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Abstract

The low representation of female workers in elite jobs is sometimes attributed to

a tail effect: If the human capital distribution exhibits less variation among females

than among males, then even with comparable average human capital there will

be fewer females in the right tail than males. This paper offers an explanation

for why the human capital distribution might have this property. We show that

the belief that the female human capital distribution has a lower variance than the

male distribution can be self-fulfilling, in that it provides individuals with incentives

to invest in human capital such that the resulting distribution exhibits exactly this

characteristic. If this happens, fewer females are employed in high-end jobs (a “glass

ceiling” effect). The average productivity of female workers may at the same time

be higher than that of male workers.
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1 Introduction

Job applicants may be treated differently by employers based on their race, gender, or

other group membership—even if they are similar in characteristics that are more di-

rectly related to their skills, such as their grades. This behavior is rational for employers

if an individual’s true qualification for a job cannot be perfectly observed and groups

differ in the average qualification of their members. In this situation, group membership

conveys statistical information about an individual’s qualifications, and economists use

the term statistical discrimination to describe the resulting differential treatment of in-

dividuals based on the group they belong to. In seminal contributions, Arrow (1973),

and later Coate and Loury (1993), demonstrate that the inter-group differences that

cause statistical discrimination can also be the result of statistical discrimination: Two

ex ante identical groups can end up with different average skills if the prospect of dis-

crimination in the labor market discourages one group from investing in their skills. In

other words, differences in average qualifications across groups can become self-fulfilling

expectations—an idea which has had a profound impact on economists’ understanding

of labor market inequalities.1

In this paper, we extend the self-fulfilling expectations model of statistical discrim-

ination from the first to the second moment of the skill distribution. We show that

the same mechanism that can explain differences in means across populations can also

explain differences in variance—a phenomenon we call second-order statistical discrimi-

nation. To motivate this exercise, consider the question why fewer women than men are

employed in high-end jobs in business, science, or engineering. One hypothesis is that

women are less able than men in these fields, on average. A second hypothesis holds

that men and women are similarly able on average, but that the distribution of ability

has a higher variance among men than among women. Fewer women than men are then

located in the right tail of the ability distribution, which is the relevant region for high-

end jobs.2 This hypothesis raises the question: Why would the ability distribution be

more variable among men than among women? The notion of second-order statistical

discrimination explored in this paper offers a possible explanation.3

1Most importantly, in order to reduce labor market inequalities arising from (self-fulfilling) statisti-
cal discrimination, different policies are required than if discrimination is merely taste-based. While free
labor markets tend to self-correct toward a non-discriminatory state in the latter case (see Becker 1957),
government intervention such as affirmative action policies can be required in case of statistical discrim-
ination. For a thorough survey of the literature of statistical discrimination and policy responses to it,
see Fang and Moro (2011).

2The dispersion hypothesis was famously put into the spotlight when former Harvard president Larry
Summers made the following remarks at an NBER conference, for which he was later criticized by some
colleagues: “It does appear that on many different human attributes [...] there is relatively clear evidence
that, whatever the difference in means, which can be debated, there is a difference in the variability of a
male and a female population. [...] If one is talking about people who are three-and-a-half, four standard
deviations above the mean, even small differences in standard deviation will translate into very large
differences in the available pool substantially out” (Summers 2005).

3There also exists an alternative, biological explanation of second-moment differences in the male and
female human capital distribution (see Rubin and Paul 1979; Browne 1998; Browne 2006, and references
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Our model can be summarized as follows. An individual’s final ability, or human

capital, is the product of his or her innate ability as well as a costly personal investment.

Neither an individual’s innate ability, nor the investment, nor the resulting final human

capital are directly observable. Suppose, now, that innate ability follows the same distri-

bution in both men and women, but that the individuals’ investment decisions result in

a human capital distribution that has a higher variance among men than among women.

If employers observe an imperfect signal of each individual’s human capital, then a low

signal from a male applicant must indicate relatively low human capital, compared to

the same signal from a female applicant. Similarly, a high signal from a male applicant

indicates high human capital, compared to the same signal from a female applicant. In

assigning workers to jobs, employers will therefore discriminate against men with rela-

tively low signals, and at the same time against women with relatively high signals. The

first effect results in a “sticky floor” for men, and the second in a “glass ceiling” for

women. We show that this pattern of discrimination discourages women of high ability,

as well as men of low ability, from investing into human capital. The resulting human

capital distribution is then more compressed among women than among men, as was

assumed initially, yielding an overall equilibrium.4

An important implication of this mechanism is that, while conventional first-order

statistical discrimination has a uniform impact on all members of a group, second-order

statistical discrimination has differential impact on different members of the same group.

In other words, if two individuals from two groups happen to have identical signals, un-

der first-order statistical discrimination the individual from the advantaged (i.e., higher

mean) group will always be favored compared to the individual from the disadvantaged

(i.e., lower mean) group, regardless of the signal level. On the other hand, under second-

order statistical discrimination, a member of the high-variance group could be favored or

discriminated against, relative to a member of the low-variance group, depending on the

value of the signal. Thus, comparing average outcomes across groups may mask poten-

tially severe discrimination, in that discrimination at certain quantiles of the ability or

human capital distribution is offset by discrimination in the opposite direction at other

quantiles of the distribution.

To give just one example, in 2010 women accounted for 51.5% of employees in man-

agement, professional, and related occupations. This ratio suggests that women are not

under-represented in these job sectors.5 However, in the same year women accounted for

therein). According to this explanation, males are evolutionarily conditioned to be more risk seeking
than females, resulting in a more variable distribution of traits among males, including intelligence or
ability.

4At the same time, the mean human capital of the low-variance group may be below, equal to,
or above that of the high-variance group. For the described mechanism to work, individuals do not
necessarily have to make their investment decisions themselves. The same mechanism would also work
if parents made these decisions, as long as the parents’ utility depends on their children’s labor market
success.

