Basic acoustics part 2 Spectrograms, resonance, vowels

See Rogers chapter 7 8

Spectrogram

- Spectrogram
- Represents 'spectrum varying over time'
 - X-axis (horiz.) time (like waveform)
 - Y-axis Frequency (like spectrum)
 - Third dimension: pseudo-color or gray-scale representing amplitude

WaveSurfer....

- Allows us to see
 - Waveform
 - Spectrogram (color or gray)
 - Spectral section
 - 'short-time spectrum'
 - = spectrum of a brief stretch of speech
- Demonstration spectrograms
 - of whistle
 - of speech

Narrow band spectrogram [aaa] pitch change

Harmonics [aaa] pitch change

Narrow band spectrogram: changing pitch of [aaa]

- Spectrogram of [aaa] on varying pitches
- Narrow band spectrogram
 - Looks at fairly long stretch of time
 - 40 ms or so... sees several glottal pulses at once
 - Each glottal pulse about 10 ms long or less so several are blurred
 - Varying harmonic structure clear
 - Spectral sections at different times

Measuring F0 from narrow band spectrogram

- Measure F0 from k-th harmonic
 - Hk = x Hz then F0 = x/k Hz
 - 10th harmonic is convenient
- Expanding frequency scale makes this easier

Harmonics [aaa] pitch change: Freq. Expanded

10-th Harmonic highlighted: F0 about 93 and 141 Hz at arrows

Wide band spectrogram [aaa] pitch change

Wide band spectrogram [aaiiaa] No pitch change

Wide band spectrogram: changing pitch of [aaa]

- Spectrogram of [aaa] on varying pitches
- Wideband spectrogram
 - Looks at fairly long short of time
 - 2 to 3 ms only sees less than one full glottal period
 - Each glottal pulse about 10 ms long
 - Varying harmonic structure no longer clear
 - Dark bars show approximate location 'formant peaks'
 - Formants don't change much with pitch changes
 - They change lots with VOWEL changes

Wideband band spectrogram: [aaiiaa]

- Spectrogram of [aaiiaa] on SAME pitch
- Wideband spectrogram
 - Looks at fairly long short of time
 - 2 to 3 ms only sees less than one full glottal period
 - Each glottal pulse about 10 ms long
 - Harmonic structure no longer clear
 - Dark bars show approximate location 'formant peaks'
 - Formants change lots with VOWEL changes

Wide and narrowband spectrograms

- Narrowband spectrogram makes harmonic structure clear
 - Associated with glottal source
- Wideband spectrogram makes **formant** structure clearer
 - Dark formant bands that change with vowel, not with pitch)
 - Formants associated 'filter properties' of vocal tract above the larynx

Source + Filter = Vowel

- Source + Filter theory of speech
- Consider vowel like sounds first
 - Source = voicing in glottis
 - Filter = tube-resonator system of SLVT
 - SLVT = supra-laryngeal vocal tract

Principle of source + filter : Glottal source

Principle of source + filter : Vowel

Compare last two slides

- Waveform and spectrum of glottal source are relatively simple compared to vowel
- SLVT filter imparts extra structure on vowel waveform
 - Oscillation between glottal pulses
 - Enhances (boosts) certain frequency regions

Source + Filter = Vowel [æ]

Source + Filter = Vowel [i]

Artificial glottal source

- Transformer ® 'robot voice'
- Replace glottal source with a simple buzz
- Use my SLVT as the filter

Spectrum of the Robot source

• Robot source:

- Lots of harmonics across the frequencies
- Ideally each harmonic would be near same amplitude
- Note we see little 'pointed pickets' in spectral section
- Not narrow lines
- Real time-limited spectra look like this
 - As we increase time for a 'steady' signal we get more line-like harmonic peaks

What about filter?

- We've seen the robot source that can be filtered by real vocal tract
- Can we make a 'robot filter'
 - Yes: Plastic tubes
- Slap them with palm of hand and get an 'impulse response' of filter

Robot vowels stage 1

- WaveSurfer analysis slapped tubes of different lengths
 - (ThreeTappedTubes)
- WaveSurfer ... rapidly tapped mid-size tube
 - (TappedTubeEmpty.wav)
- WaveSurfer tapped tube with partial block
 - (TappedTubeBlock.wav)

Robot vowels stage 2

- WaveSurfer analysis slapped tubes of different lengths
 - (ThreeTappedTubes)
- WaveSurfer ... rapidly tapped mid-size tube
 - (TappedTubeEmpty.wav)
- WaveSurfer tapped tube with partial block
 - (TappedTubeBlock.wav)

Robot vowels stage 3

- Add Robot source to tube
- Move 'robot tongue' to change shape
- WaveSurfer: robot /aaaiiiaaa/

Review: Displays

- Waveform
 - Time x amplitude
- Spectrum or spectral section
 - Frequency by amplitude (dB)
- Spectrogram
 - Time by frequency by amplitude
 - (horiz.) (vert.)(color or darkness)

Waveforms:

- Waveform
 - Time x amplitude
- Good for measuring durations of some events (especially when displayed with spectrogram).
 - Period of a repetitive waveform (e.g. glottal pulse duration of voiced speech)
 - VOT

Spectral section

- Spectral section (spectrum)
 - Frequency by amplitude in a brief interval of time (a section of a longer signal)
- Narrow band spectra look at moderately long chunks of speech (30-40 ms)
 - Show harmonics for voiced speech
- Broad band spectra look at shorter chunks of speech (less than glottal period)
 - can show formant structure

Narrow band spectrogram

- Narrow band spectrogram is a way to display many narrow-band spectral sections at once
- At each point in time, look at moderately long chunks of speech (30-40 ms) centered on that time point ('windowed' sections)
 - Represent amplitude at each frequency for that center time by darkness or color coding
- Shows harmonics as horizontal bands that bend as fundamental frequency changes
- Formant patterns visible only indirectly by which harmonics are strong

Measuring F0 from waveforms

- Find duration of one period
- Convert period duration to frequency
 - 1 period in .005 seconds (= 5 ms) that means
 - = X periods in 1 second?
 - Answer 1/.005 = 200 Hz
- Alternate method: count several periods (k)
 - x periods in x sec means frequency of k/x Hz
 - That is k/x periods occur in one second

Measuring F0 from wide band spectrogram

- Find duration of one period
 - Distance between vertical striations (stripes)
- Proceed as with waveform
- "Ballpark" method for average F0:
 - Count number of striations in 100 ms and multiply by 10

Measuring F0 from narrow band spectrogram or spectral section

- Count up to the 10th harmonic
- Measure its frequency against the frequency scale
- Divide by 10
 - Can be very accurate
 - Can use harmonic number k (instead of 10) if that's easier to find
 - Then divide by k

Measuring Formants

- Use wide band spectrogram
- Try to identify wide bars that move a bit up and down
- Measure the center frequency of 'darkest' or 'redest' part.

Note: I will provide 'formant tracks' from WaveSurfer which will put thin lines through the formants