’s strategy to be a uniform pure strategy with yj = y for all j.
Suppose that player 1 plays, with positive probability, some pure strategy with xk > xl for some
districts k and l. Consider a deviation which leaves expenditures in all other districts unchanged
and equates the campaign levels in k and l so that total expenditures do not change:

x̃k = x̃l = (xk + xl)/2 ≡ x̃.

Let Qn, n ∈ {0, 1, 2}, denote the probability that player 1 wins exactly n districts among the two
districts k and l, when using strategy x. Similarly, let Q̃n denote the probability of winning exactly
n districts among the two districts k and l, when using strategy x̃. Finally, let Pn, n ∈ {0, . . . , J−2},
be the probability of winning exactly n out of the remaining J − 2 districts.

Player 1’s gain from changing to the new strategy is

∆Eu1 = E

{
(Q̃1 + Q̃2 −Q1 −Q2)PJ∗−1 + (Q̃2 −Q2)PJ∗−2

}
,

where the expectation is taken with respect to y. Since PJ∗−1 and PJ∗−2 do not change when

switching from strategy x to x̃, a sufficient condition for ∆Eu1 to be positive is that both E
{

(Q̃1+

Q̃2 −Q1 −Q2)
}
≥ 0 and E

{
Q̃2 −Q2

}
≥ 0.

Since xα is concave due to α ∈ (0, 1], we have x̃α−xαl > xαk − x̃α and (x̃α)2 > xαkx
α
l . Therefore,

E(Q̃1 + Q̃2 −Q1 −Q2) = E

(
y2α y

α(x̃α − xαk + x̃α − xαl ) + (x̃α)2 − xαkx
α
l

(x̃α + yα)(x̃α + yα)(xαk + yα)(xαl + yα)

)
> 0

and

E(Q̃2 −Q2) = E

(
yαx̃α

xαk (x̃αl − xαl )− xαl (xαk − x̃αk )
(x̃αk + yα)(x̃αl + yα)(xαk + yα)(xαl + yα)

)
> 0.
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This shows that strategy x̃ dominates strategy x.
To prove that the uniform strategy X dominates x,consider the following algorithm: Step 1:

Start with x, and select the two districts with the greatest and the smallest spending (say, k and l).
Step 2: Replace the spending levels in these districts by their mean, (xk+xl)/2; by the arguments
presented above, this strategy will be better for player 1 than the initial strategy. Step 3: If the
new strategy profile (x̃) is not yet uniform, go back to Step 1 and repeat the procedure for the
two districts with the greatest and the smallest spending level under x̃. Clearly, this algorithm
converges to the uniform strategy X, and since utility increases with every cycle, it is proved that
the uniform strategy X dominates x.

Finally, since the preceding argument was independent of y, we conclude that strategy x is
dominated by the strategy X also when player 2 randomizes over pure uniform strategies.

Proof of Lemma 2. First, observe that 0 cannot be played with positive probability, because oth-
erwise, a player could increase his expected payoff strictly by shifting weight from 0 to a sufficiently
small, but positive number a. Second, if 0 is not played with positive probability, then

∂Eu (x | Λ)
∂x

∣∣∣∣
x=0

= −J < 0,

so that, by continuity, positive campaign levels very close to zero are dominated by a zero bid.
Hence, inf supp(Λ) > 0.

Proof of Lemma 3. We have

F (x′, y)
F (x, y)

=
F (x, y) +

∫ x′
x
Fx(t, y)dt

F (x, y)
= 1 +

∫ x′

x

Fx(t, y)
F (x, y)

dt.

Similarly,
F(x′,y′)
F (x,y′) = 1 +

∫ x′
x

Fx(t,y′)
F (x,y′) dt. Thus, it is sufficient to show that Fx/F increases in y, or

equivalently
FxyF − FxFy > 0. (13)

Differentiating F with respect to x, we obtain

Fx =
J∑

k=J∗

(
J

k

) [
αk

xαk−1yα(J−k)

(xα + yα)J
− Jαxα−1 xαkyα(J−k)

(xα + yα)J+1

]

=
α

(xα + yα)J+1

J∑
k=J∗

(
J

k

) [
kxαk−1yα(J−k+1) − (J − k)xα(k+1)−1yα(J−k)

]

=
α

(xα + yα)J+1

[(
J

J∗

)
J∗xαJ

∗−1yα(J−J∗+1) −
(
J

J∗

)
(J − J∗)xα(J∗+1)−1yα(J−J∗)

+
(

J

J∗ + 1

)
(J∗ + 1)xα(J∗+1)−1yα(J−J∗) −

(
J

J∗ + 1

)
(J − J∗ − 1)xα(J∗+2)−1yα(J−J∗−1)

...

