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Known Barriers

“Three main problems were mentioned as 
reasons that amputees stop using their ME 
prostheses: nonintuitive control, lack of sufficient 
feedback, and insufficient functionality.”

— Peerdeman et al., JRRD, 2011.

Also: cost!
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Adaptation & Scalability
“Supervised adaptation should be considered for 
incorporation into any clinically viable pattern 
recognition controller, and unsupervised 
adaptation should receive renewed interest in 
order to provide transparent adaptation.”

— Sensinger et al., 2009.

“Completely stable, unsupervised [adaptation] has 
yet to be realized but is of great clinical interest.” 

— Scheme and Englehart, 2011.



Adaptive Prosthetics Project
• Develop new machine 

learning methods to 
improve human-machine 
interaction.

• Translate these 
techniques to 
preliminary use by 
amputee and non-
amputee subjects.

• Demonstrate clinical 
impact in studies with 
amputee participants.



Our Ongoing 
Approaches

• Real-time control learning without a priori 
information about a user or device.

• Prediction and anticipation of signals during 
amputee-device interaction.

• Collaborative algorithms for the online 
human improvement of limb controllers.



!
KEY IDEA

Temporally Extended 
Predictions are important for 

improving and adapting control systems.



Pilarski et al., IEEE RAM, 2013.

Anticipating Human and Robot Dynamics
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Prediction Learning with 
General Value Functions
• Thousands of accurate predictions can be 

made and learned in real time (i.e.,100Hz)

• A single stream of data be used to 
accurately predict many different sensors at 
many different time scales.

• Rapid learning that is non-episodic and that 
continue indefinitely (incremental learning).

Sutton et al., AAMAS, 2011.

Multi-timescale Nexting in a Reinforcement Learning Robot, Modayil, 
White, and Sutton, 2012.
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Learning and Blending Multiple Contexts



Example 1:
Prediction to Enhance Conventional

Control Systems



Prediction-based Improvement 
of a Switched Control Interface



Predicting what a user wants ...

Pilarski et al., BioRob, 2012.
Pilarski and Sutton, AAAI-FS, 2012.



Predicting what a user wants ...

Pilarski et al., BioRob, 2012.
Pilarski and Sutton, AAAI-FS, 2012.

Increased ideal switching suggestions (+23%)
 Decreased switching overhead (-%14)



... and when they want it.



... and when they want it.



... and when they want it.
Un-normalized
Predictions

Switching Signal from User



Example 2:
Using Predictions as State Information
(Predictive Representations of State)



Simultaneous, anticipatory myoelectric 
control of multiple actuators.

Coupled Prediction and 
Control Learning

Pilarski, Dick, and Sutton, ICORR, 2013.

Direct W-Predictive Control (0.25x Speed)



Coupled Prediction and 
Control Learning

Pilarski, Dick, and Sutton, ICORR, 2013.



Example 3:
Detecting and Using Context 
During Learning and Control



Learning during 
Contextual Shifts

Context 1 Context 2

True Joint
Angle

Pred. Joint
Angle



Learning during 
Contextual Shifts

Context 1 Context 2



Conclusions



Potential Utility for 
Extended Predictions

• Maintain consistency in controller or control interface 
for the user (as in Carmena et al.; Mataric et al.) ...

• ... yet adapt quickly to things that are impossible or 
challenging for a user to learn about or model.

• Recognize context or different use domains (situation 
aware controllers and predictions).

• Avenues discussed here: controller enhancement, 
state enhancement, control learning, contextual learning.



Summary
• Learning and using temporally extended 

predictions (sensorimotor knowledge) is a 
promising area for enhancing assistive devices.

• Strong preliminary results to show 
unsupervised adaptation, facilitation of 
simultaneous multi-joint control, and 
streamlining HMIs that use switching.

• Big picture: a move toward more advanced, 
persistent machine intelligence in NiPNS-HMIs.

Also: general value functions with TD-learning are a practical way to build up and maintain a 
diverse predictive model during the real-time operation of a system.
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