5If anything, women are slightly over-represented, since they account for only 47.2% of all employed
persons. (Source: Bureau of Labor Statistics 2010.)
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only 3% of Fortune 500 CEOs.6 Looking at average employment outcomes for women

therefore obscures the severe employment disparities that exist at the far right end of the

outcome distribution. Of course, these numbers are not, in and by themselves, evidence

of discrimination against women in obtaining top management positions. But they do

suggest that, whatever mechanism is causing these employment disparities, the first mo-

ment of the outcome distribution does not convey all relevant information contained in

this distribution. In the context of statistical discrimination as one possible mechanism,

this means that comparing group-wide average labor market outcomes does not allow

detection of more subtle forms of discrimination.

The remainder of the paper is organized as follows. In Section 2, we introduce our

model. In Section 3, we derive conditions for second-order statistical discrimination and

construct one such equilibrium for normally distributed signals. Section 4 concludes with

a discussion of our model’s relation to the existing literature, its empirical content, and

its potential implications for policy.

2 The Model

The population consists of two groups, male and female, denoted g ∈ {m, f}. Each group

comprises a continuum of measure 1, so the total population has measure 2. Group

membership is publicly observable and has no economic significance ex ante. That is, all

assumptions we make in the model apply equally to both groups.

2.1 Human capital production

Each individual is endowed with an initial ability, which can be either a or b, with b > a.

The fraction of males and females with ability a is λ ∈ (0, 1). After learning their

ability, individuals decide to invest either low effort e or high effort e in human capital

production. Individuals who spend e obtain human capital equal to their initial ability.

On the other hand, ability a-individuals who invest e obtain human capital A > a, and

ability b-individuals who invest e obtain human capital B > b. The cost of effort e is

zero, and the cost of effort e is c > 0 regardless of ability. An individual’s initial ability,

effort choice, and final human capital are private information.

The set of possible human capital levels is then K ≡ {a,A, b, B}. We make two

additional assumptions. First, b > A: High effort from a low-ability individual is insuf-

ficient to overcome a high-ability individual’s initial advantage. Second, B − b > A− a:

Effort has a larger effect on the human capital of high-ability individuals than low-ability

individuals.

A strategy for an individual of gender g ∈ {m, f} is a mapping

σg : {a, b} → [0, 1],

6Source: USA Today 2011.
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describing the probability of choosing the high effort level e as a function of gender and

initial ability. We call the pair (g, q) ∈ {m, f} ×K an individual’s type. Given strategy

σ = (σm, σf ), the measure of individuals of type (g, q) is given by

zg(q) =



λ(1− σg(a)) if q = a,

λσg(a) if q = A,

(1− λ)(1− σg(b)) if q = b,

(1− λ)σg(b) if q = B.

(1)

After individuals have made their effort choices, a publicly observable noisy signal

θ ∈ (θ, θ) ⊆ R of an individual’s human capital q ∈ K is generated. The terminology

we adopt here is to call θ a “test score.” That is, we think of θ as the result of an

examination all individuals must take after they have made their effort choices and

have acquired their human capital. We make the following assumptions. Conditional

on an individual’s human capital q, θ has continuous, positive density f(θ|q) for all

θ ∈ (θ, θ). The corresponding cumulative density is F (θ|q). To provide information about

an individual’s human capital, f satisfies the monotone likelihood ratio property :

∀q > q′ : θ > θ′ ⇒ f(θ|q)
f(θ|q′)

≥ f(θ′|q)
f(θ′|q′)

(> for some θ, θ′). (MLRP)

This property states that, as an individual’s human capital increases, high test scores

become more likely relative to low test scores. Furthermore, f satisfies the following

separation property :

lim
θ→θ

f(θ|B)

f(θ|a)
<

λ

1−λ
A−a
B−b

< lim
θ→θ

f(θ|B)

f(θ|a)
. (SEP)

This property states that test scores in the left (right) tail of the distribution are suffi-

ciently likely (unlikely) to have come from individuals with the lowest human capital a,

relative to individuals with highest human capital B.

The pair (g, θ) ∈ {m, f} × R will be called the individual’s public type . Given the

human capital distribution z defined in (1), we can express the density of public type

(g, θ) in the population as

z̃g(θ) =
∑
q∈K

zg(q)f(θ|q).

2.2 Job market

There are three different types of jobs in this economy: “Simple jobs” (level 0 jobs),

“clerical jobs” (level 1 jobs), and “elite jobs” (level 2 jobs). The measure of available

level-i jobs is βi > 0 with β0 + β1 + β2 = 2 (i.e., every individual can be employed).
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We follow Coate and Loury (1993) and assume fixed wages. That is, we assume that

individuals attach value Vi to employment in job level i, with ω0 < ω1 < ω2.
7

A precise specification of the demand side structure of the labor market (the number

of firms, etc.) is not important for our argument. We only assume that, at the time

of hiring, employers observe the individuals’ public types, and that employers seek to

maximize the expected productivity of their workforce. A labor market outcome is

therefore an assignment matching individuals to jobs as a function of their gender and

test score. In equilibrium of the labor market, this job-worker assignment must be

stable in the following sense: No firm wants to fire one of its current workers and replace

him/her with another worker currently employed in a lower ranked job. Since individuals

prefer higher ranked jobs over lower ranked ones, any worker who is offered employment

in a higher ranked job than his/her current one would accept the higher ranked job offer.

Given these preferences of individuals and employers, a stable assignment must be

positive assortative (Becker 1973): Individuals of higher expected productivity are as-

signed to higher job levels. To formalize this idea, write the expected productivity of an

individual of public type (g, θ) as

Qg(θ) =

∑
q∈K zg(q)f(θ|q) · q

z̃g(θ)
=

∑
q∈K zg(q)f(θ|q) · q∑
q∈K zg(q)f(θ|q)

. (2)

Under (MLRP), Qm and Qf are strictly increasing in θ (Milgrom 1981). To save on

notation, we will set Qg(θ) = limθ→θQg(θ) and Qg(θ) = limθ→θQg(θ). Consider now

cutoffs θ̂1m and θ̂1f such that

Qm(θ̂1m)