+
(
J

J

)
JxαJ−1yαJ

∗
− 0

]
=

αJ∗

(xα + yα)J+1

(
J

J∗

)
xαJ

∗−1yαJ
∗
. (14)

(The second and third term in the summation cancel out, the fourth and fifth, etc.) In a similar
way, we get

Fy = − αJ∗

(xα + yα)J+1

(
J

J∗

)
xαJ

∗
yαJ

∗−1. (15)
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Differentiating (14) with respect to y yields

Fxy =
(αJ∗)2

(xα + yα)J+2

(
J

J∗

)
(xy)αJ

∗−1 (xα − yα) . (16)

Using (14)–(16), we can rewrite (13) as

FxyF − FxFy =
(αJ∗)2

(xα + yα)J+2

(
J

J∗

)
(xy)αJ

∗−1 (xα − yα) ·
J∑

k=J∗

(
J

k

)
xαkyα(J−k)

(xα + yα)J

+
αJ∗

(xα + yα)J+1

(
J

J∗

)
xαJ

∗−1yαJ
∗
· αJ∗

(xα + yα)J+1

(
J

J∗

)
xαJ

∗
yαJ

∗−1.

Collecting common terms, this expression reduces to

(αJ∗)2

(xα + yα)2(J+1)

(
J

J∗

)
(xy)αJ

∗−1

[
(xα − yα) ·

J∑
k=J∗

(
J

k

)
xαkyα(J−k) +

(
J

J∗

)
xαJ

∗
yαJ

∗

]

=
(αJ∗)2

(xα + yα)2(J+1)

(
J

J∗

)
(xy)αJ

∗−1
xα(J+1) > 0.

Proof of Lemma 4. To prove the first statement, rewrite the inequality in the Lemma as

F (x′, x)
x′

>
F (x, x)
x

.

We will prove that
∂

∂x

F (x, y)
x

∣∣∣∣
y=x

> 0. (17)

From this, the result follows because the left-hand side of (17) is continuous in x for all x > 0. To
prove (17), we show that xFx (x, x)− F (x, x) > 0. Using (14) and F (x, x) = 1

2 , we get

xFx (x, x)− F (x, x) =
αJ∗

(2xα)J+1

(
J

J∗

)
x2αJ∗ − 1

2

= 2−(J+1) αJ !
(J∗ − 1)!2

− 1
2
> 0,

which is true, because αJ!
(J∗−1)!2 > 2J by Lemma 1 for J > K(α).

To prove the second statement, recall that inf supp (Λ) > 0 by Lemma 1, and x /∈ supp (Λ)
if x > 1. Hence, there exists a compact set W ⊂ (0, 1] such that supp (Λ) ⊆ W , which bounds
∂
∂x

F (x,y)
x

∣∣∣
y=x

away from zero on supp (Λ). This implies that ϑ (x) can be chosen to be bounded

away from 1 for all x ∈ supp (Λ).

Proof of Proposition 2

We first show that the right hand side of inequality (6),

2J

J
(

J−1
(J−1)/2

) =
2J

(
J−1

2 !
)2

J !
(18)
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is decreasing in J and goes to 0 for J →∞. Going from J to J+2 multiplies the numerator of the
right hand side of (18) by 4

(
J+1

2

)2
= (J + 1)2, and multiplies the denominator by (J + 1)(J + 2).

Hence, the value of the fraction decreases.
For part (a) of the Proposition, the main argument for existence is in the text. It remains

to be shown that no deviation from the solution in (5) is profitable. Differentiating the objective
function (2) with respect to x gives

∂u1(x, y)
∂x

=
(
J − 1
J−1

2

) (
xαyα

(xα + yα)2

) J−1
2

· αyαxα−1

(xα + yα)2
− 1. (19)

(2) is not globally concave in x. However, differentiating (19) a second time yields, after simplifi-
cation,

xα
J+1

2 −2yα
J+1

2

[
αJ+1

2 − 1− (J + 1) xα

xα+yα

]
(xα + yα)J−1

.

The term [
α
J + 1

2
− 1− (J + 1)

xα

xα + yα

]
is decreasing in x. For given y, the optimal x is therefore either zero, or the unique value so that
(19) vanishes. This shows that we only need to check for a deviation from (5) to zero. Since x = 0
yields a zero payoff against any y > 0, such a deviation is not profitable as long as (6) holds.

For part (b), the argument why a pure strategy equilibrium does not exist for J > K(α) is
given in the text. We now show that a mixed strategy symmetric UCE exists. Consider first
the game that arises when we restrict players to use only uniform strategies. This game has a
symmetric Nash equilibrium (hence a SUCE), because v1 and v2 satisfy the sufficient conditions
for equilibrium existence in discontinuous games in Dasgupta and Maskin (1986). It remains to be
shown that this SUCE of the restricted game is also an equilibrium of the original game, in which
players are free to choose non-uniform strategies as well. By Lemma 1, if player 1 (resp. 2) plays
a uniform strategy, then any non-uniform strategy is dominated for player 2 (resp. 1). If there is
no profitable deviation from the equilibrium candidate using a uniform strategy, there also cannot
be a profitable deviation using non-uniform strategies. The SUCE is therefore also an equilibrium
of the original game.

