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Abstract

General value functions (GVFs) are an approach
to representing models of an agent’s world as
a collection of predictive questions. A GVF is
defined by: a policy, a prediction target, and a
timescale. Traditionally predictions for a given
timescale must be specified by the engineer and
each timescale learned independently. Here we
present y-nets, a method for generalizing value
function estimation over timescale, allowing a
given GVF to be trained and queried for any
fixed timescale. The key to our approach is to
use timescale as one of the network inputs. The
prediction target for any fixed timescale is then
available at every timestep and we are free to train
on any number of timescales. We present prelimi-
nary results on a simple test signal.

1. Value Functions and Timescale

Reinforcement learning (RL) studies algorithms in which an
agent learns to maximize the amount of reward it receives
over its lifetime. A key method in RL is the estimation of
value — the expected cumulative sum of discounted future
rewards (called the return). In loose terms this tells an agent
how good it is to be in a particular state. The agent can then
learn a policy — a way of behaving — which maximizes
the amount of reward received.

Sutton et al. (2011) broadened the use of value estimation
by introducing general value functions (GVFs), in which
value estimates are made of other sensorimotor signals, not
just reward. GVFs can be thought of as representing an
agent’s model of itself and its environment as a collection
of questions about future sensorimotor returns; a predictive
representation of state. A GVF is defined by three elements:
1) the policy, 2) the cumulant (the sensorimotor signal to be
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Figure 1. ~v-nets. Values are estimated by providing state and
timescale, -y, as inputs to the network parameterized by weights
w. An agent in state S takes action A and transitions to state
S’ receiving the new target signal C. The agent selects a set
of timescales I' on which to train and for each v € I" computes
values V' (S, v; w) and V (S’, v; w) (note that there is only a single
network, but it must be called twice to compute each V). For each
7, the TD error is calculated according to § = C+~V (S, y; w)—
V' (S, ~; w). The TD errors are then collected and used to update
w using a chosen TD learning algorithm, such as TD(\) or GTD.

predicted), and 3) the prediction timescale, . Considering
a simple mobile robot, examples of GVF questions include
“How much current will my motors consume over the next 3
seconds if I spin clockwise?” or “How long until my bump
sensor goes high if I drive forward?”

This paper focuses on generalizing value estimation over
timescale. Modeling the world at many timescales is seen
as a key problem in artificial intelligence (Sutton, 1995; Pre-
cup et al., 1998). Further, there is evidence that humans and
other animals make estimates of reward and other signals at
numerous timescales (Tanaka et al., 2016). Our work here
can be seen as directly connected to the concept of nexting,
in which animals and people make large numbers of pre-
dictions of sensory input at many, short-term, timescales
(Gilbert, 2006). Modayil et al. (2014) demonstrated the
concept of nexting using GVFs on a mobile robot. However,
until now, value estimation has, in general, been limited to
a single fixed timescale. That is, for each desired timescale,
a discrete and unique predictor was learned. However, there
are many situations where we may desire to have value esti-
mates of the same cumulant over many different timescales.
For example, consider an agent driving a car. Such an agent
may make numerous predictions about the likelihood of col-
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liding with various objects in its vicinity. The agent needs to
consider both the risk of collisions in the near term and far
term and the relevance of each may change with the speed
of the car. If the engineer knew which timescales would
be needed ahead of time they could design them into the
system, but this is not the case for complex settings.

Here we present a novel class of algorithms which enables
the explicit learning and inference of value estimates for
any valid fixed discount. The key insights to our approach
are: 1) the timescale can be treated as an input parameter
for inference and learning and 2) the estimated bootstrapped
prediction target for any fixed timescale is available at every
timestep. We provide a first simple demonstration of our
approach in predicting the return of a standard square pulse
over many different timescales.

1.1. Related Work

Schaul et al. (2015) generalized value estimation across
goals, and their corresponding policies, by providing a goal
embedding vector as input to the value estimator. Xu et al.
(2018) created a deep reinforcement learning algorithm
which automatically adapts the meta-parameters, includ-
ing the discount, of a reinforcement learning algorithm by
gradient descent. The goal of their algorithm was to au-
tomatically determine the best return to use for learning
as the agent learned. They found that providing the meta-
parameters, including -y, as input to both their value and pol-
icy networks significantly improved performance in learning
policies on 57 Atari games. Similarly, our algorithm pro-
vides the timescale as input to the function approximation
network.

