
B.4  Other factors that cause changes in g and need to be corrected 
 
Note that gravity exploration is different to seismic surveys in the following way:  
 
● In a simple seismic survey, the travel time depends on just the velocity of the material on a path 

between source and receiver. 
 
● A gravity measurement is influenced by local density changes plus the mass distribution of the 

whole Earth, the moon, Sun, planets …. 
 
 
4.1 Effect of latitude 
 
● acceleration of gravity at the Equator, g  = 978,033 mgal and at the poles g = 983,219 mgal 

(Hammer, Geophysics, 8, 57, 1943). This difference is  5186 mgal, which is much bigger than 
the anomalies we have considered,  and needs to be accounted for in field measurements. 
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Three factors cause g to vary with latitude  
 
 
(i) The Earth is distorted by rotation   
 
 R = 6378 km and R =6357 km. The ratio of flattening is approximately 1/298. The surface 
of the distorted sphere is called the reference ellipsoid and would be the equipotential if the 
Earth had a uniform structure. Density variations at depth in the mantle cause +/- 100 m 
differences between the reference ellipsoid and the geoid (the observed equipotential surface). 

E P

 
Since a point on the Equator is further from the centre of the Earth than the poles, gravity will 
be slightly weaker at the Equator. 
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We previously showed that for a sphere g (r) =  and  

 
Now consider small changes in r, such that r = r + h 0
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If  is small, then this be expressed with Taylor’s theorem as 
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Thus at the North Pole we have  r = 6357 km and g = 983,219 mgal. When we move up 21 
km to the radius of the equator, the decrease in gravity will be 6496 mgal     
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Thus g  =  g - 6496 mgal, which is too much  to explain the observed difference between 
the Equator and the Poles. 
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(ii) Centrifugal forces vary with latitude 

 
r = R cos θ 

 
       Centripetal acceleration = -r ω² 
 
 Component towards the centre of the earth  = -r ω² cos θ  
      = -R ω² cos² θ 
  
 Using R = R = 6378 km and ω = 2π  per day = 7.27 10 rad s  gives 5− 1−

P

 
 Rω² = 3370 mgal 
 
 Thus g P = g  +3370 mgal E

 
 How fast would the Earth need to rotate to throw objects at the Equator into space? 
 

 



 
(iii)  Mass distribution of the Earth 
The change in shape from a sphere to an ellipsoid redistributes the Earth’s mass. Thus results 
in more mass between points on the Equator and the centre of the Earth, than between the 
poles and the centre of the Earth. This effect will make g  > g and is analogous the Bouguer 
correction we will discuss in section B4.2. Calculations show that g  ~  g + 4800 mgal 
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Combining these three effects gives 

 
g = g + 6496 + 3370 - 4800 mgal   =  g  +5056 mgal   ( approximately as observed) P E E

 
These effects can be quantified analytically and it can be shown that  g (θ) can be written either as 
a truncated power series 

 
g(θ)   = g  ( 1 + α sin ² θ + β sin² 2θ + …)  E
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or exactly as Somigliana equation g (θ)  = g   E

 
where α, β, k and e are all constants  (Blakely, pages 129-136) 
 
Over the past century, these constants have been used by the International Association of Geodesy 
to define standard gravity in a series of formula with ever increasing accuracy. 

 
 1930 International Gravity Formula    
  g (θ)  = 9.78049       (1+ 0.0052884 sin ² θ – 0.0000059 sin² 2θ) 

 
 Geodetic reference system 1967   
 g (θ) = 9.78031846 (1+ 0.0053024 sin ² θ – 0.0000058 sin² 2θ) 

 
 Geodetic reference system 1987 
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 g (θ)  = 9.7803267714  

 

 



 
 
 
Example : In Edmonton  θ = 53˚ 30’ 25” N,   the GRS67 equations gives  
 
  g  =   9.78031846 ( 1+0.003417902-0.000005395)   m s  2−

 
   =   9.81369388  m s  2−

 
The variation of g with latitude is also important when a survey extends over a significant 
north-south extent. Differentiating the GRS67 equation with respect to θ yields 