We now prove that the rent is completely dissipated in a mixed strategy SUCE. Let x̄ =
inf{Λ(x) > 0} > 0. Assume that Λ has a density λ at x̄, i.e. Prob(x = x̄) = 0. This is just an
assumption for convenience of notation; we will indicate in footnotes how to adjust the proof if Λ
has an atom at x̄. Since the player is willing to play x̄ in equilibrium, it must yield utility u:∫ 1

x̄

F (x̄, x)dΛ(x)− x̄ = u

Splitting the integral on the left hand side, we get22

λ(x̄)εF (x̄, x̄) +
∫ 1

x̄+ε

F (x̄, x)dΛ(x)− x̄+O(ε2) = u

where O(ε2) is a second order term ignored in the following.23 Hence, we can solve for

λ(x̄)ε =
u+ x̄−

∫ 1

x̄+ε
F (x̄, x)dΛ(x)

F (x̄, x̄)
(20)

22If Λ has an atom of size λ0 at x̄, we would have to replace λ(x̄)ε by λ0 in the following formula.
23When we choose ε sufficiently small, the first order effects derived in the following will dominate any

second order effect.
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Playing x̄+ ε cannot give a candidate a higher utility than u, so again by splitting the integral and
ignoring second order effects we have

λ(x̄)εF (x̄+ ε, x̄) +
∫ 1

x̄+ε

F (x̄+ ε, x)dΛ(x)− (x̄+ ε) ≤ u (21)

Substituting from (20) and rearranging, we have∫ 1

x̄+ε

[
F (x̄+ ε, x)− F (x̄+ ε, x̄)

F (x̄, x̄)
F (x̄, x)

]
dΛ(x) ≤ u+ x̄+ ε− F (x̄+ ε, x̄)

F (x̄, x̄)
(u+ x̄) (22)

The integrand on the left hand side is positive by Lemma 3, and the right hand side is smaller
than − εu

x̄ (using Lemma 4), which is negative and a first order term if u > 0. This shows that
(22) cannot hold for positive u, and so u = 0.

Proof of Proposition 1

We organize the proof in a sequence of three steps. First, we show that the symmetric pure strategy
UCE is the only pure strategy equilibrium. Next, we show that when J > K(α) all equilibria are
mixed strategy UCE, and all have the same payoffs as the symmetric mixed strategy SUCE, namely
zero. Step 2 proves the result for J > K(α). Finally, we show that when J ≤ K(α), no mixed
strategy equilibria exist. Together with Step 1, this establishes the result for J ≤ K(α).

We use the following notation: Given a (not necessarily uniform) strategy p ∈ ∆ (where ∆
is the unit simplex), let E(p) denote the expected expenditure of strategy p. Given a strategy
profile (p, q) ∈ ∆ × ∆ we let F (p, q) be the probability of winning when using p against q (so
F (p, q) = 1− F (q, p), and F (p, p) = 1

2 by symmetry). Further, we let u(p, q) = F (p, q)− E(p) be
the expected payoff from playing p against q (so that u(p, q) + u(q, p) = 1− E(p)− E(q)).

Step 1. Consider a pure equilibrium with spending profiles (x, y); these profiles need not be
uniform. Fix some district j and let the spending profile in the other districts be denoted x−j , y−j .
Given (x−j , y−j), let P̃j be the probability that district j is pivotal. Note that this probability is
the same for both candidates. Since (x, y) is an equilibrium, it must be true that xj maximizes

xαj
xαj + yαj

P̃j − xj ,

which yields the first-order condition

αxα−1
j yαj(

xαj + yαj
)2 P̃j − 1 = 0. (23)

A similar first-order condition is obtained for candidate 2:

αyα−1
j xαj(

xαj + yαj
)2 P̃j − 1 = 0. (24)

To satisfy (23) and (24) simultaneously, we need xj = yj , so that district j is won with equal
probability by either candidate, regardless of the spending profile in the other districts. Since this
reasoning can be applied to all districts, each district is won with probability 1/2, and consequently

P̃j = P̃ =
(
J − 1
J∗ − 1

) (
1
2

)J−1

∀j.

Equations (23) and (24) can now be solved uniquely for

xj = yj =
1
4
α

(
J − 1
J∗ − 1

)
P̃ ,
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which coincides with (5). Hence, the only pure strategy equilibria must be symmetric UCE.