≥
=

≤
Qf (θ̂1f ) if


θ̂1f = θ

θ̂1m, θ̂
1
f > θ

θ̂1m = θ

and

∫ θ̂1m

θ
z̃m(θ)dθ +

∫ θ̂1f

θ
z̃f (θ)dθ = β0, (3)

as well as cutoffs θ̂2m and θ̂2f such that

Qm(θ̂2m)


≥
=

≤
Qf (θ̂2f ) if


θ̂2f = θ

θ̂2m, θ̂
2
f < θ

θ̂2m = θ

and

∫ θ

θ̂2m

z̃m(θ)dθ +

∫ θ

θ̂2f

z̃f (θ)dθ = β2. (4)

Condition (3) says that males and females with test scores below θ̂1m and θ̂1f , respectively,

comprise a measure β0 of individuals with the lowest expected productivity conditional

on their public types. In a stable assignment, these individuals must be assigned to level

0 jobs. Similarly, condition (4) says that males and females with test scores above θ̂2m
and θ̂2f comprise a measure β2 of individuals with the highest expected productivity. In

7These values may include wages and monetary benefits, but also non-monetary costs and benefits
such as social status or prestige associated with a job, occupational hazards, or the (un)pleasantness of
working conditions. The assumption of fixed wages can be replaced with a richer model that features
production, coupled with bargaining between workers and firms over the surplus produced in a job.
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a stable assignment, these individuals must be assigned to level 2 jobs. All individuals

in between these cutoffs fill the remaining measure β1 of level 1 jobs. Thus, a stable

assignment of public types to jobs can be characterized characterized by cutoffs

θ̂1m, θ̂
1
f , θ̂

2
m, θ̂

2
f ∈ (θ, θ)

that satisfy conditions (3)–(4) above.8

2.3 Equilibrium

An equilibrium of this economy consists of an individual strategy σ = (σm, σf ), an

assignment θ̂ = (θ̂1m, θ̂
1
f , θ̂

2
m, θ̂

2
f ), and a human capital distribution z = (zm, zf ) such that

three criteria are satisfied. The first is that z is consistent with σ. That is, the equilibrium

human capital distribution is generated by (1) from the strategy σ. The second criterion

is that the labor market is in equilibrium, that is, the assignment θ̂ is stable. The

third criterion is that the individual strategy σ is optimal, given the assignment θ̂. To

formalize this third criterion, denote the expected prize for an individual of type (g, q)

under assignment θ̂ by

Wg(q) = ω0

∫ θ̂1g

θ
f(θ|q)dθ + ω1

∫ θ̂2g

θ̂1g

f(θ|q)dθ + ω2

∫ θ

θ̂3g

f(θ|q)dθ. (5)

If the strategy σ is optimal, given θ̂, then the following conditions hold for g ∈ {m, f}
and all s ∈ [0, 1]:

(1−σg(a))Wg(a) + σg(a)
[
Wg(A)− c

]
≥ (1−s)Wg(a) + s

[
Wg(A)− c

]
, (6)

(1−σg(b))Wg(b) + σg(b)
[
Wg(B)− c

]
≥ (1−s)Wg(b) + s

[
Wg(B)− c

]
. (7)

If these conditions hold, then strategy σ maximizes the individual’s expected payoff,

given the anticipated assignment θ̂ of workers to jobs.

8Note that conditions (3)–(4) imply a productivity threshold above which an individual is eligible
for a clerical job, and a second productivity threshold above which an individual is eligible for an elite
job. These thresholds (represented by the two horizontal lines in Figure 1 in Section 3) are endogenous
and adjust so that the correct mass of workers βi is employed in each sector. This causal direction
can be reversed. That is, one could consider an alternative specification of the labor market where
expected productivity must be above an exogenous threshold Qi in order to be eligible for a level-i
job, and where the mass of workers employed in each sector adjusts endogenously. These specifications
are outcome-equivalent: For each pair of exogenous capacity constraints (β1, β2) in the original model,
there exists a pair of exogneous productivity thresholds (Q1, Q2) that results in the same signal cutoffs
θ̂1m, θ̂

1
f , θ̂

2
m, θ̂

2
f (and vice versa). The bijection between (β1, β2) and (Q1, Q2) is given by (3)–(4), with

Q1 ≡ min{Qm(θ̂1m), Qf (θ̂1f )} and Q2 ≡ min{Qm(θ̂2m), Qf (θ̂2f )}.
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An equilibrium (σ, θ̂, z) is non-discriminatory if θ̂im = θ̂if for i = 1, 2. Otherwise,

it is called discriminatory . In a discriminatory equilibrium, a different minimum test

score is required for males, compared to females, in order to qualify for clerical and/or

elite jobs. That is θ̂1m 6= θ̂1f or θ̂2m 6= θ̂2f or both.

Before characterizing equilibrium in the next section, we establish its existence.

(Proofs of all results are in the Appendix.)

Proposition 1. An equilibrium exists. In particular, a non-discriminatory equilibrium

exists.

3 Discriminatory Equilibrium

In this section we explore the possibility of discriminatory equilibrium. We focus on a

particular equilibrium, which features the following pure strategy for individuals:

σm(a) = σf (b) = 0, σm(b) = σf (a) = 1. (8)

That is, low-ability males and high-ability females exert low effort, while high-ability

males and low-ability females exert high effort. The human capital distribution in the

population is then given by

zm(a) = zf (A) = λ, zm(B) = zf (b) = 1− λ. (9)

Note that, in our candidate equilibrium, the female human capital distribution is more

compressed than the male human capital distribution. As we will show below, (9) implies

that the equilibrium job-worker assignment θ̂ will be such that

θ̂1f < θ̂1m < θ̂2m < θ̂2f . (10)

Female workers are hence disadvantaged relative to males when it comes to obtaining an

elite job, in the sense that the test score of a female worker must meet a higher threshold

requirement in order to get an elite job. The opposite holds for the cutoff score needed

to obtain a clerical job, where male workers are disadvantaged vis-á-vis female workers.

We will show that, under certain conditions, anticipation of the labor market as-

signment (10) will discourage women of high ability as well as men of low ability from

investing into their human capital, yielding the strategy (8) and thus the human capital

distribution (9). In this situation, more males than females will be employed in the elite

sector and in simple jobs, and more females than males will be employed in clerical jobs.