 

θd
dg

  =     9.78031846  (0.0053024 x 2 sin θ cos θ - 0.0000058 x 4sin 2θ cos 2 θ) 

 
    =    0.049526      m s  per radian 2−

 
   =    0.0008655    m s  per degree 2−

 
    =    86.550          mgal per degree 
 
    =    0.7868          mgal  km    ( 1 degree latitude = 111 km) 1−

  
All the these equations define the expected value of theoretical gravity (or normal gravity) on 
the reference ellipsoid at latitude θ. Differences between this value and what is actually measured 
are anomalies that we will analyse for information about density contrast below the survey area. 
 
 
 
325 B.4.2  Elevation of the measurement location 
 
 

(i) The Free air correction 
 
We previously showed that as we move to higher elevations, the acceleration of gravity 

decreases. 
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With   g  = 9.81 ms  at a radius r = 6357 km, this gives 2−
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dh
dg

  =  - 3.077 x 10   m s  per m of elevation gain 6− 2−

 = - 0.3077 mgal m  1−

 
 

 
 
 
Gravity measurements are made at points ‘A’ and ‘B’. Before we can consider if changes in g are 
due to subsurface density variations, we must consider the effect of elevation on these 
measurements.  
 
We will “correct” the data at ‘B’ for the effect of elevation. This will give the value that would be 
observed at ‘B’, if it were at the reference level. 
 
Thus to remove the effect of elevation on gravity measurements at a ‘B’, we must add  
 
    = 0.3077 h mgal =  free air correction. FAgΔ
 
to the observed gravity measurement.  
 
In general, any reference level could be chosen, but sea level is commonly chosen. 

 
Point ‘A’ is already at the reference level, so no correction is needed. 
 
 
Question  
 
To keep gravity data accurate to within 0.1 mgal, how accurately must we know the elevation? 

 
 
 

(ii) The Bouguer  correction 
 
 

 
 
 
 
The previous discussion ignores the fact that between the observation point ‘B’ and the reference 
level, there is (red) material that will increase g at the observation point ‘B’ compared to ‘A’. 
 
Using the results from section B3.2 we can calculate that the magnitude of this attraction is 
approximately: 
 



ρΔ h   g z  =  2πG
 

ρΔThus, the slab raises the value of  g observed  at ‘B’ is by an amount   2πG h, compared to 
measurements at ‘A’ 
 

BgΔ ρΔThus to remove this effect we need to subtract   = 2πG h from the gravity measurement.  
 
This is called the Bouguer correction it is simple to show that 
 
 = -0.00004193BgΔ ρΔ h    mgal 
 

ρΔTo apply the correction we need to estimate , the density that lies between ‘B’ and the 
reference plane. Using the value ρΔ = 2670 g m  this gives  3−

 
 = -0.1119h      mgal   BgΔ
 

ρΔThis value of  represents an average density for crustal rocks. Other information can be used 
to give a better estimate of the density ( ρΔ ). These include: 
 
 ● borehole gravity data 
 
 ● direct density measurements of rock samples from the field area 
 
 ● Nettleton’s method (see Geophysics 437 when field school data are analysed) 
 
 

 Pierre Bouguer 
 
Note that the Bouguer correction is approximate in two ways: 
 
 ● The density is not known exactly 
 
 ● In general, a mountain is not an infinite slab. 
 
 
 
 
 
 
 
 
 
 



 
Example 1 : Gravity survey across Table Mountain (synthetic data) 
 

 
 
 
Example 2 : Gravity survey across a River Valley  (synthetic data) 
 

 
 
 
 



 
Example 3 : Gravity survey for geothermal exploration across Mt. Cabalian, Southern Leyte in 
the Philippines. Gravity data was provided by Philippine National Oil Company. 
 

 
 
 
What does the positive Bouguer anomaly tell about sub-surface density? 
 
What could explain this density feature beneath a recently active volcano? 
 
How could you estimate the depth of  the body that causes the gravity anomaly  
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