
B.2 PHYSICS OF GRAVITY EXPLORATION 
 
 
B.2.1 Acceleration of gravity (g) for a distributed mass 
 



 
 
 
B.2.2 Gravitational potential energy  and equipotential surfaces 
 
 



Equipotential surfaces 
 

U−∇=Example 1 : Sphere at z = 0     g  
 
 

 
 
 
 
 
 
 

U−∇=Example 2 : g constant as elevation increases.  g  
 Earth surface at z=0 
 
 
 
 

 
 
 
 
 
 



 
 
Example 3 : Point mass located just below the Earth’s surface 
 

 
 
 
 
These equipotentials can be simply evaluated and plotted in a MATLAB 
script Uplot.m 
 

 
 

 
 



 
The Geoid 
 
How will the sea surface respond to changes in subsurface density?  
 
How is the sea surface related to an equipotential surface? 
 
 

 
 
 
 
 

 
 
 
The geoid is defined as the equipotential surface of the Earth gravity field that most 
closely approximates the mean sea surface. At every point the geoid surface is 
perpendicular to the local plumb line. It is therefore a natural reference for heights - 
measured along the plumb line. At the same time, the geoid is the most graphical 
representation of the Earth gravity field. 
 
 

             
Purple : -107 m  Orange : + 85 m 
Data from http://www.ngs.noaa.gov/GEOID/ 
More information can be found at http://solid_earth.ou.edu/notes/geoid/earths_geoid.htm
 

http://solid_earth.ou.edu/notes/geoid/earths_geoid.htm


 
 
B.2.3 Applications of Gauss’s theorem 
 
 

∫∇
V

.g dV = g.dS ∫
S

 
 
(a) Consider  a sphere containing a point mass at the centre 
 
On the surface of the sphere, g is uniform and has magnitude, 

2r
Gm

g =  

 
Thus we can write 
 

2r
Gm

∫
S

g.dS =  g x (area of sphere)   =     x  (4 π r )   =   4πGm 2

 
Now using Gauss’s theorem 
 

∫
S

g.dS =  4πGm = g dV ∫∇
V

.

 
For a very small sphere, g dV    =   (∫∇

V

. ∇ .g ) x  (volume of sphere) =   4πGm 

 
Dividing each side by the volume of the sphere gives 
 
∇ .g  =   4πGρ 
 
where ρ is the average density of the  sphere.  
 



 
(b) Expression for total mass 
 

∫
S

g.dS = g dV  ∫∇
V

.

 
∇ .g  =   4πGρ    gives Now substituting   

 
 

∫
S

g.dS  = 4πGρ dV  ∫
V

 

∫
S

g.dS  = 4πG ρ dV  =   4πG x  ( total mass within the surface S) ∫
V

 
 
Thus gravity data can (in principle) tell us how much mass is within a volume. However the 
distribution of this mass cannot be determined uniquely. 
 
 
Example :  consider two spherical shells of radius a. At the centre of one is a point mass, m 1 . At 
the centre of the other is a sphere of radius r , also mass m .  12

 
 
 
 
 
 
 
 
 
 
 
Thus 4πG ρ dV  is the same for each shell, and therefore  g.dS  must also be the same.   ∫

V
∫
S

 
Since g will be uniform across the whole surface of the spherical shell (from symmetry) 
 

∫
S

g.dS   =  g 1 x  A 1  =  g  x  A  2 2

where g 1and g are the gravitational accelerations on each shell, and A 1  and A  their surface 
areas. Since A = A , it is obvious that g 1= g .  

2 2

1 2 2

 
In other words the gravitational effects of the two mass distributions are identical.  
 
We can tell how much mass is in there, but not where it is within the sphere. 
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