We call this outcome second-order statistical discrimination. It should be clear

that, by relabeling, one can construct another equilibrium in which the male and female

roles are reversed.
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3.1 Conditions for discriminatory equilibria

Using the human capital distribution in (9), the Bayesian posterior probability that a

male worker with test score θ has human capital a or B is

Pr[a|m, θ] =
λf(θ|a)

λf(θ|a) + (1−λ)f(θ|B)
, P r[B|m, θ] =

(1−λ)f(θ|a)

λf(θ|a) + (1−λ)f(θ|B)
.

(The human capital levels A and b must receive a zero probability for male workers.)

The expected productivity of a male worker with test score θ is therefore given by

Qm(θ) =
λf(θ|a)a+ (1− λ)f(θ|B)B

λf(θ|a) + (1− λ)f(θ|B)
.

The expected productivity of this worker can be similarly written as

Qf (θ) =
λf(θ|A)A+ (1− λ)f(θ|b)b
λf(θ|A) + (1− λ)f(θ|b)

.

Because f is continuous in θ, the expectations Qm and Qf are continuous on (θ, θ).

Furthermore:

Lemma 2. Qm and Qf are increasing in θ and satisfy

lim
θ→θ

Qm(θ) > lim
θ→θ

Qf (θ) > lim
θ→θ

Qf (θ) > lim
θ→θ

Qm(θ).

Because Qm and Qf are continuous in θ, Lemma 2 implies that they must intersect

at least once. Let θ∗ be the left-most intersection of Qm and Qf , and let θ∗∗ be the right-

most intersection. To construct the equilibrium assignment θ̂, we consider the following

scenario: ∫ θ∗

θ

(
z̃m(θ) + z̃f (θ)

)
dθ > β0, (11)∫ θ

θ∗∗

(
z̃m(θ) + z̃f (θ)

)
dθ > β2. (12)

Condition (11) states that the fraction of males and females with test scores below θ∗

exceeds the capacity β0. Similarly, condition (12) states that the fraction of males and

females with test scores above θ∗∗ exceeds the capacity β2. Under these conditions, both

males and females will be employed in the clerical sector. Some males, and possibly some

females, will be employed in the elite sector as well as in the simple sector.

Cutoff thresholds (θ̂1m, θ̂
1
f , θ̂

2
m, θ̂

2
m) to place exactly βi individuals into each level i

job can now be computed by applying conditions (3)–(4). Because Qm(θ) < Qf (θ) for

θ < θ∗ by Lemma 2, (3) together with (11) implies θ̂1f < θ̂1m < θ∗. Similarly, because

Qm(θ) > Qf (θ) for θ < θ∗∗, (4) together with (12) implies θ∗∗ < θ̂2m < θ̂2f . Therefore, the
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assignment satisfies the inequalities (10). Figure 1 illustrates its construction graphically.

The heights of the two horizontal lines are defined implicitly by (3) and (4).

Figure 1: Assignment in discriminatory equilibrium

Finally, we must check whether the equilibrium effort strategy posited in (8) is indeed

optimal for each individual, given the assignment constructed above. Using (5)–(7), low

effort is optimal for male workers with innate ability a and high effort is optimal for male

workers with innate ability b if and only if

(ω1−ω0)
[
F (θ̂1m|a)−F (θ̂1m|A)

]
+ (ω2−ω1)

[
F (θ̂2m|a)−F (θ̂2m|A)

]
≤ c ≤ (ω1−ω0)

[
F (θ̂1m|b)−F (θ̂1m|B)

]
+ (ω2−ω1)

[
F (θ̂2m|b)−F (θ̂2m|B)

]
. (13)

The reverse inequalities hold for female workers:

(ω1−ω0)
[
F (θ̂1f |a)−F (θ̂1f |A)

]
+ (ω2−ω1)

[
F (θ̂2f |a)−F (θ̂2f |A)

]
≥ c ≥ (ω1−ω0)

[
F (θ̂1f |b)−F (θ̂1f |B)

]
+ (ω2−ω1)

[
F (θ̂2f |b)−F (θ̂2f |B)

]
. (14)

A discriminatory equilibrium therefore exists if (11)–(12) as well as (13)–(14) are satis-

fied, where the assignment θ̂ = (θ̂1m, θ̂
1
f , θ̂

2
m, θ̂

2
f ) is derived from (3)–(4).

3.2 Gaussian test score distribution

In Section 3.1 we derived sufficient conditions for a discriminatory equilibrium in which

the female human capital distribution had a lower variance than the corresponding male

distribution. To say more, we now assume that for an individual with human capital

9



q ∈ K, the score θ is distributed normally on (−∞,∞) with mean q and variance ν2.

That is, an individual’s test score is the sum of his or her human capital and Gaussian

noise. The conditional density f(θ|q) is given by

f(θ|q) =
1√
2πν

e−
1

2ν2
(θ − q)2 . (15)

Note that the Gaussian distribution satisfies both the monotone likelihood ratio property

(MLRP) and the separation property (SEP) we assumed throughout.

We now show, by means of an example, that equilibria with second-order statistical

discrimination generically exist when test scores are normally distributed.

Example 1. Suppose that test scores are normally distributed with variance ν2 = 1/16,

and let the other parameters of the model take on the following values:

a = 0, A = 0.3, b = 0.6, B = 1, β0 = 1, β1 = 0.75, β2 = 0.25,

ω0 = 0, ω1 = 1, ω2 = 1.5, λ = 0.8, c = 0.4.

With these parameter values, Qm and Qf cross once at 0.559. The inequalities (11)–(12)

are satisfied:∫ 0.559

−∞

(
z̃m(θ) + z̃f (θ)

)
dθ = 1.564 > β0,

∫ ∞
0.559

(
z̃m(θ) + z̃f (θ)

)
dθ = 0.436 > β2.

Constructing the cutoff scores for a stable assignment as in (3)–(4), we get

θ̂1f = 0.131, θ̂1m = 0.538, θ̂2m = 0.582, θ̂2f = 0.824.

