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Abstract

This paper theoretically explores the voluntary provision of a public good when

either one of the following holds: (i) agents’ utility is the sum of their monetary earn-

ings and a certain non-material component, or (ii) agents’ exhibit satisficing behavior.

We show that a small degree of either non-material payoffs or satisficing behavior

can generate large contributions in a finitely repeated game, even if the incentive to

free-ride on others’ contributions calls for negligible public good provision in the static

game. The equilibrium is characterized by a sharp decline in contributions toward the

end of the game. Several comparative results regarding group size and technology

are consistent with laboratory data obtained by Isaac and Walker (1988) and Isaac et

al. (1994). The model also predicts the puzzling restart effect observed by Andreoni

(1988) in an experimental study.
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1 Introduction

This paper examines the pattern of voluntary contributions to a public good over time.

If agents have strictly dominant strategies to not contribute to the good in a one-shot

setting, then clearly they should not contribute in the subgame perfect equilibrium of

any finitely repeated version of the game. This prediction is at odds with a large body of

empirical evidence. In a widely used experimental design, the linear voluntary contribution

mechanism (VCM), subjects are given monetary endowments which they can allocate to

either a private good or toward the provision of a public good. The parameters of the

game are set so that the welfare maximizing allocation is for all agents to give their

entire endowment to the public good. Similar to the prisoners’ dilemma, however, it is a

dominant strategy for each individual to allocate their entire endowment to the private

good, so that one should expect zero contributions to the public good if this experiment is

repeated any finite number of times. Strikingly, though, in virtually all laboratory studies

subjects contribute significant fractions of their endowments.1

One explanation for this observation is that subjects’ preferences are to maximize

something other than their earnings. For example, individuals may care about the well-

being of others (altruism) or have a preference for giving (impure altruism or warm glow).

Another explanation is that subjects are not fully rational. For example, individuals might

simply imitate others, or be content with sub-optimal payoff levels (satisficing behavior).

The aim of this paper is to demonstrate that, in dynamic settings, even a small degree of

non-standard preferences or satisficing behavior can have dramatic effects on outcomes.

The reason for this amplification effect is that, under certain assumptions on preferences

or rationality, the static game possesses several Pareto-ranked equilibria. A folk theorem-

type argument for finitely repeated games (Benoit and Krishna [1985], Radner [1980]) then

shows that large contributions can be generated in equilibria of sufficiently long dynamic

games. These contributions are supported by the threat to return to the zero level of

contribution in case a player attempts to free-ride on others’ contributions. Remarkably,

such behavior can arise even when a player’s utility function “almost” coincides with the

player’s earnings function, or when her tolerated deviation from the optimal payoff is

“almost” zero.

Contributions along the payoff-dominant symmetric equilibrium path match several

other empirical regularities on a qualitative level. Firstly, contributions are high in the

beginning of the game but decline toward the end—the so-called endgame effect found in

virtually all VCM experiments. In the experimental literature, the endgame effect is often

attributed to players’ learning the incentives of the game over time. In our framework, on

the other hand, the endgame effect is entirely strategic and not due to learning. Secondly,

the round in which the endgame effect sets in does not depend on how many rounds have

1See Ledyard (1995) for a survey.
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already been played, but on how many rounds are still remaining. This result is consistent

with data presented in Isaac et al. (1994), namely that the rate of decay in contribution

levels is inversely related to the length of the game. Thirdly, we characterize the effects

that changes in observable parameters of the game, namely group size and technology, have

on the equilibrium path. These comparative results, too, are in line with experimental

observations: Isaac and Walker (1988) report that contributions increase in group size,

or when production of the public good becomes more efficient; however, they decrease

in group size when the efficiency parameter is adjusted so that the group’s “feasibility

set” remains constant. Finally, the model predicts the restart effect reported by Andreoni

(1988): After the last round of a repeated VCM experiment, subjects were told that there

was enough time left to run a second set of repetitions to gather more data. Contributions

in the early stages of the second set jumped up, after having declined in the late stages of

the first set—a behavior that is difficult to explain through learning or reputation effects.

On the other hand, a replay of the same equilibrium for a second set of rounds is certainly

possible in a framework of complete information.

It is important to emphasize that the main point advocated in this paper is not that

individuals may have a desire to contribute to public goods, or may fail to be perfectly

rational. What this paper demonstrates is that it is possible to capture a rich set of phe-

nomena in public good experiments by using only the basic tools of complete information

repeated games and making mild assumptions on either preferences or rationality. Our

results hence shed light on the possible role of strategic behavior in VCM experiments.

For example, our framework suggests that the reason for the endgame effect may simply

be that late in the game the possibilities for punishing deviators by withholding future

contributions are necessarily limited. Alternatively, take the group size effect in Issac and

Walker (1988). It may seem counter-intuitive that, ceteris paribus, larger groups should

be more successful providing public goods than smaller groups. But larger groups can

punish deviators more severely than smaller groups; therefore, less free-riding behavior

should be observed in larger groups.

One may object that a well-designed experiment should eliminate these effects, for

instance through random reassignments of subjects into groups after each round. Several

experimental studies have shown that, even with randomly reassigned groups, public good

contributions exhibit the same qualitative features as within a fixed group.2 When players

are randomly rematched, the results of our model are weakened, but it can still generate

contributions above the myopic level. In particular, we show that a slight amount of

satisficing behavior can still sustain large contributions in a repeated game with random

rematching.

The remainder of the paper is organized as follows. Section 2 describes the voluntary

contribution mechanism and reviews the main results from the experimental literature.

2See Andreoni and Croson (2008) for a survey.
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Several competing explanations for these results will also be discussed in this section. In

Section 3, we describe our model of non-standard preferences and rationality on the stage

game level, and discuss its relation to existing models of reciprocity and fairness. Section

4 characterizes the subgame perfect equilibrium that arises in our framework, and relates

the equilibrium behavior to the experimental results (in particular, we examine how the

equilibrium path is affected by changes in group size and technology). In Section (5),

we briefly discuss how the model extends to repeated games with rematching of players

between rounds. Section 6 offers concluding remarks. Most proofs are in the Appendix.

2 Voluntary Public Good Provision: Theory and Evidence

2.1 The Voluntary Contribution Mechanism

Consider the following simple environment, known as the linear voluntary contribution

mechanism (VCM): There are N players, each endowed with K units of a private good.

A player’s set of strategies is [0,K], where si ∈ [0,K] is player i’s contribution to the

production of a public good. The profile of contributions across all players is denoted

s = (s1, . . . , sN ). Player i’s consumption of the private good is then K − si, and the

amount of the public good produced is α
∑N

i=1 si, where N−1 < α < 1. Thus, a player’s

total consumption is

ui(s) = K − si + α
N∑
j=1

sj .