2. Background

We model the agent’s interaction with its environment
as a Markov Decision Process. At each timestep ¢ the
agent, in state S; € S, takes action A; € A according
to policy 7 : & x A — [0,1] and transitions to state
Si4+1 € S according to the transition probability p(-|St, At).
In the traditional RL setting the agent receives a reward
Ri11 = R(St, At, Si+1) € IR. The agent’s goal is to learn
a policy which maximizes the amount of cumulative reward
it receives in the future, which is defined as the return:

Gy =Rit1+yRii2+ 7 Rigs+ ... (1)

The term v € [0, 1] is referred to by several names in the
literature including the timescale, the continuation function
and the discount; it represents the amount of emphasis ap-
plied to future rewards and is the focus of this paper. In the
case of GVFs we simply substitute our signal of interest, the
cumulant, C' for reward, R.

A value estimate is simply the expectation of the return:
Vﬂ—(S) = Eﬂ— |:Gt|St = S:| . (2)

Temporal difference (TD) learning is a common class of al-
gorithms used in RL for learning an approximation of value
(Sutton & Barto, 1998). Estimation weights are typically
trained by stochastic gradient descent using the TD error:

(St = Ct+1 + ’YV(St+1) — V(St)

While simple domains can be represented using tabular
lookup, complex settings in which the state space is very
large or infinite must use function approximation (FA) meth-
ods to estimate the value as V' (s; w), where w is a set of
weights parameterizing the network. Function approxima-
tion has the advantage that states are not treated indepen-
dently, but rather, a learning step updates related states as
well allowing for generalization across state-space.

3. Generalizing over v

Our goal is to be able to predict the value function for any
discount factor . To achieve that goal, we propose vy-nets: a
neural network architecture for value functions that operates
not only on the state, but also the desired target discount
factor v, (see Figure 1). On each transition the network is
trained on many arbitrary v, € I values. Thus, the y-net
learns to generalize over arbitrary ~j values.

Generating the error function for a vy-net is also straightfor-
ward. For any single v € I, the usual TD error is modified
to:

Otiye = Cri1 + WV (St41,7%) — V(Sex1, ). Q)

The total gradient can then be summed over all 4, € I" and
applied to update the network.

Choosing I' must be done with care. A naive approach
might uniformly sample 7, € [0,1)'. However, value func-
tions change non-linearly with . To illustrate this property,
consider that v can be viewed as the probability of continua-
tion, allowing us to derive the expected number of timesteps
until termination of the return as (see Sherstan (2015) for a
derivation):

T= L (G))

L=y

This relationship is non-linear for large values of v (Fig-
ure 4). Thus, naively drawing -~y from a uniform distribu-
tion would tend to favor very short timescales. Conversely,

If v = 1 value estimates are infinite unless the return is
guaranteed to terminate as in the episodic case.
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Figure 2. Experimental results. a) Predictions (solid) against the true return (dashed) after 50k ts using both « and 7 as input, prescaling
the cumulant and using the 3-distribution described in Section 4. For display purposes all predictions are normalized by (1 — 7). We see
good accuracy for both of the bookend timescales 7 = {1, 100}. Shorter timescale estimates show decent accuracy, but error increases
with longer timescales. This is to be expected from the distribution used for training (Figure 5) which has very little probability of
selecting timescales in the region of 60 or 80 ts for training. b—f) The error of various configurations is compared. The legend tuple
indicates (inputs, prescaling, distribution used for timescale selection). For each experiment, runs of 50k ts were averaged over 40 seeds.
Network weights were saved every 1k ts. The networks were evaluated at T = {1, 2,4, 5, 10, 20, 40, 60, 80, 100} and 95% confidence
intervals are indicated by shading. b—d) The squared error was computed against the ideal return and summed across all prediction
timescales. The squared error of each timescale is given comparable weighting by normalizing by (1 — ~)2. b) Comparing effects of
input representation. ¢) Comparing the use of cumulant pre-scaling. d) Comparing distributions used for gamma selection. e, f) The
unnormalized squared errors for each evaluated timescale summed over time with respect to «y (e) and 7 (f).

drawing uniformly from 7 would put little emphasis on
short timescales. While the best method for selecting 7 for
training is outside the scope of this paper, we provide some
comparisons in our experiments.