The individual optimality condition for males is now 0.215 < c < 0.582, and for females

it is 0.459 > c > 0.317, which implies that individuals in fact follow strategy (8). Since

conditions (11)–(12) and (13)–(14) hold as strict inequalities, an equilibrium with second-

order statistical discrimination exists for a non-empty open set of parameters. The

proportion of males and females employed in each of the three job sectors is as follows:

Males Females Total

Elite 0.199 0.051 0.25

Clerical 0.008 0.742 0.75

Simple 0.794 0.206 1

Furthermore, the average equilibrium human capital (and test score) for male workers

this example is 0.2; while for female workers it is 0.36. It is hence possible that one

group is more able on average, while another group has a higher maximum ability and

will occupy a larger share of elite jobs.
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With perfect information about an individual’s skills, of course, statistical discrimi-

nation (of any kind) cannot arise. One may therefore suspect that, if the signals about

one’s qualifications become more precise, the possibility of second-order statistical dis-

crimination ceases to exist. For normally distributed test scores, however, quite the

opposite can be the case:

Proposition 3. Assume the conditional test score distribution is normal with mean

q ∈ K and variance ν2 > 0. Suppose further that β0 ∈ (λ, 2λ), β2 ∈ (0, 1−λ), and

0 < c < min
{

(ω1−ω0)
(
2− β0/λ

)
, (ω2−ω1)β2/(1−λ)

}
.

Then there exists ν2 > 0 such that second-order statistical discrimination is an equilib-

rium outcome for all ν2 ∈
(
0, ν2

)
. In any such equilibrium, only male workers will be

employed in elite jobs.

Since access to better information improves the matching of workers to jobs, firms

seem to have an incentive to invest in the accuracy of signals they obtain about the

qualifications of potential hires. As long as some arbitrarily small uncertainty about

workers’ qualifications remains, however, Proposition 3 implies that increasing the ac-

curacy of signals alone does not guarantee the elimination of second-order statistical

discrimination in the labor market. In particular, there is no guarantee that the “glass

ceiling” disappears as signals become increasingly accurate.

4 Discussion

We extended the basic framework of self-fulfilling statistical discrimination from the first

moment of the human capital distribution to the second. We now conclude with a discus-

sion of how our theory relates to the existing literature on statistical discrimination, how

it can be distinguished empirically from first-order theories of statistical discrimination,

and what it might imply for anti-discrimination policies.

4.1 Relation to the theoretical literature

Early models of statistical discrimination assume that the conditional signal about an

individual’s qualification is more precise for one group than for another (Phelps 1972;

Aigner and Cain 1977). In this case, employers place relatively more weight on group av-

erages, and relatively less weight on individual signals, when forming expectations about

the qualifications of applicants from the group with less precise signals (women, say)

compared to applicants with more precise signals (men, say). Three related phenomena

arise in this setup. First, the human capital distribution among men has a higher vari-

ance than among women. Second, the same is true for the labor market outcomes of

men and women. Third, discrimination has a non-uniform impact on workers at different

locations on the skill or signal spectrum: Women with a high signal earn less than men

11



with the same signal, while men with a low signal earn less than women with the same

signal.9

Our discriminatory equilibrium is characterized by the same three features. However,

these features emerge as the result of a very different mechanism, relying on a different

set of assumptions. Most importantly, in our framework the two groups are assumed

to be symmetric ex ante: Except for the gender label, there are no differences between

men and women (in particular, there are no differences in signaling technology across

groups). Instead, to generate its result our model relies on the interplay of two further as-

sumptions: Within-group heterogeneity in endowed ability, and a three-task assignment

specification of the labor market. All three assumptions have previously been explored

in the literature on statistical discrimination, but not in conjunction.

First, consider endowment heterogeneity. It is well-known that the assumption of

within-group heterogeneity in ability can generate second-moment differences in the hu-

man capital distribution across groups. For example, this is the case already in Phelps

(1972), where it also leads to second-moment differences in competitive wages and non-

uniform impacts of discrimination at different ends of the signal spectrum—at the ex-

pense of having to assume exogenous differences in signaling technologies. Note, however,

that the main purpose of unobserved endowment heterogeneity in Phelps (1972) is to

create a meaningful signal extraction problem for employers. Coate and Loury (1993)

show that unobserved human capital investments can play the same role, so that a similar

signal extraction problem can be constructed with homogeneous endowments. Together

with the assumption of a two-task/fixed-wage assignment model, this allows Coate and

Loury (1993) to do away with any exogenous inter-group differences, and instead replace

these with a self-fulfilling expectations theory of endogenous inter-group differences. On

the other hand, the analytical focus has now shifted purely to first-order statistical dis-

crimination. Moro (2003), finally, extends Coate and Loury’s (1993) model to again allow

for heterogenous endowments, thus obtaining second-moment differences in the human

capital and the outcome distribution, without necessarily having to assume differences

in signaling technologies. However, unlike in Phelps’ (1972) original model, this does not

translate into a differential impact of discrimination across the endowment spectrum.

The reason is that Moro (2003) maintains the two-task assignment model of the labor

market introduced by Coate and Loury (1993). Having two tasks means that individuals

strive for only one type of “prize” (i.e., being assigned to the better of the two tasks). This

closes the channel through which heterogenous endowments can translate into second-

moment differences in outcomes. In our model, on the other hand, a third task allows for

a richer form of competition: The middle job essentially becomes the prize over which

individuals with low endowments compete, while the top job becomes the prize over

which individuals with high endowments compete. Second-moment differences in the

9If a human capital investment stage is added, the expected return of investments is lower for women
than for men, which also depresses the average human capital among women, compared to men (see
Lundberg and Startz 1983).
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human capital distribution across genders can now manifest themselves in second-order

statistical discrimination in the labor market.10

Finally, the assumption of three job levels is also used in Bjerk (2008). In this career

ladder model, a glass-ceiling effect arises for women even though there is no discrimina-

tion in promotion to top-level jobs. Instead, the glass ceiling is the result of statistical

discrimination earlier in a worker’s career, which delays promotion of female employees

from entry-level jobs to mid-level jobs. This statistical discrimination, however, is caused

by assumed exogenous differences in the precision of skill signals across groups. In other

words, in this model groups are not ex ante identical.