Call this one-shot game Γ1, and the T -fold repetition thereof ΓT . We use the convention

to denote by t = 1 the last stage, by t = 2 the second last stage, and so on, so that t = T

is the first time the mechanism is played. Denote by sti player i’s contribution at time t,

and let st = (st1, . . . , s
t
N ) be the contribution profile at t. Thus (s1, . . . , sT ) denotes the

outcome of the repeated game ΓT , and player i’s average consumption in this game is

Ui(s
1, . . . , sT ) =

1

T

T∑
t=1

ui(s
t).

A pure strategy for player i in ΓT is a mapping from histories, defined as usual, into

actions at each stage.

The utility functions ui and Ui are referred to as player i’s material payoffs. If the

players’ objective is to maximize their material payoffs, the voluntary contribution mech-

anism resembles a prisoners’ dilemma: In Γ1, si = 0 is the dominant strategy for each

player i, and the resulting dominant strategy equilibrium is a Pareto-dominated outcome.

In particular, the full-contribution profile (K, . . . ,K) is not an equilibrium, but maximizes

group welfare. As a consequence of the uniqueness of the zero-contribution equilibrium in

Γ1, s
t
i = 0 ∀i, t is the unique subgame perfect equilibrium in ΓT . As before, sti = K ∀i, t

is the welfare maximizing outcome.
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2.2 Experimental Studies

A large body of experimental research has examined the VCM game as described above,

and an excellent survey of the seminal contributions to this literature is Ledyard (1995).

Below we focus on a set of empirical regularities found by Isaac et al. (1984), Isaac and

Walker (1988), Andreoni (1988), Isaac et al. (1994), and others. The common theme from

these and other studies is contrary to the theoretical prediction:

Observation 1. In repeated VCM games, contributions are typically positive but tend to

decay as the game progresses.

It is interesting to examine how the contribution pattern is affected by changes in the

game’s parameters. Adopting Isaac and Walker’s terminology, we call N the group size,

and α the marginal per-capita return (MPCR) from investing in the public good. Both of

these variables can be controlled by the experimenter. Isaac and Walker (1988) compare

two different group sizes, N = 4 and N = 10, and two different MPCRs, αH = 0.75 and

αL = 0.3. The four possible combinations of N and α are called 4L, 4H, 10L, and 10H,

respectively. Some of the findings that emerged from these experiments are described

below.

The first finding concerns changes in group size. As a fraction of their per-period

endowment, members of the 10L groups allocated significantly more resources to the

public good than members of the 4L groups. While there was no significant difference

between the 10H and 4H groups in either direction, we may still note that

Observation 2. Contributions increase in group size: Holding MPCR fixed, larger groups

tend to provide more of the public good per person.

The second finding concerns changes in MPCR. Members of the 10H group provided more

of the public good than members of the 10L group; the same observation was made when

comparing the 4H group and the 4L group. We can thus note the following:

Observation 3. Contributions increase in the efficiency of public good production: Hold-

ing group size fixed, a higher MPCR leads to higher contributions per person.

Finally, one can compare groups with different sizes and MPCR, but with identical “fea-

sibility sets.” Specifically, Isaac and Walker (1988) compare the contributions in the 4H

vs. 10L groups. In each period, both groups can provide up to 3K units of the public

good. However, the 4H group provided more than the 10L group. We therefore note:

Observation 4. Contributions are lower in larger groups with smaller MPCR: When

varying MPCR and group size simultaneously, holding αN constant, larger groups are less

successful than smaller ones.

Regarding the length of the game T , two observations will be noted. First, Issac et al.

(1994) compare T = 10, T = 40 and T = 60, and observe the following:
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Observation 5. If the time horizon is increased, contribution tend to stay high for a

higher number of rounds.

Second, Andreoni (1988) reports the following surprising result. The time horizon T = 10

was common knowledge among subjects, but after stage 10 had been completed, subjects

were told that there was enough time left to run an additional set of stages in order to

generate more data. At the beginning of this second set, observed contribution levels were

higher than those at the end of the first set, and almost as high as those at the early stages

of the first experiment.

Observation 6. Restart effect: An unanticipated restart of a repeated VCM game, after

it has ended, increases contributions.

2.3 Possible Explanations

The experimental results described above are clearly at odds with the theoretical prediction

that contributions should be zero. Several explanations of these phenomena have been

proposed, which can roughly be grouped in three categories. (The literature relating to

the question why people cooperate, or why they contribute to public goods, is vast, and

no attempt at an exhaustive survey will be made here.)

In the first category, it is argued that the monetary payouts provided by the experimen-

tal design accurately reflect preferences, but that people typically fail to behave rationally

and do not maximize these preferences. Without a fully rational understanding of the

game, subjects may use other decision making procedures such as imitation, or simply err

and learn the incentives of the game only through repeated trials. There is a considerable

body of literature, theoretical and experimental, that concerns imitation in related games

such as the prisoners’ dilemma (Eshel et al. (1998), Ahn et al. (2001), and others). Simple

decision errors have been studied theoretically in the public good context by Anderson et

al. (1998). They show that a quantal response equilibrium, involving the “correct” statis-

tical distribution of errors, can exhibit many of the properties found in the experimental

studies. Palfrey and Prisbrey (1996) argue that, because the equilibrium contribution is

zero, any errors must necessarily manifest themselves as over-contributions. The decline

in contributions can then be attributed to a simple reduction in the size or frequency of

errors. However, such learning cannot explain either the restart effect (Observation 6) or

the slow decay effect (Observation 5).

The second category of explanations is based on the assumption that subjects act ra-

tionally, or at least do not err systematically, but that their preferences are to maximize

something other than their earnings in the experiment. Warm glow, altruism, and other

forms of other-regarding preferences have already been mentioned in the introduction, and

there is evidence that suggests that those motivations indeed influence subjects’ decisions
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to give to public goods. Andreoni (1995) contains a series of experiments aimed at disen-

tangling altruistic motives (which belong to the second category) from confusion (the first

category). Using public good experiments with interior equilibria, Keser (1996) and Isaac

and Walker (1998) present evidence of what the latter authors call a “residual cooperative

component” that can explain the contribution pattern in games with zero-contribution

equilibria. Eliciting contribution schedules for a set of possible MPCR values, Brandts

and Schram (2001) find that the decisions of some subjects are driven by other-regarding

motives. The linear VCM game is explicitly modeled as a fintely repeated game in a recent

paper by Ambrus and Pathak (2009), who show that the presence of players with recip-

rocal utility functions (i.e., interdependent utility across stages) can explain the declining

contributions effect (Observation 1) and the restart effect (Observation 6).3

Finally, some have suggested incomplete information about each others’ preferences

or rationality as a third source for cooperation. Palfrey and Rosenthal (1988) present

a static public good model with altruism and incomplete information. Dynamic models

with incomplete information are more complex, as reputational concerns arise in these

settings. The theoretical groundwork for the study of how multi-sided incomplete infor-

mation affects cooperation in repeated games is laid by Kreps et al. (1982) in the context

of the prisoners’ dilemma, and is experimentally tested by Andreoni and Miller (1993).