Step 2. Focus now on J > K(α). Condition (6) together with the argument in Step 1 implies
that only mixed strategy equilibria are possible. Suppose (p, q) ∈ ∆ × ∆ is some equilibrium of
Gsim
J , not necessarily symmetric and not necessarily in uniform campaign strategies. Notice that

(q, p) must then be an equilibrium with reversed payoffs. We will show that p and q are uniform
campaign strategies, and that u(p, q) = u(q, p) = 0.

Let (x, x) ∈ ∆ ×∆ be a uniform SUCE, which exists as shown in Proposition 2 (b). We also
know from Proposition 2 that u(x, x) = 0, and since F (x, x) = 1

2 it must be that E(x) = 1
2 . We

now gather a number of facts. Since (p, q) is an equilibrium, it is not beneficial for player 1 to
deviate to q, or for player 2 to deviate to p:

u(p, q) ≥ 1
2
− E(q) = u(q, q) and u(q, p) ≥ 1

2
− E(p) = u(p, p). (25)

Since u(p, q) + u(q, p) = 1− E(p)− E(q), the conditions in (25) hold with equality:

u(p, q) =
1
2
− E(q) = u(q, q) and u(q, p) =

1
2
− E(p) = u(p, p). (26)

Hence, q is an optimal response to q and p is an optimal response to p, so that (p, p) and (q, q) are
also equilibria.

Also, we know that in equilibrium (p, q), it is not beneficial for player 1 or 2 to deviate to x:

u(p, q) ≥ F (x, q)− 1
2

= u(x, q) and u(q, p) ≥ F (x, p)− 1
2

= u(x, p). (27)

Finally, since (x, x) is an equilibrium, it is not beneficial for either player to deviate to q or p:

u(x, x) = 0 ≥ F (q, x)− E(q) = u(q, x) and u(x, x) = 0 ≥ F (p, x)− E(p) = u(p, x). (28)

Using (26) in (27), we obtain the following conditions:

1− E(q) ≥ F (x, q) and 1− E(p) ≥ F (x, p). (29)

Using (28), together with the fact that F (q, x) = 1− F (x, q), yields

1− E(q) ≤ F (x, q) and 1− E(p) ≤ F (x, p). (30)

Hence, the weak inequalities in (29) and (30) must hold with equality:

1− E(q) = F (x, q) and 1− E(p) = F (x, p). (31)

Now consider the strategy profile (q, x). Player 1’s expected payoff in (q, x) is

u(q, x) = F (q, x)− E(q) = 1− F (x, q)− E(q) = 0, (32)

by (31). Since x is a uniform campaign strategy and u(x, x) = 0, if q was not uniform, then
u(q, x) < 0 by Lemma 1, so q must be uniform. Similarly, p must be uniform. The four profiles
(p, q), (q, p), (p, p), and (q, q) are therefore UCE. Since (q, q) and (p, p) are symmetric UCE in mixed
strategies, they must involve full rent dissipation by Proposition 2 (b): u(p, p) = u(q, q) = 0. By
(26), u(p, q) = 0, and since (p, q) is an arbitrary equilibrium, we conclude that, when J > K(α),
every equilibrium in Gsim

J must be a UCE in mixed strategies and involve full rent dissipation.

Step 3. Now consider the case J ≤ K(α). We need to show that the symmetric pure strategy
UCE is the only equilibrium. We already know (from Step 1) that it is the only pure equilibrium.
Suppose that a mixed strategy equilibrium (p, q) exists. Repeating the arguments in Step 2, (p, p)
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must then also be a mixed equilibrium (but since J ≤ K(α) we cannot conclude that u(p, p) = 0.)
For (x, x) and (p, p) to be equilibria, we need

u(x, x) =
1
2
−E(x) ≥ F (p, x)−E(p) = u(p, x) and u(p, p) =

1
2
−E(p) ≥ F (x, p)−E(x) = u(x, p).

(33)
Adding both conditions in (33), F (p, x) = 1 − F (x, p) and substituting F (x, p) = 1 − F (p, x), we
have E(p) + E(x) ≥ E(p) + E(x). Thus, (33) must hold with equality. This implies that mixed
strategy p is a best reply to uniform pure strategy x, and by Lemma 1, p must be uniform. But
since J ≤ K(α), the same argument as given in the proof of Proposition 2 (a) shows that p must
be a pure strategy. The same holds for q, and by Step 1 p = q = x.