4.2 Empirical implications

As we have shown theoretically, the presence of discrimination may remain undetected

when comparing average outcomes across groups. As is often the case, the first moment

of a distribution does not convey all relevant information, so that a comparison of group-

wide average labor market outcomes can mask more subtle forms of discrimination. A

growing empirical literature is concerned with this issue.

Jenkins (1994) points out the deficiencies of using only the mean gender wage gap as a

measure of discrimination, and proposes new measurements that capture discrimination

across the whole distribution. Using 1980 UK earnings data, he finds evidence that

discrimination against women strictly increases when moving from the lower quartile to

the median to the upper quartile. Albrecht et al. (2003) find a similar pattern in 1998

Swedish data. Using 1995 and 1999 Spanish data, del Rio et al. (2006) and de la Rica

et al. (2008) show that for college-educated women, the gender wage gap is wider at the

upper tail of the wage distribution, while it is wider at the lower tail for less educated

women. Lastly, Arulampalam et al. (2007) document similar patterns for these and other

European countries for the period 1995–2001.

Of course, these patterns can have many explanations. Assuming (statistical) dis-

crimination as one underlying cause, is it possible to empirically distinguish the presence

of second-order discrimination from discrimination of the first order? The answer is a

qualified yes. The fundamental difference between first-order and second-order statistical

discrimination is that the former has a uniform impact on all members of the disadvan-

taged group (i.e., all members of a group are hurt by discrimination), while the latter

can have qualitatively different impacts on different members of the same groups (i.e.,

some members of a group are hurt by discrimination, but others benefit). Thus, a good

indicator of second-order discrimination would be a reversal of the inter-group outcome

gap. For example, a positive gender wage gap at the bottom quantiles of the earnings

distribution in a labor market, together with a negative wage gap at the top quantiles,

would strongly suggest the presence of second-order discrimination.

10It should be clear that this logic continues to apply for any number of job levels or tasks, as long as
it is larger than two.
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While the aforementioned empirical studies document changes in the female wage

gap across quantiles, they do not find evidence of a gap reversal. This does not mean

that second-order discrimination does not play a role, as it could coexist with first-order

discrimination, complicating the task of cleanly separating the consequences of each

kind of discrimination in the data. For example, if statistical discrimination results in

a larger variance of male earnings compared to female earnings, and at the same time

systematically shifts the female earnings distribution to the left, the latter effect may

override any observable gap reversals the former effect generates.

Reversal effects have been documented, however, in other contexts. For the case of

racial groups, Bjerk (2007) uses Armed Forces Qualification Test (AFQT) scores as a

measure for workers’ pre-market skills, and finds significant differences in skill-sorting

thresholds across racial groups: While black workers are less likely than white workers

to be employed in white-collar jobs, conditional on AFQT scores blacks are more likely

to work in white-collar jobs. In particular, the thresholds that sort black workers into

white-collar job sectors are significantly lower than those for white workers. If employers

believe that the black group has a higher skill variance than the white group, then,

conditional on a high AFQT score, a black worker has a higher expected productivity

than a white worker with the same score, and is hence favored by potential employers

in white-collar job sectors. Thus, individual black workers at the high end of the ability

distribution can benefit from statistical discrimination, despite the fact that blacks have

a lower average skill level than whites.

Finally, Chiswick et al. (2008) analyze the immigrant wage gap in the U.S. and Aus-

tralia and find that, in both cases, immigrants from non-English speaking countries have

an advantage over native-born workers at the low end of the earnings distribution, but

a disadvantage at the upper end, everything else equal. This pattern can be reconciled

with second-order statistical discrimination but is inconsistent with fist-order statistical

discrimination. However, this study does not directly answer whether the variance differ-

ence between immigrants and native-born workers are due to self-fulfilling expectations

or other reasons, such as self-selection in the immigration decisions.

4.3 Policy aspects

Like every model of statistical discrimination, ours relies on an informational friction

which prevents employers from learning an individual’s skills perfectly. This friction

induces a two-fold inefficiency: First, it discourages some high-ability individuals from

investing, while some low-ability individuals invest. Because the cost of investing is

assumed to be constant but the returns are larger for high-ability individuals, this is

a misallocation of resources. Second, taken the investment decisions as given, the final

allocation of workers to jobs may not be optimal. It is questionable whether markets can

correct these efficiencies by themselves. As shown in Proposition 3, even when signals

become increasingly precise it is possible for second-order statistical discrimination to

remain an equilibrium. Thus, some interventions are needed to correct the inefficiencies
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resulting from it. It is beyond the scope of this work to examine the many conceivable

policy measures that could be used, but our results allow us to at least speculate on

some aspects of policy.

First, the differential impact of second-order statistical discrimination on individuals

within the same group suggests that successful policies may have to be targeted at certain

jobs, individuals, or firms only. For example, a broad-stroke mandate that firms employ

an equal number of men and women would have no effect on firms that offer all three

tiers of jobs. On the other hand, a mandate that an equal number of men and women be

employed in elite jobs would have an equalizing effect on male and female employment

in this sector (and might then result in altered investment incentives for high-ability

females). Second, policies targeting the elite job sector may have spill-over effects to

lower job sectors. An equal-employment mandate on the elite job level will reallocate

some women from the clerical sector to the top sector, and some men from the top sector

the clerical sector. These changes could, in turn, affect the assignment of workers to the

simple sector. Thus, even a highly targeted policy intervention can potentially affect

the labor market outcomes of all individuals, and hence the investment incentives of all

individuals.