A reduced-form reputational model is developed in Brandts and Figueras (2003). While

public goods problems share important features with the prisoners’ dilemma, modelling

multi-sided incomplete information in repeated public goods games is more difficult, due

to the larger action space and the need to find consistent beliefs for a larger set of out-

of-equilibrium actions. In light of this difficulty, we abstract from possible incomplete

information in this paper. We develop instead a framework that falls in the preference-

based as well as the rationality-based category. This will be done in the next section.

3 Non-Material Utility and Satisficing Behavior

3.1 Non-Material Utility

Let us first consider players whose preferences are different from their material payoffs.

Instead, assume that in Γ1 each player maximizes

vi(s) = ui(s) + βρ(s),

where the function ρmeasures non-material utility derived from a contribution profile. One

can think of ρ as a representation of a player’s “social preferences,” that is, considerations

3Ambrus and Pathak (2009) also present experimental evidence that rational selfish players indeed

contribute in the presence of reciprocal players. Charness and Rabin (2002) present tests designed to

test for social preferences (outside the strict public good context) and find some evidence for reciprocal

motivations.
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of how the outcome s is evaluated in the player’s mind that are not described by the

player’s material payoff. The weight place on this non-material component is given by

the scalar β ≥ 0. In ΓT , the average payoff for a player is then given by Vi(s
1, . . . , sT ) =∑T

t=1 vi(s
t)/T .

For sake of simplicity, we will assume a particular functional form for the non-material

payoffs:

ρ(s) = (si)
γ1(s−i)

γ2 , γ1 > 0, γ2 > 0, γ1 + γ2 < 1, (1)

where s−i ≡ (N−1)−1
∑

j 6=i sj is the average contribution among i’s opponents. With the

functional form assumption for ρ, a player’s best response to an average contribution of

s−i among her opponents is

b(s−i) = min

{
K,

[
γ1β

1− α
(s−i)

γ2

]1/(1−γ1)}
. (2)

This best response has several appealing properties. Since b(0) = 0, players do not posses

an unconditional preference for giving to the public good. On the other hand, if at least

one other player contributes to the public good, then player i would like to contribute

herself.4

3.2 Satisficing Behavior

Let us now consider players who do not maximize their payoffs but instead are content

with reaching a payoff that is within a distance ε of the maximal possible level. Call

a strategy profile in a normal form game an ε-equilibrium if no player can increase her

payoff by more than ε (with ε ≥ 0) by switching her prescribed strategy to any alternative

strategy, given the strategies of the other players (see Radner [1980]). Formally:

Definition 1. A profile s is an ε-equilibrium of Γ1 if for all i and s′i ∈ [0,K], ui(s) ≥
ui(s

′
i, s−i)− ε.

If ε = 0, the definition is that of Nash equilibrium. If ε > 0, however, the notion of

ε-optimality captures the idea of satisficing behavior of players.

In repeated games, we will apply the ε-optimality criterion to the average payoffs in

each subgame. This implies that players are permitted to make an ε-mistake in every

4We assume a functional form only because the paper is concerned with the dynamic strategic effects

in the VCM game, and the utility representation of a player’s non-material preferences does not matter

for these dynamic effects as long as these preferences induce at least two Pareto-ranked equilibria in the

stage game (see Lemma 1). To this end, we could have used any function ρ whose induced best response is

continuous, twice differentiable on (0,K], satisfies b(0) = 0, b′(s−i) > 0, b′′(s−i) < 0, lims−i→0 b
′(s−i) > 1,

and ∂b(s−i)/∂β → 0 as β → 0.
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round of the repeated game.5 The definition of ε-equilibrium then extends easily to the

following:

Definition 2. A strategy profile is ε-subgame perfect equilibrium (ε-SGPE) of ΓT if it

induces an ε-equilibrium in every subgame of ΓT .

Similar to the preference scaling factor β above, the size of ε provides a measure for the

degree of non-optimality of players’ choices. The smaller ε, the less the satisficing aspect

of the players’ behavior and the closer are their decisions to optimality.

3.3 Stage Game Equilibria

Fixing all other parameters, the framework developed above gives rise to a class of games

described by the values for β and ε. Let us denote these games by ΓT (β, ε). Throughout

the paper we will consider only games where at least one of β and ε is zero. We will refer

to the game ΓT (0, 0) as the standard model.

One may regard a game ΓT (β, ε) as similar to ΓT (0, 0) if equilibrium play in the static

game Γ1(β, ε) is similar to equilibrium play in the static game Γ1(0, 0). That is, in the

one-shot case (or, equivalently, in the repeated case with myopic players), the effects of

non-material payoffs or satisficing behavior would be small. The results in this paper

concern cases where models that are similar to the standard one, in this static sense, have

largely different dynamic properties. Taking this perspective hence allows us to separate

the strategic (non-myopic) incentives to cooperate in dynamic games from any direct

(myopic) incentives.

The static standard model Γ1(0, 0) resembles a prisoners’ dilemma: Contributing zero

to the public good is the dominant strategy for each player i. In Γ1(β, 0), almost the same

happens if β is small:

Lemma 1. If β > 0 there exist two pure strategy Nash-equilibria in Γ1(β, 0). One of these

equilibria is s = (0, . . . , 0), and the other is s = (ŝ, . . . , ŝ), where

ŝ = min{K, [γ1β/(1− α)]1/(1−γ1−γ2)}.

Observe that ŝ → 0 as β → 0. Thus, scaling the non-material component of players’

utility functions toward zero, the “cooperative equilibrium” moves closer to the “selfish

equilibrium,” and when β = 0 they collapse into the unique selfish equilibrium. To avoid

trivial full contribution outcomes, we shall assume that ŝ < K.

A similar result holds if β = 0 and ε > 0:

Lemma 2. If ε > 0 there exists a continuum of pure strategy ε-equilibria in Γ1(0, ε). In

particular, every profile s = (s1, . . . , sN ) such that si ∈ [0, ε/(1− α)] ∀i is a pure strategy

ε-equilibrium.

5This assumption is not crucial for the results, and the same qualitative predictions can be obtained if

we applied ε-optimality to total payoffs.
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Thus, the smaller ε the closer are players to full rationality, and the smaller the contribu-

tions which can be sustained in equilibrium. Again, we shall assume that ε/(1− α) < K,

so that the full contribution profile is never an equilibrium in the static game.

Thus, we talk of a game being “close” to the standard model if equilibrium behaviors

in the corresponding static games are similar. This will be the case if β or ε is small.

Of course, we cannot make a statement as to what the exact (i.e. numerical) range of

behaviors is that we would consider close to the standard one. Our concept of closeness

simply rests on the standard notion of continuity, guaranteeing that we can make play in

the static game as similar to the standard model as we want, by choosing β or ε sufficiently

small.