Proof of Proposition 3

The main arguments are in the text. It remains to be shown that

(i) vj,k ≥ vj,k−1

(ii) vj,k ≥ vj+1,k

Let ∆j+1,k ≡ vj+1,k+1 − vj+1,k. Write the continuation value at state (j, k) as

vj,k = max
x≥0

(vj+1,k + f(x, y)∆j+1,k − x) , (34)

letting vj,k = 1 for all j ≥ J∗ and k ≥ J∗, and vj,k = 0 for all j ≥ J∗ and k ≤ j − J∗.
We will prove (i) by induction on j. Obviously (i) is true for j = J +1 and all k, as vJ+1,k = 1

for k ≥ J∗, and vJ+1,k = 0 for k < J∗. Assuming (i) is true for some j + 1, we have ∆j+1,k ≥ 0.
We will now show that (i) also holds for j. Since x = 0 is a feasible choice on the right hand side
of (34),

vj,k ≥ vj+1,k + f(0, y)∆j+1,k ≥ vj+1,k. (35)

Next, observe that for all x ≥ 0 we have

vj+1,k−1 + f(x, y)∆j+1,k−1 − x ≤ vj+1,k−1 + ∆j+1,k−1 = vj+1,k.

For the maximum of the left-hand side taken over x ≥ 0, it must therefore be true that

vj,k−1 ≤ vj+1,k (36)

Combining (35) and (36), we obtain that vj,k ≥ vj+1,k ≥ vj,k−1, so that vj,k ≥ vj,k−1, proving
(i) for j. This completes the proof by induction for (i), and (ii) then follows immediately from
inequality (35).

Proof of Proposition 4

Let X = (1−ψ)Jx and Y = (1−ψ)Jy be the total expenditures of candidate 1 and 2, respectively.
Let the players’ equilibrium strategies be given by the distributions Φ1 over X and Φ2 over Y
(with densities φ1 and φ2). The same arguments as in symmetric all-pay auctions (see Baye et al.
(1990)) imply that players’ equilibrium strategies cannot have atoms—except possibly at 0 for a
candidate with an ex ante expected payoff of 0—, and that Φ1 and Φ2 must be strictly increasing
on [0, (1− 2ψ)1/α] and [0, 1], respectively. For every Y ∈ [0, 1], player 2’s expected payoff is

Eu2(Φ1, Y ) = Φ1((1− 2ψ)1/αY )− Y.

Taking first-order conditions, we have φ1(X) = (1 − 2ψ)−1/α on the interval [0, (1 − 2ψ)1/α].
Similarly, player 1’s expected payoff is

Eu1(X,Φ2) = Φ2((1− 2ψ)−1/αX)−X,
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and taking first-order conditions we get φ2(Y ) = (1 − 2ψ)1/α < 1 on (0, 1]. Thus there must be
an atom on 0 for player 2, so that Φ2(Y ) = (1− (1− 2ψ)1/α) + (1− 2ψ)1/αY for Y ∈ [0, 1]. Since
player 2 is willing to play an atom on 0, where he is certain to lose, his ex ante rent must be 0.
If player 1 chooses X = 0, he wins if and only if player 2 chooses Y = 0. This happens with
probability 1− (1− 2ψ)1/α. Therefore, 1− (1− 2ψ)1/α is player 1’s expected rent in equilibrium.
The equilibrium probability that player 1 wins the nomination is then

Prob[Y < X(1− 2ψ)−1/α] =
∫ (1−2ψ)1/α

0

∫ X(1−2ψ)−1/α

0

φ2(Y )dY φ1(X)dX

= 1− (1− 2ψ)1/α

2
.

This probability is greater than 1/2 and increasing in ψ, but it is always smaller than 1, even with
a very large number of electoral districts.

Proof of Proposition 6

We proceed analogous to the proof of Proposition 4. Let X = Jx and Y = Jy be the total
expenditures of candidate 1 and 2, respectively, and let Φ1 and Φ2 be the distributions of X and
Y , with densities φ1 and φ2. Player 2’s expected payoff is

Eu2(Φ1, Y ) = Φ1(Y/ψ)− Y.

Taking first-order conditions, we have φ1(X) = ψ on the interval [0, 1/ψ]. Similarly, player 1’s
expected payoff is

Eu1(X,Φ2) = Φ2(ψX)−X,

and taking first-order conditions we get φ2(Y ) = 1/ψ on (0, 1], with mass 1 − 1/ψ at zero. Since
player 2 is willing to play an atom on 0, where he is certain to lose, his ex ante rent must be 0.
If player 1 chooses X = 0, he wins if and only if player 2 chooses Y = 0. This happens with
probability 1−1/ψ, which then must be player 1’s expected rent in equilibrium, so total campaign
expenditures. The equilibrium probability that player 1 wins the nomination is then

Prob[Y < ψX] =
∫ 1/ψ

0

ψ − 1
ψ

+
∫ ψX

0

1
ψ
φ2(Y )dY φ1(X)dX

= 1− 1
2ψ

.

This probability is greater than 1/2 and increasing in ψ, but it is always smaller than 1, even with
a very large number of electoral districts.