Appendix

Proof of Proposition 1

Without loss of generality we can take the support of the test score distribution f to

be a subset of [0, 1], if necessary by constructing a new test score t ∈ [0, 1] and setting

t ≡ eθ/(1 + eθ). An equilibrium is then a point (σ, θ̂, z) ∈ S ≡ [0, 1]4 × [0, 1]4 × ∆2

satisfying the equilibrium conditions in Section 2.3, where

∆ ≡
{(
z(a), z(A), z(b), z(B)

)
∈ [0, 1]4 : z(a)+z(A)+z(b)+z(B)=1

}
is the set of human capital distributions within each group. Define three correspondences

T σ : [0, 1]4 →→ [0, 1]4, T θ̂ : ∆2 →→ [0, 1]4, T z : [0, 1]4 →→ ∆2

as follows:
T σ(θ̂) = { σ′ ∈ [0, 1]4 : s′ is optimal given θ̂ },
T θ̂(z) = { θ̂′ ∈ [0, 1]4 : θ̂′ is stable given z },
T z(σ) = { z′ ∈ ∆2

K : z′ is consistent with σ }.

The definitions of optimality, stability, and consistence (given in Section 2.2 and 2.3)

imply that T σ, T θ̂, T z are all upper-hemicontinuous. Define a new correspondence

T : S →→ S by setting T (σ, θ̂, z) ≡ T σ(θ̂)× T θ̂(z)× T z(σ). T is upper-hemicontinuous

on a compact and convex set S ⊂ R16. By Kakutani’s Fixed Point Theorem there exists

a point (σ, θ̂, z) ∈ T (σ, θ̂, z), satisfying our equilibrium conditions.
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To show that a non-discriminatory equilibrium exists, let Ŝ ⊂ S be defined as

Ŝ ≡
{

(σ, θ̂, z) ∈ S : σm = σf , θ̂
1
m = θ̂1f , θ̂

2
m = θ̂2f , zm = zf

}
.

Observe that Ŝ is a compact and convex subset of R16. Furthermore, T (σ, θ̂, z) ∩ Ŝ 6= ∅
for all (σ, θ̂, z) ∈ Ŝ. To see this, make the following observations: (i) If θ̂1m = θ̂1f and

θ̂2m = θ̂2f , an effort decision is optimal for males if and only if the same decision is

optimal for females; thus there exists an optimal strategy s = (sm, sf ) with sm = sf . (ii)

If sm = sf , the human capital distribution among males is the same as among females:

zm = zf . (iii) If zm = zf , then Qm = Qf and a stable assignment in the labor market will

be such that θ̂1m = θ̂1f and θ̂2m = θ̂2f . Thus, T can be restricted to an upper-hemicontinuous

correspondence from Ŝ into Ŝ. By Kakutani’s Fixed Point Theorem, a fixed point in Ŝ

exists, which then satisfies the definition of a non-discriminatory equilibrium.

Proof of Lemma 2

Define

γm(θ) ≡
[
1 +

1− λ
λ

f(θ|B)

f(θ|a)

]−1
, γf (θ) ≡

[
1 +

1− λ
λ

f(θ|b)
f(θ|A)

]−1
.

We first show that, under (MLRP), γm(θ) and γf (θ) satisfy the following properties:

(i) γm(θ) and γf (θ) are weakly decreasing in θ,

(ii) limθ→θ γm(θ) > limθ→θ γm(θ) and limθ→θ γf (θ) > limθ→θ γf (θ),

(ii) limθ→θ γm(θ) > limθ→θ γf (θ) and limθ→θ γm(θ) > limθ→θ γf (θ).

To show (i), note that (MLRP) implies f(θ|B)/f(θ|a) and f(θ|b)/f(θ|A) are in-

creasing in θ. Thus, γm(θ) and γf (θ) are decreasing in θ. To show (ii), suppose

limθ→θ γm(θ) ≤ limθ→θ γm(θ). By claim (i), this implies γm(θ) is a constant for all

θ, which in turn implies that f(θ|B)/f(θ|a) is independent of θ. This is not possible,

due to the stricty inequality part of (MLRP). To show (iii), express f(θ|B)/f(θ|a) as

f(θ|B)

f(θ|a)
=

f(θ|b)
f(θ|A)

· f(θ|A)

f(θ|a)

f(θ|B)

f(θ|b)

and observe that, as θ decreases, f(θ|A)/f(θ|a) and f(θ|B)/f(θ|b) are decreasing due

to (MLRP). Furthermore, both terms must fall below one for θ small enough. To see

why, suppose to the contrary that f(θ|A)/f(θ|a) ≥ 1 as θ → θ. This implies f(θ|A) ≥
f(θ|a) for all θ due to (MLRP). Furthermore, f(θ|A) < f(θ|a) on an open set of

values for θ, due to the strict inequality part of (MLRP) and continuity of f . But

then 1 =
∫
f(θ|A)dθ >

∫
f(θ|a)dθ = 1, a contradiction. The same argument applies to

f(θ|B)/f(θ|b). It follows that f(θ|B)/f(θ|a) < f(θ|b)/f(θ|A) as θ → θ, and therefore

limθ→θ γm(θ) > limθ→θ γf (θ). The second inequality can be shown in the same fashion.
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Now express Qm and Qf as follows:

Qm(θ) = γm(θ)a + [1− γm(θ)]B, Qf (θ) = γf (θ)A + [1− γf (θ)] b. (16)

Since a < B and A < b, claim (i) implies Qm and Qf are increasing in θ. Next, we show

that

lim
θ→θ

Qm(θ) < lim
θ→θ

Qf (θ) < lim
θ→θ

Qf (θ) < lim
θ→θ

Qm(θ).

The middle inequality follows from claim (ii). To show the left inequality, note that

(SEP) implies

1 +
1− λ
λ

lim
θ→θ

f(θ|B)

f(θ|a)
< 1 +

A− a
B − b

and thus limθ→θ γm(θ) · (B− b+A− a) > B− b. By claim (iii) and b > A it follows that

limθ→θ γm(θ) · (B − a)− limθ→θ γf (θ) · (b−A) > B − b. Rearranging, we get

lim
θ→θ

γm(θ) · a+

[
1− lim

θ→θ
γm(θ)

]
·B < lim

θ→θ
γf (θ) ·A+

[
1− lim

θ→θ
γf (θ)

]
· b

or limθ→θQm(θ) < limθ→θQf (θ), as desired. The inequality limθ→θQf (θ) < limθ→θQm(θ)

can be shown in a similar manner.

