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ABSTRACT 

Myoelectric prostheses approximate the motion and 
flexibility of biological limbs, especially when compared to 
their mechanical counter-parts. Machine learning enhances 
the functionality of these devices; however, in an ever-
changing environment, the effectiveness of conventional 
approaches is impeded. We introduce Partition Tree 
Learning—a method for learning predictions in an ongoing 
fashion whilst being able to identify and adapt to new 
contexts automatically. We compare the performance of 
PTL to that of a stochastic gradient descent learner on a 
stream of data from a participant actuating a myoelectrically 
controlled robot arm. In a consistent context both learners’ 
predictions are comparable. After a context switch, PTL is 
able to adapt to the change and outperform the gradient 
descent learner. These preliminary results indicate that PTL 
may effectively deal with change in real-world prosthetic 
use, lending its ability to learn over varying situations to the 
constantly changing environment of powered prosthetics.  

INTRODUCTION 

For ongoing, every-day use, it would be ideal for a 
prosthetic device to adapt to the unavoidable changes in the 
user and environment [1-4]. These changes take many 
forms: muscle fatigue degrading the control signal; shifts in 
the position of the residual limb while performing a single 
pattern of movement; the changing task profiles as a user 
moves from driving a car to putting away groceries. 
These changes, operating at different semantic and temporal 
scales, create challenges for control-related machine 
learning techniques that have been developed mainly for 
stationary environments—where the signals are coming 
from the same distribution and the learner aims for a 
universal best-fit solution [5]. In particular, changing 
circumstances are known to be problematic for pattern 
recognition in myoelectric control [1-3]. A solution that is 
learned a priori may be robust in general but unable to adapt 
to the particular circumstances of the moment. On the other 
hand, an ongoing learner can adapt as needed but may not 
provide the stability necessary for both user acceptance and 
effective control [2, 4, 6, 7]. 

 

Recent work has focused on using techniques to adapt 
across several of the many contexts that arise in myoelectric 
control. Sensinger et al. compared supervised and 
unsupervised adaptive approaches to improve pattern 
recognition for a single user across multiple sessions, where 
previous work had looked only at single-session 
performance [1]. Tommasi et al. were concerned with the 
transition from stable pre-trained models to customization 
for a particular user, and used adaptive combinations of the 
pre-trained models to reduce training time [4]. Prior work 
by our group has explored the use of real-time machine 
learning to adapt and improve both prediction and control 
policies during ongoing use by a single user [8-10]. 
Together these approaches to adaptive learning form a solid 
basis to approach problems inherent in building myoeletric 
control schemes for specific users and their varied patterns 
of use. 

In this paper we are concerned with the changing 
contexts that arise from task switches during persistent use 
of an assistive device. Specifically, we present initial 
findings on one method by which a system learns 
automatically during ongoing multi-context use. Our meta-
learning approach, termed Partition Tree Learning (PTL), is 
able to adapt to changing contexts without requiring pre-
processing or explicit context identification. PTL therefore 
promises to complement existing learning methods and 
further expand the adaptability, robustness, and 
functionality of myoelectric human-machine interfaces. 

PARTITION TREE LEARNING 

Many machine-learning algorithms are developed 
primarily for use in stationary environments: expecting that 
either the task of interest does not change, or the state 
representation (that is, the features the learner uses to 
predict) is detailed enough that every context is uniquely 
identified. This is a necessary simplification that is 
sometimes sufficient, however, the many contexts a 
prosthetic user naturally encounters are diverse and too 
complex to represent in a single computationally efficient 
predictor. Thus, we are interested in studying online or 
continual learning systems where the learner is able to adapt 
to the specific context. Moreover, we aim to create a 
learning system that adapts to and identifies changing 
contexts automatically. 



To that end, we are developing Partition-Tree Learning 
(PTL)—a meta-learning algorithm. Through PTL we can 
adapt existing learning algorithms to improve their 
performance in non-stationary environments, such as those 
encountered in myoelectric control. PTL increases the base 
learner's accuracy without drastically increasing their 
computational complexity. This is a direct extension of the 
Partition-Tree Weighting algorithm for probabilistic 
modeling by Veness et al. [11], which provides theoretical 
guarantees on the performance for minimal computational 
and memory costs. 

 A key aspect of PTL is that it coordinates learners 
across different time scales. These learners are designed to 
converge on the best prediction over the long term and are 
unable to adapt to local context. PTL allows these stationary 
learners to be used effectively in non-stationary 
environments by coordinating their predictions and limiting 
the data over which they learn. 

PTL uses a binary partition tree (visualized in Fig. 1) to 
split the data into discrete binary segments. Each node of the 
tree represents a distinct learner over a specific segment. 
The root learner, sitting at the top of the tree, operates on all 
the data (up to 2d time-steps): it behaves identically to the 
base learner. The leaf nodes operate over a single time-step, 
and therefore their predictions are mainly determined by the 
initial settings of the learning algorithm. On the levels in 
between, each node at depth i operates on 2d time-steps. 

Because PTL operates online it never has to store or 
compute the entire tree at once. Instead, it keeps a list 
of d learners, and up to d statistics summarizing the error for 
each completed subtree. At each time step PTL updates each 
of the d learners: from the learner at the leaf node 
monitoring only the current time-step, through all 
intermediate learners with their longer segments, ending 
with the root node. If this is the first time-step of a new 
partition for any depth (as is always the case at the leaf 
nodes), it will create a new learner at that node and update 
its own records for the newly completed subtree. 