The representation of timescale used for input to the net-
work may affect the network’s ability to represent different

timescales. The  scale compresses long timescales but
spreads short ones and in the 7 scale we have the opposite
effect. Thus, providing both ~ and 7 as input may allow for
good discrimination at all timescales.

Finally, the magnitude of near-term and far-term returns is
very different. To prevent far-term returns from dominating
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the function approximation we may need to normalize the
returns in some way (van Hasselt et al., 2016). One approach
to normalization in our setting is to prescale each cumulant
by (1—7). Predictions can then be reconstructed by dividing
the network output by this term.

4. Experiments

Our prediction target was a continuous square wave 100
timesteps in length with a magnitude of {—1, 1} (Figure 2a).
Normalized inputs were tilecoded (Sutton & Barto, 1998)
with 20 tilings of width 1.0, 20 tilings of width 0.5 and
30 tilings of width 0.1. Tiling positions were randomly
shifted by small amounts at the time of initialization for each
run. Value estimates were computed using linear function
approximation on the output of the tilecoding and the final
layer of weights were updated using TD(0) (Sutton & Barto,
1998) (The algorithm used for this experiment is given in
Algorithm 1). For training, at each timestep six timescales
were used; we always trained on 7 = {1,100} and drew
four timescales from a chosen distribution. We compared
using uniform distributions on both v and 7 and mixing
half from each, but found that a beta distribution gave better
results (Figure 2d). The beta distribution sampled values
of 7 with support € [1,100] and parameters « = 1,5 =4
(Figure 5). For network input we used the current timestep
€ [0,99] and the timescale expressed as either +y, 7 or both.
We also evaluated the impact of prescaling the cumulants as
discussed in Section 3.

Results are shown in Figure 2. Here the network is evaluated
for numerous timescale values. The squared error for each
is normalized by (1 — 7)? to give equal weighting to all
timescales and the errors are summed across all timescales.
The behavior of the prediction accuracy is different when v
or 7 are used as network input and the lowest error is found
when both are provided (Figure 2b). Prescaling the cumu-
lant further lowered the aggregated error across the selected
timescales (Figure 2c). This combination also gives excel-
lent performance on very low timescales such as v = 0. This
is good as we expect that, in general, shorter timescales may
be more important than long ones as state representation.
Additionally, we compared between the beta distribution
and uniform distributions on + and 7 and a mixed distribu-
tion in which two timescale values were drawn from each of
the uniform distributions (Figure 2d). The beta distribution
gave the lowest error, but the mixed uniform distribution
was nearly as good. Our results, although not conclusive
or statistically significant in many cases, suggest that when
using a linear function approximation network, better results
are achieved by prescaling the cumulants and using both
and 7 as inputs. Further consideration must be given to how
the training timescales are selected.
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Figure 3. For each series a single event, value=1.0, occurs at some
time in the future. Different timescales show different responses
to these events. This suggests that different prediction timescales
can enhance an agent’s state representation.

5. Using ~-nets

GVFs have typically been studied as a form of predictive
representation of state. A prediction at a given timescale
compresses the expected return into a single number, which
results in a loss of information about the form of the return.
That is, an infinite number of returns can result in the same
expected return from a given state. By looking at many dif-
ferent timescales of the value additional information about
the return can be recovered, e.g. is the return many small
near-term values or one large far-term value? Figure 3 illus-
trates the different returns of events at various distances in
the future. Being able to make predictions about the envi-
ronment at various timescales thus provides an agent with a
richer representation of its world and its effect on its world.
This ought to enable an agent to learn better policies.