4 Dynamic Equilibrium

This section characterizes the equilibrium of the repeated VCM game with either social

preferences and satisficing behavior. Only symmetric equilibria will be considered. A

vector of T numbers σ = (σ1, . . . , σT ) is called an equilibrium path if there exists a ε-

subgame perfect equilibrium in ΓT (β, 0), or an ε-subgame perfect equilibrium in ΓT (0, ε),

in which σt is the contribution made by every player in round t of the game. We will

further focus on maximal equilibrium paths, meaning that no other equilibrium path σ̃

exists for which
∑T

t=1 σ̃
t >

∑T
t=1 σt.

The main result is stated below:

Theorem 3. Consider either a game ΓT (β, 0) with β > 0, or a game ΓT (0, ε) with ε > 0.

There is a unique maximal symmetric equilibrium path σ = (σ1, . . . , σT ). This path is

independent of T (expect for its length) and has the following property: There exists T ∈ N
such that σt = K for all t ≥ T , and σt < σt+1 for all 1 ≤ t < T . Furthermore, σ is

increasing in β and ε, and T is decreasing in β and ε.

Note that if the actual length of the game is T < T , then full contributions will not be

observed. However, by increasing the length of the game to T or larger, one can generate

full contributions in the first T − T + 1 periods of play.

To prove Theorem 3, recall that in Γ1(β, 0) and Γ1(0, ε) there exist several Pareto-

ranked equilibria. One can therefore construct subgame perfect equilibria in ΓT (β, 0), and

ε-subgame perfect equilibria in ΓT (0, ε), that involve actions which are not stage-game

equilibria; see Radner (1980) and Benoit and Krishna (1985). For ease of exposition, we

focus on simple trigger strategies to provide unrelenting punishments. That is, profitable

deviations from a prescribed path will be punished by switching to zero contributions,

which is always an equilibrium.6 Notice that, by the nature of the voluntary contribu-

tion mechanism, it is not possible to target punishments or rewards at individual players

6These unrelenting punishments are sufficient, but usually not necessary, to sustain the maximal path.

That is, a small under-contribution by one player usually does not have to result in the zero contribution
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without punishing or rewarding all other players at the same time. The maximal path

that can be supported by these punishments is constructed below. This will be done for

the game ΓT (β, 0), with β > 0. The proof for the game ΓT (0, ε) is similar and is in the

Appendix.

4.1 Proof of the result

To describe the trigger strategy, let σ = (σ1, . . . , σT ) be a contribution path. Define a

collection of functions w = (w1, . . . , wT ), prescribing symmetric contributions to be made

by the players in each period as a function of previous play, as follows:

1. In round T , each player’s contribution is wT = σT .

2. In round t < T , each player’s contribution is

wt(st+1, . . . , sT ) =

{
σt if sτi ≥ στ ∀i = 1, . . . , N, ∀τ = t+ 1, . . . , T,

0 otherwise.
(3)

We will construct the maximal path σ for which w is a subgame perfect equilibrium in

ΓT (β, 0).

To simplify notation, let u(s) and ρ(s) be the material and non-material payoffs a

player obtains (in a single stage) if all players contribute s, and let u(s′, s) and ρ(s′, s) be

payoff the player obtains if she contributes s′ while all other players contribute s. Define

v(s) and v(s′, s) accordingly. Call b(s) a player’s best-response to the opponent profile

s−i = (s, . . . , s) in the stage game. As shown in Section 3, b is strictly increasing and

strictly concave and satisfies b(0) = 0. Define a function δ : [0,K]→ R as follows:

δ(s) = v(b(s), s)− v(s) = (1− α)[s− b(s)] + β[ρ(b(s), s)− ρ(s)]. (4)

δ(s) is the one-shot gain for a player who deviates in some period from s to b(s), while

all others hold their contributions constant at s. Also define a function µ : [0,K]→ R as

follows:

µ(s) = v(s)− v(0) = (αN − 1)s+ βρ(s) > 0. (5)

µ(s) is the utility loss incurred by a player when the symmetric contribution profile s is

replaced by the selfish equilibrium s = 0 in a given round of the game.

Now construct σ as follows. At stage 1 a Nash equilibrium of Γ1 must be played. By

Lemma 1 there are two candidate contributions, ŝ and zero. Set σ1 = ŝ and let

B1 = µ(σ1) > 0

profile being played from that period forward, but could instead be punished by a relatively small reduction

in the contributions of the other players.
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be the payoff difference for a single player between these two equilibria. Next, we will

construct the contribution σ2 to be made in round 2. Suppose σ2 > σ1 and consider

a deviation to b(σ2) < σ2. Given the trigger strategy (3), the deviating player gains

δ(σ2) > 0 at stage 2 and loses B1 at stage 1. In order to support σ2 at stage 2, we

therefore need δ(σ2) ≤ B1. Thus, set

σ2 = max{s ∈ [0,K] : δ(s) ≤ B1}.

Observe that δ is continuous, δ(s) ≥ 0, and δ(s) = 0 if and only if (s, . . . , s) is a Nash

equilibrium of Γ1. Thus, a well defined σ2 exists and σ2 > σ1.

Proceed now in similar fashion and set B2 = B1 + µ(σ2) > B1 and σ3 = max{s ∈
[0,K] : δ(s) ≤ B2}. Since B2 > B1 and d(σ2) ≤ B1, σ

3 exists and σ3 > σ2 if σ2 < K

(otherwise σ3 = σ2 = K). In general, using the starting values B0 = 0 and σ1 = ŝ, one

can compute Bt and σt recursively as follows:

Bt = Bt−1 + µ(σt) > Bt−1

and

σt = max{s ∈ [0,K] : δ(s) ≤ Bt−1}.

It is easily seen that σt > σt−1 if σt−1 < K, and σt = σt−1 = K otherwise. The resulting

path σ is then the maximal path that is supported by the trigger strategy w. Since

w involves maximal punishments, σ is the maximal symmetric equilibrium path of ΓT .

Finally, the value T is defined as T = min{t : σt = K}.7

This proves Theorem 3 for the game ΓT (β, 0), except for the comparative properties

with respect to β. These are established in the Appendix (as is the result for ΓT (0, ε)).

4.2 Relation to experimental observations

In Section 2, several empirical observations regarding experimental studies of the repeated

VCM game were discussed. Theorem 3 in the previous section is, on a qualitative level,

in line with several of these observations. Most importantly, the fact that the maximal

contributions σt are positive but decline over time is consistent with Observation 1. Fur-

thermore, increasing T to, say T ′ does not alter σ1, . . . , σT (not that these are the final T

stages of the game). This means that, in longer games, high contributions can be sustained

for a larger number of rounds, a result consistent with Observation 5.