Appendix B: Limit Behavior in Sequential Contests

In this section, we explore theoretically the equilibria in nomination races with many districts, i.e.
we examine the limit behavior of primary races as J becomes large. In particular, we are interested
in the issues of rent dissipation and momentum effects. As we have already argued in the main
text, it is difficult to characterize in closed form the equilibrium strategies in the sequential contest
when there are more than just a few elections. While a strategic momentum effect and a lower
payoff bound exists in our computations, an analytic proof is surprisingly difficult.

Here, we partly resolve these issues and focus on the asymptotics of the model as J →∞. We
consider only the case α = 1. First, we need some notation. In the primary race with J districts,
we let vJj,k and xJj,k be the continuation payoff and equilibrium expenditure in state (j, k). Consider
the continuation utility of a player who has won k of the first j − 1 elections. Since his opponent
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has won j − 1 − k elections, the first player has won k − (j − 1 − k) = 2k + 1 − j elections more
than his opponent.

Our main result can now be stated:

Proposition 7. Consider the sequential primary game for α = 1 as J →∞.

(i) The value of the game, vJ , does not converge to zero.

(ii) In every district, the front runner spends more than his opponent, and is thus more likely to
win another district. Formally, let i = 2k+ 1− j. If i > 0, then limJ→∞ xJi > limJ→∞ xJ−i.

The b-advantage game

To prove Proposition 7, we analyze a variant of our original game, called the b-advantage game:

Definition 2. Let b be a positive integer. A b-advantage game is defined as follows: The campaign
technology in each district is given by (1). District elections are held sequentially, and the game
ends if and only if a candidate has established a lead of b districts. The winner obtains a prize of
1, while the other candidate obtains a prize of zero.

The b-advantage game is motivated by the numerical results. As reported in the last section,
most campaign expenditures take place when both candidates are close together in terms of their
victories in previous districts. Once a candidate has secured an advantage of several victories, his
opponent spends almost no resources, so that securing further victories is very cheap for the front
runner. This is true even if there are still very many periods to go and the front runner’s advantage
is relatively small in comparison to J∗, the number of districts sufficient to secure overall victory.
The b-advantage game takes this story to the limit: Candidates compete until one of them has
secured b more victories than the other candidate. Once such a lead is established, the contest
ends.

The main reason for looking at the b-advantage game is that its stationary structure makes
it analytically simpler compared to the original model. A property of the b-advantage game that
we exploit in the following is that it has a Markov perfect equilibrium which is relatively easy to
characterize. For sufficiently large b, the equilibrium of the b-advantage game will be similar to
the equilibrium of the original game with large J : At those states where both games are defined,
spending levels will be similar. At states where only the original game is defined (i.e., where one
candidate has a lead of more than b districts), spending levels will be close to zero in the original
game, and the front runner wins the next district with a probability that is close to one.

To formalize this link between our original game and the b-advantage game, consider a sta-
tionary equilibrium in the b-advantage game, and let wbi be the continuation utility of a candidate
who has won i elections more than his competitor. We call i the state of the game; the initial
value of the game is wb0. Furthermore, let xbi be the campaign expenditure by the front runner in
state i. Recall that state j, k in the original game means that a candidate has won k out of j − 1
elections. Thus, the corresponding state in the b-advantage game is i = 2k + 1− j. We then have
the following result:

Lemma 5. Suppose α = 1. Suppose further that all vJj,k and xJj,k converge as J → ∞. The
b-advantage game has a unique Markov perfect equilibrium such for all j, k,

lim
J→∞

vJj,k = lim
b→∞

wb2k+1−j ,

and
lim
J→∞

xJj,k = lim
b→∞

xb2k+1−j .

Using Lemma 5, the following result proves Proposition 7:
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Proposition 8. Consider the b-advantage game for α = 1.

(i) As b→∞, limb→∞ wb0 >
2
√

33−10
27
√

33−147
≈ 0.18377.

(ii) If b > i > 0, then xbi > xb−i.

The remainder of the Appendix is devoted to proving Lemma 5 and Proposition 8. The
following result will be used in both proofs. Consider a Markov perfect equilibrium of the b-
advantage game.

Lemma 6. Let i < b′ < b. The equilibrium winning probabilities in state i are equal in the
b-advantage game and the b′-advantage game.

