(1) Archie's Law and resistivity of saline fluids

$$\rho = \rho_{w} S^{-n} \phi^{-m}$$

$$\rho_{w=4.5~TDS}^{-0.85}$$

 ρ = bulk resistivity of a rock

 $\rho_{\rm w}$ = fluid resistivity

 Φ = porosity S = fluid saturation. m = cementation factor (1 < m < 2) n = saturation exponent = 1

TDS = salinity (g/litre).

(2) Resistivity and resistance

A sample of rock has resistivity (ρ) , length (L) and cross-sectional area (A). The resistance (R) is given by

$$R = \frac{\rho L}{A}$$

(3) Maxwell's equations

$$\nabla \cdot \mathbf{E} = C/\varepsilon_0$$

E.
$$dS = C/\epsilon_0$$

$$\nabla . \mathbf{B} = 0$$

$$\mathbf{B.dS} = 0$$

$$\nabla \wedge \mathbf{B} = \mu \, \mathbf{J} + \mu \, \varepsilon \, \frac{\partial \mathbf{E}}{\partial t}$$

$$\oint \mathbf{B} \cdot \mathbf{dl} = \mu \int_{c} \mathbf{J} \cdot \mathbf{dd}$$

$$\nabla \wedge \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla . \mathbf{E} = \mathbf{C}/\varepsilon_{0} \qquad \int_{S} \mathbf{E. \, dS} = \mathbf{C}/\varepsilon_{0} \qquad \text{Coulombs Law}$$

$$\nabla . \mathbf{B} = 0 \qquad \int_{S} \mathbf{B. \, dS} = 0 \qquad \text{Magnetic flux}$$

$$\nabla \wedge \mathbf{B} = \mu \, \mathbf{J} + \mu \, \varepsilon \frac{\partial \mathbf{E}}{\partial t} \qquad \oint \mathbf{B. \, dl} = \mu \int_{S} \mathbf{J. \, ds} \qquad \text{Ampère's Law}$$

$$\nabla \wedge \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \oint \mathbf{E. \, dl} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B. \, dS} \qquad \text{Faraday's Law}$$

 \mathbf{E} = electric field strength

J = electric current density

 \mathbf{B} = magnetic flux density

 \mathbf{H} = magnetic field strength

 μ = magnetic permeability

 ε = dielectric permittivity

C = charge density

$$\boldsymbol{B} = \boldsymbol{\mu}\boldsymbol{H}$$

$$\mu_0 = 4\pi \ x \ 10^{-7} \ H/m$$

$$\mathbf{J} = \sigma \mathbf{E}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \, F/m$$

$$Z_{xy} = \frac{E_x}{H_y} = \text{impedance}$$

$$\nabla \wedge \mathbf{A} = \begin{vmatrix} i & j & k \\ \partial_x & \partial_y & \partial_z \\ A_x & A_y & A_z \end{vmatrix}$$

$$\nabla \cdot \mathbf{A} = \partial_x A_x + \partial_y A_y + \partial_z A_z$$

$$\nabla \cdot \mathbf{A} = \partial_x A_x + \partial_y A_y + \partial_z A_z$$

$$ax^2 + bx + c = 0$$

$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

(4) Skin depth

 $\delta = \frac{500}{\sqrt{\sigma f}}$ f is frequency in Hertz, σ is the conductivity in S/m, δ in metres

(5) Low induction number EM systems (frequency domain)

s = TX-RX separation; v =vertical dipoles; h =horizontal dipoles

$$R_V(z) = \frac{1}{(4z^2 + 1)^{1/2}};$$
 $R_H(z) = (4z^2 + 1)^{1/2} - 2z$

Normalized depth: $z = \frac{d}{s}$

Two layer conductivity model

Conductivities σ_1 and σ_2 , separated by an interface at depth = d

Apparent conductivity

$$\bar{\sigma}_{v} = \sigma_{1}(1 - R_{v}(z)) + \sigma_{2}R_{v}(z) \qquad \bar{\sigma}_{h} = \sigma_{1}(1 - R_{h}(z)) + \sigma_{2}R_{h}(z)$$

Three layer conductivity model

Conductivities $[\sigma_1, \sigma_2, \sigma_3]$ separated by interfaces at depths = d_1 and d_2

Apparent conductivity

$$\bar{\sigma}_{v} = \sigma_{1}(1 - R_{v}(z_{1})) + \sigma_{2}(R_{v}(z_{1}) - R_{v}(z_{2})) + \sigma_{3}R_{v}(z_{2})$$

$$\bar{\sigma_h} = \sigma_1(1 - R_h(z_1)) + \sigma_2(R_h(z_1) - R_h(z_2)) + \sigma_3R_h(z_2)$$

(6) Time domain EM

Transmitter current = I (amps); B_z = magnetic field (T)

Transmitter area = $A(m^2)$ Number of turns on transmitter = NEarth conductivity = $\sigma(S/m)$ Time after switch-off = t(s)

Late time transient decay: $\frac{dB_z(t)}{dt} = \frac{\mu NIA}{20} \left(\frac{\mu \sigma}{\pi}\right)^{\frac{3}{2}} t^{-\frac{5}{2}}$

Effective penetration depth at time = t $\delta_T = \left[\frac{2t}{\sigma \mu} \right]^{\frac{1}{2}}$

(7) Ground penetrating radar

$$v = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{c}{\sqrt{\mu_r \varepsilon_r}}$$

 $\begin{array}{ll} \text{c = speed of light = 3 x } 10^8 \text{ m/s}; & \text{Moisture content= } \theta_v \\ \text{Relative permittivity = } \epsilon_r & \text{Relative permeability = } \mu_r \\ \varepsilon_r = 3.03 + 9.3\theta_v + 146\theta_v^{\ 2} & \theta_v = -5.3x10^{-2} + 2.92x10^{-2}\varepsilon_r - 5.5x10^{-4}\varepsilon_r^{\ 2} \end{array}$