The restart effect (Observation 6) also does not contradict the equilibrium constructed

in the Section 4: When a second set of T stages is added, without this being known to the

players beforehand, the same equilibrium can clearly by played in the second set. This

means, after contributions have declined toward the end of the first set, restarting the

game will result in an increase in contributions from σ1 to σT .

7Note that if σt < K then σt ≥ tŝ, by construction. Thus, T must be finite.
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We now examine how our framework relates to the other observations discussed in

Section 2. Observations 2–4 concern the effects of changes in group size (N) and MPCR

(α) on observed contribution patterns. Theorem 4 states comparative results when either

α or N is changed, and the other parameter is held constant. The proof is in the Appendix.

Theorem 4. Consider either a game ΓT (β, 0) with β > 0, or a game ΓT (0, ε) with ε > 0.

The maximal equilibrium path σ is increasing in α and N , and the stage after which

contributions decrease (T ) is decreasing in α and N .

This result is consistent with Observation 2 and Observation 3. Increases in N or α

will make groups more successful, in that the maximal path of contributions that can be

achieved in equilibrium increases. The reason is that a larger group size (higher N) or a

higher efficiency of public good production (higher α) make it easier to punish deviators

even late in the game. (This effect can be easily seen when inspecting (5)).

In the following numerical example we illustrate the results of Theorem 4. We consider

the VMC game with T = 15 and K = 1. We take the preference-based approach and set

β = 0.04 and ε = 0. The parameters in the non-material utility function are γ1 = 1/2 and

γ2 = 1/4. Figure 1 depicts the maximal subgame perfect contribution paths for different

values of α and N . In the top panel of Figure 1, α = 0.5 is held fixed and N is varied. In

the middle panel, N = 4 is held fixed but α is varied. In the benchmark case α = 0.5 and

N = 4 (the thick curve), full contributions are possible until 8 periods prior to the end

of the game. Notice also that in the last few periods the incentives to free-ride on others’

contributions are almost entirely preserved and equilibrium contributions are therefore

negligible.

In an infinitely repeated game with standard preferences and rationality assumptions,

Pecorino (1999) shows that the discount factor required to achieve a desired level of con-

tributions goes to zero as group size increases. A similar result can be shown in a finitely

repeated setting as a corollary to Theorem 4: Holding everything else fixed, the amount

of non-selfishness (β) or satisficing behavior (ε) required to achieve a desired total level of

contributions goes to zero as N increases.

It is also illuminating to examine how equilibrium contributions vary across groups

with the same feasibility sets. Consider a change in group size which is accompanied by

a inversely proportional change in MPCR, so that under full cooperation the group can

produce the same amount of the public good. In this case, smaller groups will provide more

of the public good than larger ones, as the following result states. Furthermore, regardless

of group size, there exists a lower bound on the best possible equilibrium outcome:

Theorem 5. Consider either a game ΓT (β, 0) with β > 0, or a game ΓT (0, ε) with ε > 0.

Consider a sequence (αm, Nm) → (0,∞) as m → ∞, such that αmNm = c > 1 ∀m. Let

σm be the associated sequence of maximal contribution paths. Then the following holds:

(a) For all m < m′, σm > σm′.

12



(b) There exists a positive and increasing limit path ω = (ω1, . . . , ωT ) such that σm > ω

∀m and σm → ω.

This result is consistent with Observation 4. To illustrate the effect of changing group

size and MPCR simultaneously, we use the same example as above, but we let α and N

vary while holding αN = 2 fixed. The contribution paths for five different values of N are

depicted in the bottom panel in Figure 1 (in each case α = 2/N).

4.3 Remarks

We now offer a few additional remarks concerning our theoretical results and their inter-

pretation in light of the experimental data.

First, it may seem odd that in the ε-model we assume that players do not fully max-

imize their objective function but at the same time possess the capacity to follow the

trigger strategy posited in (3). Under this strategy, current actions are dependent on the

history of past play. The strategy is thus more complex than history-independent strate-

gies such as, say, the strategy to always contribute the same amount to the public good.

However, within the set of all history dependent strategies, the strategy (3) is relatively

simple: All punishments are implemented by players reverting to the zero-contribution

profile once the first deviation is observed. Furthermore, even if not fully maximizing pay-

offs, players may still understand the incentives imposed on them by the threat of others

withholding their contributions in response to free-riding. In our view, the experimental

data are consistent with the idea that players are afraid of being punished in this way

if they under-contribute. For example, late in the game the possibilities for punishing

deviators by withholding future contributions are necessarily limited; hence it is harder to

sustain large contributions in later rounds. The slight irrationality present in the e-model

is needed to generate multiple equilibria in the very last stage, which in turn is necessary

for the threat not to unravel if players can foresee the final period. However, ε need not

be large to generate this overall incentive structure.

Second, even though there are many qualitative similarities between the predictions of

this model and the data, there are also some differences. The graphs in Figure 1 show a

very pronounced decline of contributions, from the full level to virtually nothing, in only

a few periods. In typical VCM experiments, however, early contributions are not full, late

contributions are not zero or almost zero, and the decline is much smoother than what

the model here predicts.8 Our results should hence be interpreted as a statement about

the general nature and direction of the strategic effects in VCM games. As with any

theoretical model, other effects are likely to be present in reality. In fact, simple random

8The fact that late contributions are significantly above zero can obviously be explained by a sufficiently

large value for β, but then it seems surprising that early contributions are not at the maximum possible

level. Conversely, early contributions that are below the maximum level can be explained by a sufficiently

small β, but then late-round contributions should be almost zero.
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Figure 1: Contribution paths for different N and α

Top graph: N varies, α = 0.5 constant. Middle graph: α varies, N= 4 constant.

Bottom graph: N varies, αN=2 constant.
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errors can account for early under-contributions as well as late over-contributions, relative

to the equilibrium path. Furthermore, early under-contributions by mistake would tend

to be persistent in our framework, as they cannot be distinguished from intentional free-

riding and would have to be punished by withholding at least some contributions in other

rounds. Keep in mind that the severe punishments which are used in our equilibrium are

not necessary to sustain the maximal path σ. It is straightforward to construct sufficient

punishments which sanction a small deviation or mistake made by one player by a small

reduction in contributions during the next period. The observed contribution profile over

time would then be smoother than what is depicted in the figures above.

Finally, while the focus here is on symmetric equilibria in which all players make

the same contributions, a significant degree of heterogeneity is observed in experimental

studies. One possible explanation is that subjects play an asymmetric equilibrium. In our

framework, an infinity of such equilibria exists. One class of asymmetric equilibria is for

some players to play the dynamic equilibrium among themselves, while others free-ride.

The first type would contribute to their own benefit as well as the benefit of all other

subjects. The free-riding type, on the other hand, could be a player who understands the

incentives of the static game but fails to grasp the dynamic equilibrium. Coalitions that

can sustain the dynamic equilibrium described in Section 4 need to consist of at least 1/α

players. For example, in the 4H case of Issac and Walker (1988) it would be possible that

only two subjects play the dynamic equilibrium. In the early stages of the repeated game,

contributions of about 50% of total endowments can then be predicted.