When making a prediction, PTL consults each of 
the d currently active learners and reports the weighted 
combination of their predictions. Each prediction is 
weighted according to a prior that considers long-term 
learners more likely than short-term, the statistics for the 
relevant completed subtrees, and the performance of the 
particular learner over its particular segment. This allows 
PTL to adjust automatically to changes in the environment: 
when the environment changes such that the shorter-term 
learners predict better than the long-term learner, the weight 
shifts to favour predictions from the short-term learner. 
When the environment is stable, the weight is mainly on the 
long-term learner and PTL makes predictions accordingly. 
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Figure 1: A full binary partition tree, showing all the 
binary intervals over the time 0...16. 

METHODS 

Interactive data was gathered from multiple able-bodied 
subjects—participants without amputations. We used a 
myoelectrically controlled robot arm which replicated the 
functionality of a commercial prosthetic device. Informed 
subject consent was acquired as per ethics approval by the 
University of Alberta Health Research Ethics Board. The 
experiment was composed of a simplified conventional 
prosthetic training task: a square movement. Each subject 
moved in the square pattern for 8 minutes.  

For the duration of the trial the subjects moved the arm 
in a square pattern, where the learner predicted the joint 
activity of the robot’s arm. If the elbow joint was in motion 
on any given time-step, then the value of the joint activity 
would be one, when stationary, the value would be zero.   

For comparing the learners we used a 2048-timestep-
length segment from the middle of the trial. To create a 
clear domain switch, we presented this time series twice to 
the learning agents: first where the signal to be predicted 
was the sum of the joint activation signal over a horizon of 
50 time-steps, and second where the target prediction was 
the sum of the negation (so that if the joint was moving the 
one time-step signal would be -1, otherwise zero). 

The base learner was a simple stochastic gradient-
descent learner that used tile coding over the trace signals 
on the activation of the two joints together with the position 
data on each joint. These settings are similar to those used in 
Pilarski et al. [8–10], but rather than using a discounted sum 
of future signals we used a fixed-horizon sum for the 
gradient descent learner. The weights were initialized to 0 
and the learning rate α was set to 0.05, which was the best 
on the square task. 

PTL used the same learner and parameters, with a 
complete reset at the segment boundaries: each new learner 
was re-instantiated with its weights starting at 0. The 
performance of the base learner was by measuring the 
cumulative prediction error. We repeated trials across 



several different users and the results were consistent: one is 
singled out for discussion in detail. 

RESULTS & DISCUSSION 

The cumulative error is shown in Figure 3. Before the 
task change, the two algorithms made near-identical 
predictions for all parameter settings tested. After around 
300 time steps the rate of error accumulation has levelled 
off. This can also be seen in the profile of the predictions, 
shown in Figure 2, where both lines overlap and closely 
track the target before the switch. After the switch point, 
they both predict as before but PTL has lower peaks, more 
quickly compensating for the change. The long-term benefit 
from the predictions immediately following the switch can 
be seen in the cumulative error, where there is clear 
separation between the cumulative errors. 

At the switch point, there is a sharp penalty visible in 
both the cumulative error graph and the prediction graph. 
The error rate re-stabilizes but takes slightly longer for the 
gradient descent learner than the initial learning phase, 
approximately 500 time-steps compared to 300. After this 
stabilization period the predictions of both algorithms again 
overlap. 

The weight visualization in Figure 2 provides insight 
into how PTL handles the context switch. Before the switch, 
PTL places the most weight on the long-term learners, 
shown. There is a deviation from this around the 1024 time-
step mark. At that point, and more consistently after the 
switch, the weight is distributed across more learners. The 
medium-term learners are given weights equal to the long-
term learner. These shorter learners, not being misled by 
previous experience in the pre-switch domain, are able to 
adapt faster to the new signal. As the task continues without 
another switch, the long-term learner eventually catches up, 
and the weight again shifts to favour the long-term learner. 
Introducing another or more frequent switches will shift the 
weight more towards the short-term learners. 

In this preliminary work, we used artificially imposed 
switch points to understand how the PTL algorithm behaves 
during contextual shifts. As part of our ongoing work, we 
are investigating the performance of PTL in a variety of 
tasks where switching boundaries were naturally occurring 
in the data stream. 

CONCLUSION 

In this work we introduced Partition Tree Learning—a 
method for learning predictive information during ongoing 
myoelectric control. This approach helps to maintain 
consistency while still providing the flexibility to adapt to 
changes in the user and their situation. Our results suggest 
that PTL is a beneficial a way to learn and adapt during long 
term, contextually varying prosthesis use. PTL is capable of 

adapting to changing situations without requiring explicit 
contextual identification. As PTL is a meta-learning 
approach, it is also complementary to many existing control 
optimization techniques that function both prior to and 
during the control of a myoelectric device. PTL therefore 
promises a new approach to enhancing the versatility and 
utility of future myoelectric devices. 
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Figure 2: Predictions made by the gradient descent learner (red) and PTL (blue) compared to the true target (grey).  
The lower figure visualizes the weight on each of the segment lengths over time. 

 
 

 

Figure 3: Cumulative error for the gradient descent learner (red) and PTL (blue) over time. 
 