However, it is not clear how our system could be integrated
into a larger agent. Consider that it may be useful to the
agent at time ¢ to have predictions of a given signal over
many timescales. First, there has to be some mechanism by
which the agent could determine what values of v would be
most useful to it. Secondly, it has to determine how many
~ values to use. If this number changes from timestep to
timestep then the agent has to be able to handle making de-
cisions with varying length inputs. Thirdly, for each desired
timescale a forward pass must be made on the network. All
of these issues are likely solvable, but they do not fit well
within the current architectures in popular use. Further, it
is not clear that having predictions at arbitrary timescales
would be better than simply using a fixed set of timescales.

6. Future Work

The method we have described in this paper has thus far been
limited to the fixed discounting case. However, one of the
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key generalizations of GVFs is to support state-dependent
(Sutton et al., 2011) or even transition-dependent discount-
ing functions ;1 = (S, At, St+1) (White, 2017). This
allows GVFs to be far more expressive in terms of what they
estimate. The generalized return is then given as

Gy = Cep1 + 741042 + Ve41Ye42043 + . ..
%) k

= Z(H Vi) Caot1-

k=1

Extending our method to support transition-dependent dis-
counting is clearly an important next-step in this work.

The successor representation (SR) (Dayan, 1993) predicts
counts of future state visitation. It is a method of factorizing
value estimation into two components, one which captures
the dynamics of the environment under a particular policy
and discount function (the SR), and a one-step reward pre-
diction. It has been suggested by several authors that the
SR may have numerous uses including that of transfer learn-
ing (Barreto et al., 2017; Ma et al., 2018), option discovery
(Machado et al., 2018) and accelerating GVF learning in
continual learning settings (Sherstan et al., 2018). However,
the SR is dependent on a policy and a discount function.
Ma et al. (2018) have already generalized the SR across
goals (and their induced policies); a natural next-step is to
generalize the SR over timescale.

7. Conclusion

We have presented y-nets, a simple technique for generaliz-
ing value estimation across timescale. This technique allows
a system to make predictions for values of any timescale
within the training regime of the network. This ability may
be useful in several ways such as in predictive represen-
tations of state — modeling the world as a collection of
predictions about future sensorimotor signals. In complex
environments, such as the real world, complete models are
not feasible, thus, being able to query for any timescale
provides a means of making the model more compact and
expressive. While we have demonstrated a mechanism for
generalizing value estimates over fixed discounting func-
tions, we have not demonstrated its usefulness. In particular,
additional work is needed to show: 1) that predictions of
varying discounts are useful in policy learning, and 2) that
our system of generalization can be effectively combined
with policy learning.
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A. Additional Figures

Table 1. Expected Timesteps

Y T
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Figure 4. Non-linear relationship between discount « and predic-
tion length in expected timesteps.
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Figure 5. Histogram of timescales used for training in Section 4
over 100000 timesteps. Six timescales were used on each timestep;
7 = {1,100} were trained on each timestep and an additional
four were selected from a beta distribution over 7 with support on
[1,100] and parameters « = 1, 8 = 4.

B. Increased Representational Power

One of the advantages of TD algorithms is that they al-
low the agent to bootstrap estimation of the return from
its existing estimates. However, this limits a single predic-
tor to capturing only returns with geometric discounting
as in Equation (1). By combining predictions at several
timescales it is possible to capture returns of different shapes
such as the example shown in Figure 6.
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Figure 6. Capturing non-geometric returns by taking the difference
of two predictions at different timescales.

C. Training Algorithm

Algorithm 1 Generalization over v with TD(0)

Input: Feature representation ¢ € IR", policy 7, and
step-size o
Output: Vector w.

Initialize w € IR" arbitrarily
while S’ is not terminal do
Observe state S, take action A selected according to
m(S), and observe a next state S” and cumulant C
Pick a set of v, to train on:
T < ySelectionFunction(Terminal = False)
A < 0; Zeros vector, length n
for v, in I" do
§=C+7d(Ses1,7) "W — d(Se, k) W
A +=5¢(St, k)
end for
w=w+aA
end while
T’ «+ vySelection Function(Terminal = True)
for v, in I" do
6=C— (S, ) w
end for
w=w+ aA