5 Random Reassignment of Players

We have so far considered a repeated VCM game where the same group of participants

interacts in each period. A number of experimental papers examine the effects of randomly

reassigning participants into groups in every period, precisely to eliminate any strategic

effects across rounds. Such a designs is sometimes called a strangers treatment, or a

contagion-free design. The experimental evidence in this regard is somewhat inconclusive:

Andreoni (1988) makes the observation that randomly rematched subjects contribute more

than in a fixed group, while Croson (1996) finds that they contribute less (a survey of these

and other results is Andreoni and Croson (2008).)

What effect would random rematching of players have on our theoretical predictions?

To answer this question, consider an environment where in each round the VCM game is

played by M ≥ 2 groups of N ≥ 2 players each. (The model examined so far had M = 1.)

After each round, the composition of the M groups is determined anew through a random,

uniform reassignment in which each player has the same chance of being placed in any one

of the M groups. These draws are independent across time. Further, a player does not

observe the identity of the other players who participate in her own group, at any time.
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5.1 Contagion

Our goal is to examine whether the trigger strategy used previously can generate contri-

butions above the myopic level. Note that, due to the random reassignment procedure,

a defection by one player will not immediately spread through the entire population of

players as it did for M = 1. Instead, it will contaminate the population more slowly.

This implies that punishment via withholding contributions works in a different way than

before, for two reasons. First, it does not necessarily reduce the defector’s payoff, as the

defector may be assigned to a new group (consisting of players who still make their equi-

librium contributions). Second, it may reduce the payoffs for players who were not in the

same group as the defector, and if these players use the same trigger strategy they them-

selves will start withholding their own contributions from the next period onward. By

choosing not to punish a defector, a player can thus retard the speed at which defection

spreads across the population of players.9 The first effect makes it more difficult to deter

free-riding by the threat of reducing future contributions, while the second reduces the

players’ incentives to punish free-riders in the first place.

A full treatment of these contagion dynamics, and how they would be affected if a

player decided not to punish a defector, is beyond the scope of this section. Instead, we

will restrict our attention to the limiting case explored in Theorem 5 (for M = 1) above:

Fix the number of groups at M > 1 and suppose that N → ∞ and α → 0, such that

αN = c > 1 stays constant. In the limit as N → ∞, the contagion dynamics become

easy to characterize: If every player follows the trigger strategy and a defection occurs in

round t, then there will be a fraction of 1/M defecting players in every group in round

t−1 (almost surely, by the law of large numbers). This, in turn, implies that in all rounds

τ < t − 1, every player defects (almost surely). Furthermore, no single player can retard

these dynamics by choosing not to punish a defecting player.

5.2 Solution concept

A slight difficulty arises due to the fact that the VCM game now possesses only one

subgame, namely the entire game itself. The solution concept of subgame perfect equilib-

rium (resp. ε-SGPE)—now identical to that of Nash equilibrium (resp. ε-equilibrium)—

therefore no longer entails any notion of sequential rationality that seems reasonable in this

multi-stage game. One way to incorporate sequential rationality is to introduce players’

beliefs about their opponents’ behavior in the model, and make these beliefs consistent

with (a) the random-matching structure of the game and (b) the strategies of the players;

for example, by way of a sequential equilibrium. Sequential rationality then boils down

to the requirement that a player’s strategy be optimal (or ε-optimal) given the player’s

belief, at every stage.

9See Ellison (1994) for a discussion of this retardation effect in a repeated prisoner’s dilemma game.
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An alternative that bypasses belief formation is the concept of extended subgame

perfection (see Kreps and Wilson, 1982). Loosely speaking, a strategy profile is extended

subgame perfect if (i) each player’s strategy is optimal in each subform of the game (a

subform is a subgame with more than one initial node), and (ii) the conditional probability

distribution over initial nodes in each subform (“beliefs” so to speak) is derived from Bayes

rule when this is possible, including subforms that have a zero probability overall but a

positive probability conditional on a larger subform being reached.10 In the context of

our game, condition (ii) implies that, if a deviation occurs (a null event in equilibrium),

the distribution over opponent’s contribution following this deviation is generated by the

contagion dynamics described above. In the following, we use extended subgame perfection

to impose sequential rationality on the players. As usual, for the rationality-based model

the optimality criterion will be that of ε-optimality.

5.3 The equilibrium contribution path

Let us first look at the preference-based model (β > 0, ε = 0). Consider the last stage of

this game (round 1). Provided no previous defections have been observed by the members

of a group, they may either play the zero-contribution profile (0, . . . , 0) or the positive-

contribution profile (ŝ, . . . , ŝ). As before, set σ1 = ŝ, and suppose that σ2 > ŝ can be

supported in equilibrium. If a player contributes less than σ2 in round 3, then (under

the trigger strategy) all players who are in the same group as the defector in round 2 will

reduce their final-round contribution from σ1 to zero. Due to random rematching with

a very large number of players, in round 1 every group must contain a fraction 1/M of

opponents that contribute zero. The average contribution in the final round is then

s−i =
1

M
· 0 +

M − 1

M
· ŝ =

M − 1

M
ŝ almost surely.

Thus, for the trigger strategy to be used in equilibrium, a zero contribution must be a best

response to an average opponent contribution of M−1
M ŝ. Whether this is the case depends

on the specification of non-material payoffs. If we use the specification from before, given

in (1), then it is clear from the associated best response (2) that a zero contribution is

not optimal if the opponents contribute a positive amount on average.11 In fact, given

that b(s−i) > s−i for all s−i < ŝ, no reduction in contributions (either to zero or to some

small positive level below ŝ) can be part of an equilibrium punishment. Thus, the best

contribution path in extended SGPE of ΓT (β, 0) with random rematching is given by the

myopic path σt = ŝ ∀t.
10The precise formal definition of extended subgame perfection is in Kreps and Wilson (1982), p. 877.
11Note that using the best response (2) is appropriate in the limit as N →∞. For finite N , on the other

hand, the variable s−i is random (governed by a binomial distribution) and each player would choose a

contribution that maximizes expected payoffs, yielding a different and more complicated best response.
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On the other hand, suppose non-material payoffs were changed in such a way that a

player wants to contribute a small amount ŝ if and only if all opponents contribute the

same small amount ŝ, and zero otherwise. This would not alter any of our previous results,

but zero would indeed be a best response to an average opponent contribution of M−1
M ŝ.