Proof. For given b, the continuation values in the b-advantage game are linked by

wbi = wbi−1 + (wbi+1 − wbi−1)
(xbi )

α

(xbi )α + (ybi )α
− xbi for all i ≥ 0, (37)

wb−i = wb−(i+1) + (wb−(i−1) − wb−(i+1))
(ybi )

α

(xbi )α + (ybi )α
− ybi for all i ≥ 0, (38)

and the terminal conditions wbb = 1 and wb−b = 0. From the two first order conditions on stage i,
we have

xbi
ybi

=
wbi+1 − wbi−1

wb−(i−1) − w−(i+1)

. (39)

Now suppose that {wbi}i=−b...b are the continuation values for a b-advantage game, and let b′ < b.
We claim that wb

′

i = γ + δwbi , where γ and δ solve

wb
′

b′ = γ + δwbb′ = 1

wb
′

−b′ = γ + δwb−b′ = 0.

It is easy to see that xb′
i

yb′
i

= δxb
i

δyb
i

will be unchanged by this linear transformation, and then (37) and

(38) continue to hold for wb
′

i = γ + δwbi .

For example, the probability that the winner of the first district wins the second election is
the same, whether b = 2 or b = 35. The reason for this result is that the continuation utilities of
two different b-advantage games are linear transformations of each other (i.e., wb

′

i = γ+ δwbi ), and
so players’ expenditures in state i in the b′-advantage game are just δ times their expenditures in
the b-advantage game; hence, the expenditure ratio is unchanged. For instance, suppose that we
are interested in the probability that, in the original game, the winner of the first district wins in
the second district as well. If J is large, then a good approximation of that probability can be
obtained by solving the 2-advantage game.

Proof of Proposition 8

We first consider the issue of rent dissipation in primaries with many districts. In the following,
we explicitly calculate a lower bound for candidates’ ex ante rent in the b-advantage game, which
turns out to be close to our numerical result for the original game. We need two intermediate
results:

Claim 1. In any b-advantage game with α = 1, wi+1 > 1− 2w−i.
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Proof. Let yi = x−i. If player 1 is in state i, he solves

max
xi

xi
xi + yi

wi+1 +
yi

xi + yi
wi−1 +−xi.

Similarly, player 2 solves

max
yi

yi
xi + yi

w−(i−1) +
xi

xi + yi
w−(i+1) − yi.

Solving the two first order conditions, we get (39). Using (39) in the first order conditions yields

xi =
(w−(i−1) − w−(i+1))(wi+1 − wi−1)2

[(wi+1 − wi−1) + (w−(i−1) − w−(i+1))]2
(40)

and

yi =
(w−(i−1) − w−(i+1))2(wi+1 − wi−1)

[(wi+1 − wi−1) + (w−(i−1) − w−(i+1))]2
(41)

Substituting back in the objective function of player 1, we find

wi =
wi+1 − wi−1

[(w−(i−1) − w−(i+1)) + (wi+1 − wi−1))]
wi+1 +

w−(i−1) − w−(i+1)

[(w−(i−1) − w−(i+1)) + (wi+1 − wi−1))]
wi−1

−
(w−(i−1) − w−(i+1))(wi+1 − wi−1)2

[(wi+1 − wi−1) + (w−(i−1) − w−(i+1))]2

The difference between wi+1 and wi is therefore

wi+1 − wi =
(wi+1 − wi−1)(w−(i−1) − w−(i+1))

[(w−(i−1) − w−(i+1)) + (wi+1 − wi−1))]
+

(wi+1 − wi−1)2(w−(i−1) − w−(i+1))
[(w−(i−1) − w−(i+1)) + (wi+1 − wi−1))]2

< 2(w−(i−1) − w−(i+1))

Hence,

w2 − w1 ≤ 2(w0 − w−1)

w3 − w2 ≤ 2(w−1 − w−2)

...

wb − wb−1 ≤ 2(w−(b−2) − w−(b−1))

Summing up all inequalities starting from the ith one, we have wb − wi = 1 − wi < 2(w−(i−1) −
w−(b−1)) < 2w−(i−1), or wi > 1− 2w−(i−1). Replacing i with i+ 1, we have the desired inequality.

Claim 2. The 2-advantage game with α = 1 has the following continuation values:

w∗0 =
√

33− 5
4

w∗−1 =
(
√

33− 5)3

64

w∗1 =
4
27

523503
√

33− 3007199
(9
√

33− 49)3
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Proof. Now observe that from (37), (38), (40), and (41), the following conditions must hold in the
2-advantage game: w−2 = 0, w2 = 1, and

w0 =
1
2
w1 +

1
2
w−1 −

w1 − w−1

4
=

1
4
w1 +

3
4
w−1,

w1 =
w2 − w0

w2 − w−2
w2 +

w0 − w−2

w2 − w−2
w0 −

(w2 − w0)2(w0 − w−2)
w2 − w−2

= 1− 2w0 + 3(w0)2 − (w0)3,

and

w−1 =
w2 − w0

w2 − w−2
w−2 +

w0 − w−2

w2 − w−2
w0 −

(w2 − w0)(w0 − w−2)2

w2 − w−2
= (w0)3

These equations have the solutions given in the statement of the Lemma.

