Geophysics 424, Assignment 3

Controlled source EM exploration techniques

Question 1

Repeat Example 2 in section E2.2.2 (vertical magnetic dipoles) with the conductor dipping to the left at 30° to the vertical

Sketch how the ratio $\mathrm{H}^{\mathrm{T}} / \mathrm{H}^{\mathrm{P}}$ will vary as the instrument is moved across the ore body.
Explain clearly how you obtained your answer.

Question 2

The vertical magnetic field of a vertical magnetic dipole (VMD) located on the surface of the Earth is given by

$$
\mathrm{H}_{z}=\frac{I A}{2 \pi k^{2} r^{5}}\left\{9-\left(9+9 \mathrm{i} k r-4 k^{2} r^{2}-\mathrm{i} k^{3} r^{3}\right) \mathrm{e}^{-\mathrm{ikr}}\right\}
$$

Show that at low induction number that this result simplifies to

$$
\mathrm{H}_{\mathrm{z}}=-\frac{I A}{2 \pi k^{2} r^{5}}\left(\frac{k^{2} r^{2}}{2}-\frac{k^{4} r^{4}}{8}\right)
$$

Question 3

An HLEM system was used to collect in-phase and quadrature data over two massive sulphide deposits. The ore body is dike shaped with conductivity $10 \mathrm{~S} / \mathrm{m}$.

The HLEM profile crossed each deposit at right angles to the strike direction.
TX-RX separation is 50 m and the TX operates at a frequency is 1910 Hz .
What can be determined about each ore body from these data?
Use the characteristic curves derived in E2.3

Question 4

A time-domain EM system is being used to measure the resistivity during a ground water survey. The system parameters are:

Transmitter geometry	10 mx 10 m square loop
Transmitter current	$\mathrm{I}=200 \mathrm{amps}$
Number of turns on transmitter	$\mathrm{N}=20$

The transient on the next page was recorded at ' A '.
(a) Plot the transient.
(b) When does the late-time decay begin?
(c) Calculate the conductivity of the gravel. Justify any assumptions you make.
(d) A second transient was recorded at ' B ' where a high conductivity clay layer was present. Sketch the transient at ' B ' on the graph in (a). Be quantitative where possible.

This assignment will be due at 5 pm on Monday December 42023
time (s)
$1.0000000 \mathrm{e}-006 \quad 2.8647890 \mathrm{e}+006$ $1.2589254 \mathrm{e}-006 \quad 2.8647890 \mathrm{e}+006$ $1.5848932 \mathrm{e}-006 \quad 2.8647890 \mathrm{e}+006$ $1.9952623 \mathrm{e}-006 \quad 2.8647890 \mathrm{e}+006$ $2.5118864 \mathrm{e}-006 \quad 2.8647889 \mathrm{e}+006$ $3.1622777 \mathrm{e}-0062.8647826 \mathrm{e}+006$ $3.9810717 \mathrm{e}-0062.8645694 \mathrm{e}+006$ $5.0118723 \mathrm{e}-006 \quad 2.8615302 \mathrm{e}+006$ $6.3095734 \mathrm{e}-006 \quad 2.8397940 \mathrm{e}+006$ $7.9432823 \mathrm{e}-006 \quad 2.7508621 \mathrm{e}+006$ $1.0000000 \mathrm{e}-005 \quad 2.5196506 \mathrm{e}+006$ $1.2589254 \mathrm{e}-005 \quad 2.1041631 \mathrm{e}+006$ $1.5848932 \mathrm{e}-005 \quad 1.5525733 \mathrm{e}+006$ $1.9952623 \mathrm{e}-005 \quad 9.8314337 \mathrm{e}+005$ $2.5118864 \mathrm{e}-005 \quad 5.0893524 \mathrm{e}+005$ $3.1622777 \mathrm{e}-005 \quad 1.8377414 \mathrm{e}+005$ $3.9810717 \mathrm{e}-005 \quad 9.2174249 \mathrm{e}+002$ $5.0118723 \mathrm{e}-005 \quad 7.8246648 \mathrm{e}+004$ $6.3095734 \mathrm{e}-0059.6359028 \mathrm{e}+004$ $7.9432823 \mathrm{e}-005 \quad 8.5788166 \mathrm{e}+004$ $1.0000000 \mathrm{e}-0046.6042595 \mathrm{e}+004$ $1.2589254 \mathrm{e}-0044.6662185 \mathrm{e}+004$ $1.5848932 \mathrm{e}-004 \quad 3.1139792 \mathrm{e}+004$ $1.9952623 \mathrm{e}-004 \quad 1.9956928 \mathrm{e}+004$ $2.5118864 \mathrm{e}-004 \quad 1.2415036 \mathrm{e}+004$ $3.1622777 \mathrm{e}-004 \quad 7.5522603 \mathrm{e}+003$ $3.9810717 \mathrm{e}-004 \quad 4.5162329 \mathrm{e}+003$ $5.0118723 \mathrm{e}-004 \quad 2.6652712 \mathrm{e}+003$ $6.3095734 \mathrm{e}-004 \quad 1.5568564 \mathrm{e}+003$ $7.9432823 \mathrm{e}-004 \quad 9.0213593 \mathrm{e}+002$ $1.0000000 \mathrm{e}-003 \quad 5.1947248 \mathrm{e}+002$ $1.2589254 \mathrm{e}-003 \quad 2.9764812 \mathrm{e}+002$ $1.5848932 \mathrm{e}-003 \quad 1.6988253 \mathrm{e}+002$ $1.9952623 \mathrm{e}-003 \quad 9.6661992 \mathrm{e}+001$ $2.5118864 \mathrm{e}-0035.4866131 \mathrm{e}+001$ $3.1622777 \mathrm{e}-003$ 3.1082449e+001 $3.9810717 \mathrm{e}-0031.7581769 \mathrm{e}+001$ $5.0118723 \mathrm{e}-003 \quad 9.9330822 \mathrm{e}+000$ $6.3095734 \mathrm{e}-003 \quad 5.6064569 \mathrm{e}+000$ $7.9432823 \mathrm{e}-003 \quad 3.1620022 \mathrm{e}+000$ $1.0000000 \mathrm{e}-002 \quad 1.7822696 \mathrm{e}+000$ $1.2589254 \mathrm{e}-002 \quad 1.0040986 \mathrm{e}+000$ $1.5848932 \mathrm{e}-0025.6547571 \mathrm{e}-001$ $1.9952623 \mathrm{e}-002$ 3.1836132e-001 $2.5118864 \mathrm{e}-002$ 1.7919357e-001 3.1622777e-002 1.0084208e-001 3.9810717e-002 5.6740799e-002 5.0118723e-002 3.1922501e-002 6.3095734e-002 1.7957957e-002 $7.9432823 \mathrm{e}-002 \quad 1.0101457 \mathrm{e}-002$ $1.0000000 \mathrm{e}-001 \quad 5.6817875 \mathrm{e}-003$