Now turn to the rationality-based model. We can show that it is possible to generate

large contributions in an extended ε-SGPE of ΓT (0, ε), even if the players are randomly

reassigned, supported by the trigger strategy with unrelenting punishments. Define

λ(s) = u(s)− u
(
M − 1

M
s

)
= lim

N→∞,
αN=c

αN
1

M
s = c

1

M
s. (6)

λ(s) is the utility loss incurred by a player when the symmetric contribution profile s

is replaced by an asymmetric profile in which a fraction 1/M of a player’s opponents

contributes nothing, and the remaining fraction contributes s. Define µ(s) and δ(s) as in

(4)–(5), for the limit case:

µ(s) = u(s)− u(0) = lim
N→∞,
αN=c

(αN − 1)s = (c− 1)s,

δ(s) = u(0, s)− u(s) = lim
N→∞,
αN=c

(1− α)s = s.

To construct the path σ, begin by setting σ1 = limm ε/(1−αm) = ε. Let B̃1 = λ(σ1) and

set σ2 = max{s ∈ [0,K] : δ(s) ≤ B̃1 + ε}. This gives σ2 = (c/M + 1) > ε = σ1. Now set

B̃2 = λ(σ2) + B1, where B1 is defined as before (i.e. B1 = µ(σ1)). B̃2 is the cumulative

utility loss a defector in round 3 can expect. We can then set σ3 = max{s ∈ [0,K] : δ(s) ≤
B̃2 + ε}. In general, σt can be constructed recursively, by letting σ1 = ε and B0 = 0, and

setting

Bt−1 = µ(σt−1) +Bt−2,

B̃t−1 = λ(σt−1) +Bt−2,

σt = max{s ∈ [0,K] : δ(s) ≤ B̃t−1 + ε},

for t ≥ 2. To explain the formula for B̃t, recall that one round after the initial defection,

a fraction 1/M of the players have stopped contributing. And exactly two rounds after

the initial defection, all players have stopped contributing.

Comparing the definitions of B̃t and Bt, it is clear that the punishment possibilities are

more limited when M > 1 than when M = 1. Thus, maximal equilibrium contributions

will be lower in the random reassignment model. The “Strangers” treatment is hence

successful at reducing the strategic effects. However, for large N and a slight amount of

satisficing behavior, it is still not enough to fully eliminate them.
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6 Conclusion

This paper examined strategic behavior in repeated VCM game which is consistent with

several stylized facts from the experimental literature, concerning the temporal pattern

of contributions, the restart effect, as well as various effects of changes in group size and

technology. To get such strategic behavior started, of course, we needed to make assump-

tions on either preferences or rationality. The main point, however, was to demonstrate

that even when these assumption are mild—in the sense that they would not significantly

alter the behavior of myopic players—their effects on the dynamic path of contributions

is large. We here conclude with a few remarks.

First, the idea that withholding future contributions can punish free-riders effectively

has also been explored in Marx and Matthews (2000) in the context of raising funds to

build a single public project: Instead of trying to raise all required funds to complete a

project at once, a “piece-meal approach” in which smaller amounts are contributed over

time can be more successful. To prevent an unravelling of contributions, one needs to make

the assumption that the benefit function for the public project exhibits a jump at some

point. The existence of this jump serves a role similar to the multiplicity of stage-game

equilibria used in this paper.

Second, in order to achieve significant positive contributions, players must understand

the opportunity they have to reward cooperative behavior by coordinating on the public

spirit equilibrium at the last stage of the dynamic game, and sanction free-riding behavior

by coordinating on the selfish equilibrium. These rewards and punishments are implicit

in that they arise endogenously through the multiplicity of stage game equilibria. An

independent experimental literature on explicit rewards and punishments has emerged

recently (e.g., Fehr and Gaechter [2000]). There, subjects are given a mechanism to

induce costs on others; however such punishment also incurs a cost on the person who

administers the sanction. In this sense, the public good problem is only deferred to a

higher level, but not solved. Nevertheless, it is shown that such higher-order mechanisms

tend to increase cooperative behavior throughout all stages of the game.12

12This raises the question of whether an experimental design is available that would allow one to test

if the implicit punishments provided in this model are actually what drives cooperation. To this end,

one could provide the subject group with a simple mechanism for inflicting a credible punishment after

the last stage of a conventional VCM game. This could be achieved, for example, by letting them play a

coordination game after the VCM. The coordination game would have two equilibria, one with high payoff

the other with low payoff, serving the same role as the equilibria identified in Lemma 1 and Lemma 2.
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Appendix

Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. A player’s best response to an average opponent contribution of s−i

is given by

b(s−i) = min

{
K,

[
γ1β

1− α
(s−i)

γ2

]1/(1−γ1)}
.

By the assumptions made on γ1 and γ2, b is non-decreasing. Since b(0) = 0, the zero-

contribution profile s = (0, . . . , 0) is a Nash equilibrium in Γ1(β, 0). To arrive at a second

symmetric equilibrium where si = ŝ > 0 ∀i, we need 0 < ŝ = min{K,β(ŝ)}, which gives

ŝ = min{K, [γ1β/(1 − α)]1/(1−γ1−γ2)}. Thus, as β → 0 we have ŝ → 0. These are the

only symmetric equilibria. To see that there can be no asymmetric equilibria, suppose the

profile s is an equilibrium with si < sj , for some i, j. This implies s−i > s−j , and since b

is non-decreasing we have si = b(s−i) ≥ b(s−j) = sj , a contradiction.

Proof of Lemma 2. Fix any player i and let s−i be any profile of contributions among i’s

opponents. i’s utility is

ui(si, s−i) = 1− (1− α)si + α
∑
j 6=i

sj .

The maximum utility player i can attain is 1 + α
∑

j 6=i sj (if si = 0). Thus the difference

between this maximum utility and i’s actual utility is

max
s′i∈[0,K]

ui(s
′
i, s−i)− ui(si, s−i) = (1− α)si,

which is less or equal to ε if and only if si ≤ ε/(1− α).

Proof of Theorem 3

Rest of the proof for ΓT (β, 0). Most of the proof is in the main text. Here we show that

σ increases and T decreases in β. Since σ1 = ŝ and ŝ increases in β, the result is true for

σ1. Now consider σ2 = max{s ∈ [0,K] : δ(s) ≤ B1}. We will show that δ(s) decreases and

B1 increases in β. By definition, δ(s) is the maximal gain a player can have by deviating

from the symmetric profile s (namely to b(s)). If s > 0 then b(s) > 0, so the envelope

theorem implies dδ(s)/dβ = ρ(b(s), s)− ρ(s) < 0. Thus, δ(s) decreases in β. To see that

B1 increases in β recall that B1 = µ(ŝ) = (αN − 1)ŝ + βρ(ŝ). Since ŝ increases in β and

αN > 1, B1 increases in β. Thus, σ2 must increase in β. The same argument can now

be repeatedly applied for σt, t > 2, which establishes that σ is increasing in β. Since the

maximal possible contribution remains fixed at K, T must be decreasing in β.
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Proof for ΓT (0, ε). We will use the trigger strategy with unrelenting punishments de-

scribed in (3). The argument will be similar to the one given in the main text, with

the exception that an additional step is required in the end (the additional step concerns

the choice of which period to allocate the permitted ε-mistakes to).