From the proof of Lemma 6, we know that for any given b, wbi can be written δ+ γw2
i , for any

i (γ and δ depend on b). Since all wbi ≥ 0, wb−2 = γw2
−2 + δ = δ ≥ 0, δ must be nonnegative. From

Lemma 1 with i = 1, we have wb2 = γw2
2 + δ ≥ 1− 2[γw2

−1 + δ] and hence γ(1 + 2w∗−1) + 3δ ≥ 1.
Therefore, given b, wb0 must be at least as large as the solution of the following constrained

optimization problem:

min
γ,δ

γw∗0 + δ, s.t. δ ≥ 0, γ(1 + 2w∗−1) + 3δ ≥ 1.

This problem has the solution δ∗ = 0, γ∗ = (1 + 2w∗−1)
−1, and hence a lower bound for wb0 is given

by

wb0 ≥ γ∗w∗0 =
2
√

33− 10
27
√

33− 147
≈ 0.18377.

(Going through the same steps, but using the 3-advantage game, one gets a slightly better approx-
imation of 0.183847, which is already virtually indistinguishable from the numerical results.)

We now turn to the “momentum” effect in the b-advantage game: We show that the front
runner is more likely to achieve another victory than his opponent. We fix b and drop the b

subscript. For all i, the following inequality must hold:

wi + w−i < wi+1 + w−(i+1). (42)

The argument is as follows: wi+w−i is equal to the prize, 1, minus the expected future expenditures
by both candidates; the latter can be split into the expected expenditures that will be incurred
until state i+ 1 is reached for the first time, plus the expected expenditures following that event.
Similarly, wi+1 +w−(i+1) is equal to the prize minus the expected expenditures by both candidates
following state i + 1. Hence, the difference between wi+1 + w−(i+1) and wi + w−i is equal to the
expected expenditures to be made between the time when state i is reached and the time when
state i+ 1 is reached for the first time, and is strictly positive. Using (42) in lagged form, we have

wi−1 + w−(i−1) < wi + w−i,

and therefore wi+1 − wi−1 > w−(i−1) − w−(i+1). From (39) we then have xi > yi, and the player
who has an advantage will therefore win the next district with a probability that is greater than
1/2.

Proof of Lemma 5

Existence of a MPE in the b-advantage is easy to see: If one player follows a stationary strat-
egy, there exists a stationary best response for the other. Since all subgames are reached (it is
never optimal to spend zero), the stationary equilibrium is also subgame perfect. Now denote
limb→∞ wbi = w∞i and limJ→∞ vJj,k = v∞j,k (suppose these limits exist). We claim that v∞j,k = w∞i
whenever i = 2k + 1− j.
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Suppose that v∞j,k = v∞j′,k′ if 2k+1− j = 2k′+1− j′, and call this value νi (i = 2k+1− j). Fix
any b, and consider the continuation payoffs in the initial stages of a long original game, at those
nodes where no candidate has achieved an advantage of more than b districts over his opponent.
These continuation payoffs can now be interpreted as those of a modified b-advantage game with
payoffs νb for the first candidate to reach an advantage of b districts, and ν−b for the loser.

We know from the proof of Lemma 6 that the continuation payoffs in all b advantage games
are linear transformations of each other, so that we must have

νi = γ + δw∞i

The claim is that γ = 0 and δ = 1. Note first that δ ≥ 0, since it must be at least weakly
better to win more districts. Since limi→−∞ νi = 0 (i.e., if the disadvantage becomes too large,
the continuation utility goes to zero), and limi→−∞ νi = γ + δ · 0 = γ, γ must be equal to zero.

To see that it is not possible that δ 6= 1, note that, at each node, the expenditures in the limit
of the original game are δ times the corresponding expenditures in the limit of the b−advantage
game. Since the transition probabilities between two nodes are the same for all b-advantage games
(by Lemma 6, this implies that total expected spending in the limit of the original game is δ times
the spending in the limit of the b-advantage games. If δ < 1, then the candidates spend, in the
limit of a very large primary game, in each district only δ times what they spend in the b-advantage
game (for b→∞). Since candidates are symmetric at the beginning of the game,

ν0 =
1− expected total campaign spending

2
.

Hence, if δ < 1, then ν0 > w∞0 , since expected campaign spending is lower than in the limit of
the b−advantage game. However, since ν0 = δw∞0 < w∞0 , this leads to a contradiction. (Similarly,
assuming δ > 1 also leads to a contradiction.)

Hence, νi = w∞i for all i, and thus v∞j,k = w∞i whenever i = 2k + 1 − j. This proves part (i)
of the Proposition. Since the continuation values of the original game converge to those of the
b-advantage game when both J and b become large, strategies converge as well, which establishes
(ii).
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