Proof of Proposition 3

Express Qm(θ) and Qf (θ) as in (16). Using the normal distribution for θ, the weights

γm(t) and γf (θ) can be written as

γm(θ) =

[
1 +

1− λ
λ

exp
(
− 1

2ν2
(B − a)(B + a− 2θ)

)]−1
,

γf (θ) =

[
1 +

1− λ
λ

exp
(
− 1

2ν2
(b−A)(b+A− 2θ)

)]−1
.

Note that that γm((a+B)/2) = γf ((A+ b)/2) = λ. Observe further that for every δ > 0

one can find ε > 0 such that ν2 < ε implies γm(θ) > 1− δ for all θ < (B + a)/2− δ, as

well as γm(θ) < δ for all θ > (B + a)/2 + δ. Similarly, for every δ > 0 one can find ε > 0

such that ν2 < ε implies γf (θ) > 1 − δ for all θ < (b + A)/2 − δ, as well as γf (θ) < δ

for all θ > (b + A)/2 + δ. As ν2 → 0, therefore, the expectations Qm and Qf converge

pointwise to

lim
ν2→0

Qm(θ) =


a if θ < (a+B)/2,

λa+ (1−λ)B if θ = (a+B)/2,

B if θ > (a+B)/2

and

lim
ν2→0

Qf (θ) =


A if θ < (A+ b)/2,

λA+ (1−λ)b if θ = (A+ b)/2,

b if θ > (A+ b)/2.
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Note that, for ν2 ≈ 0, Qm and Qf intersect once at θ∗ ≈ (a + B)/2. Note also that

B − b > A− a implies (a+B)/2 > (A+ b)/2, and that b > A implies (A+ b)/2 > A.

Next, we construct the job-worker assignment θ̂ and examine its properties for small

ν2. Throughout, if x and y are two variables, the statement “x ≈ y for ν2 ≈ 0” means

“∀δ > 0 ∃ ε > 0 s.t. ν2 < ε ⇒ |x−y| < δ.” Note that the distribution of test scores,

(z̃m, z̃f ), is concentrated around the human capital levels a,A, b, B, and increasingly so

as ν2 → 0. For ν2 ≈ 0, therefore, we have∫ θ∗

−∞

(
z̃m(θ) + z̃f (θ)

)
dθ ≈ 2λ,

∫ ∞
θ∗

(
z̃m(θ) + z̃f (θ)

)
dθ ≈ 2(1−λ).

Given β0 ∈ (λ, 2λ) and β2 ∈ (0, 1−λ), conditions (11)–(12) hold for sufficiently small

ν2. Furthermore, the condition β0 ∈ (λ, 2λ) means that there are more simple jobs than

males with human capital a, but fewer than males with human capital a and females with

human capital A combined. For ν2 ≈ 0, this implies that approximately λ males and

approximately β0 − λ < λ of females will be employed in the simple sector. The cutoff

scores that separate simple jobs from clerical jobs therefore satisfy θ̂1f ≈ A < (A+b)/2 <

(a + B)/2 ≈ θ̂1m. On the other hand, the condition β2 ∈ (0, 1−λ) means that there are

fewer elite jobs than males with human capital B. For ν2 ≈ 0, this implies that exactly

β2 males and no females will be employed in the elite sector. The cutoff scores that

separate clerical jobs from elite jobs therefore satisfy (B + a)/2 < B ≈ θ̂2m < θ̂2f = ∞.

For small enough ν2, the job-worker assignment therefore satisfies θ̂1f < θ̂1m < θ̂2m < θ̂2f ,

as required in a second-order discriminatory equilibrium.

Finally, we examine the individual incentives to invest effort, under the assignment

constructed above and again assuming that ν2 ≈ 0. First, consider males of initial ability

a. For ν2 ≈ 0, we have F (θ̂1m|a) ≈ F (θ̂1m|A) ≈ F (θ̂2m|a) ≈ F (θ̂2m|A) ≈ 1. The expression

on the left side of (13) therefore becomes

(ω1−ω0)
[
F (θ̂1m|a)−F (θ̂1m|A)

]
+ (ω2−ω1)

[
F (θ̂2m|a)−F (θ̂2m|A)

]
≈ 0.

Second, consider males of initial ability b. For ν2 ≈ 0, we have F (θ̂1m|b) ≈ F (θ̂1m|B) ≈ 0,

F (θ̂2m|b) ≈ 1, and F (θ̂2m|B) ≈ 1 − β2/(1−λ). The expression on the right side of (13)

therefore becomes

(ω1−ω0)
[
F (θ̂1m|b)−F (θ̂1m|B)

]
+ (ω2−ω1)

[
F (θ̂2m|b)−F (θ̂2m|B)

]
≈ (ω2−ω1)

β2
1−λ

.

Third, consider females of initial ability a. For ν2 ≈ 0, we have F (θ̂1f |a) ≈ 1, F (θ̂1f |A) ≈
β0λ − 1, and F (θ̂2f |a) ≈ F (θ̂2f |A) ≈ 1. The expression on the left side of (14) therefore

becomes

(ω1−ω0)
[
F (θ̂1f |a)−F (θ̂1f |A)

]
+ (ω2−ω1)

[
F (θ̂2f |a)−F (θ̂2f |A)

]
≈ (ω1−ω0)

(
2− β0

λ

)
.

18



Finally, consider females of initial ability b. For ν2 ≈ 0, we have F (θ̂1f |b) ≈ F (θ̂1f |B ≈ 0

and F (θ̂2f |b) ≈ F (θ̂2f |B) ≈ 1. The expression on the right side of (14) therefore becomes

(ω1−ω0)
[
F (θ̂1f |b)−F (θ̂1f |B)

]
+ (ω2−ω1)

[
F (θ̂2f |b)−F (θ̂2f |B)

]
≈ 0.

If follows that, if 0 < c < min {(ω1−ω0)(2− β0/λ), (ω2−ω1)β2/(1−λ)}, all inequalities

in (13)–(14) are satisfied for sufficiently small ν2 > 0.
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[15] del Ŕıo, Coral, Carlos Grad́ın, and Olga Cantó. 2006. “The Measurement of Gen-
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