Define functions δ : [0,K]→ R and µ : [0,K]→ R along the same lines as in the text:

δ(s) = u(0, s)− u(s) = (1− α)s,

µ(s) = u(s)− u(0) = (αN − 1)s > 0.

At stage 1, an ε-equilibrium of Γ1(0, ε) must be played, regardless of the history that

preceeded the last stage. By Lemma 2 there is a continuum of candidate contribution

levels, ranging from 0 to ε/(1− α). Set σ1 = ε/(1− α) and let

B1 = µ(σ1) > 0

be the payoff difference for a single player between this ε-equilibrium and the alternative

zero-contributions equilibrium.

Now move to period t = 2. Suppose that σ2 > σ1, and consider a deviation to 0. For

the same reason as before, it is sufficient to focus on deviations to a player’s best response

in the stage game. The deviating player gains δ(σ2) > 0 at stage 2, and loses B1 at stage

1. In order to support σ2 as an ε-optimal contribution at stage 2, we need δ(σ2) ≤ B1 + ε.

Therefore

σ2 = max{s ∈ [0,K] : δ(s) ≤ B1 + ε}.

A well defined σ2 exists, and σ2 > σ1 as long as σ1 < K. (Otherwise σ2 = σ1 = K).

Proceed now in exactly the same fashion as for ΓT (β, 0). That is, using the starting values

B0 = 0 and σ1 = ε/(1− α) > 0, recursively compute

Bt = Bt−1 + µ(σt) > Bt−1

and

σt = max{s ∈ [0,K] : δ(s) ≤ Bt−1 + ε}.

Observe that σt > σt−1 if σt−1 < K, and σt = σt−1 = 1 otherwise. The period T is now

defined as before: T = min{t : σt = K}.
The comparative properties of σ and T with respect to ε can also be established in

the same manner as before. Since σ1 = ε/(1− α), σ1 clearly increases in ε. Now consider

σ2 = max{s ∈ [0,K] : δ(s) ≤ B1}. δ(s) does not depend on ε, and B1 = µ(σ1) since

σ1 increases in ε and αN > 1 implies µ is increasing. Thus, σ2 must increase in ε. The

same argument can now be repeatedly applied for σt, t > 2, which establishes that σ is

increasing in ε. Since the maximal possible contribution remains fixed at K, T must be

decreasing in ε.
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Finally, note that in every round of this equilibrium, each player makes an ε-mistake.

In principle, it is possible to shift this ε-mistake from round t to round t′ > t and still

have an ε-SGPE. However, this will decrease the total amount of public good provided.

To see this, consider decreasing σ1 by a small amount. The definition of an ε-SGPE now

permits us to increase σt by exactly the same amount, for some t > 1. At the same time,

however, the decrease in σ1 will decrease B1, which diminishes σ2, which in turn decreases

B2 and thus σ3, and so on. Thus, to construct the maximal path σ, it is necessary and

sufficient to set σ1 to the largest level possible under the ε-optimality criterion. The same

argument can be made to show that the ε-mistake contained in σ2 should not be shifted

to σt (t > 2), and so on. The resulting path σ = (σ1, . . . , σT ) is therefore the maximal

path supported by the trigger strategy w.

Proof of Theorem 4 and Theorem 5

Proof of Theorem 4. Consider the game ΓT (β, 0), for β > 0. Suppose first that α in-

creases. Then σ1 = ŝ = [γ1β/(1 − α)]1/(1−γ1−γ2) increases. Now consider σ2 = max{s ∈
[0,K] : δ(s) ≤ B1}. We show that δ(s) decreases and B1 increases in α, for s ≥ σ1. To see

that δ(s) decreases in α, note that by the envelope theorem, dδ(s)/dα = −(s− b(s)) ≤ 0 if

s ≥ b(s). Since we are considering the case s ≥ σ1 (and σ1 = ŝ = b(ŝ)), we have that δ(s)

decreases in α. To see that B1 increases in α recall that B1 = µ(σ1) = (αN−1)σ1+βρ(σ1).

Hence dB1/dα = Nσ1 > 0. Thus, σ2 must increase in α. The same argument can be

repeatedly applied for σt (t > 2). Suppose next that N increases. This does not change

σ1 = ŝ. For σ2, note that dB1/dN = ασ1 > 0 and dδ(s)/dN = 0. Hence σ2 increases in

N . Repeat this argument for σt (t > 2); the result follows. Finally, since the maximal

possible contribution remains fixed at K, T must be decreasing in both α and N .

Now consider the game ΓT (0, ε). Suppose first that α increases. Then σ1 = ε/(1− α)

increases. Now consider σ2 = max{s ∈ [σ1,K] : δ(s) ≤ B1}. We show that δ(s) decreases

and B1 increases in α. To see that δ(s) decreases in α, note that by the envelope theorem,

dδ(s)/dα = −s < 0. To see that B1 increases in α recall that B1 = µ(σ1) = (αN − 1)σ1.

Hence dB1/dα = Nσ1 > 0. Thus, σ2 must increase in α. Repeating the argument for σt

(t > 2) establishes that the path σ is increasing in α. Suppose next that N increases. This

does not change σ1 = ε/(1−α). For σ2, note that dB1/dN = ασ1 > 0 and dδ(s)/dN = 0.

Hence σ2 increases in N . Repeat this argument for σt (t > 2); the result follows. Again,

since the maximal possible contribution remains fixed at K, T must be decreasing in both

α and N .

Proof of Theorem 5. Consider the game ΓT (β, 0), for β > 0. To prove the first part, we

follow the same steps as in the proof of Theorem 4. Suppose α decreases, N increases,

but αN remains constant. Clearly b(s) and ŝ decrease; hence σ1 = ŝ decreases. Consider

σ2 = max{s ∈ [0,K] : δ(s) ≤ B1} next. We show that δ(s) increases and B1 decreases.
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B1 = µ(σ1) = (αN − 1)σ1 + βρ(σ1) clearly decreases, as σ1 decreases and αN remains

constant. As for δ(s), by the envelope theorem dδ(s)/dα = −(s − b(s)) < 0 (while

dδ(s)/dN = 0). Thus, δ(s) increases, implying that σ2 decreases. Repeating the argument

for all σt (t > 2) establishes the first part of the theorem. To construct the limit path,

notice that (1− αm)→ 1 as m→∞. Hence we have

ω1 = lim
m→∞

ŝ = (γ1β)1/(1−γ1−γ2).

Now let

B1 = lim
m→∞

B1 = µ(ω1),

and set ω2 = max{s ∈ [0,K] : δ(s) ≤ B1}. This is well defined with ω2 > ω1. Proceeding

in this fashion, one can construct the entire limit path ω. As in the proofs before, entirely

analogous steps apply for ΓT (0, ε), which are therefore ommitted here.
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