Geophysics 424 A1Final examElectromagnetic and Potential field methods

Date :Wednesday December 15th 2010, 2pm – 5pmLocationCEB 442Instructor :Dr. Martyn UnsworthTime allowed :3 hoursTotal points =102

Instructions

Attempt all questions.

Notes and books may **not** be used.

Calculators may be used.

Cell phones and all other electronic devices must be switched off and stored.

All questions must be directed to the invigilator.

A separate 2 page formula sheet is available.

Question 1 : Resistivity of rocks (Total = 11 points)

(a) Electric current flows in a material that contains a single type of charge carrier.

There are n charge carriers per unit volume and each has a charge q.

The charge carriers have a mobility μ which is defined as the drift velocity per unit electric field. $\mu = \frac{\overline{v}}{E}$

Show that the electrical conductivity of the material is given by $\sigma = n\mu q$

(6 points)

(b) A brine is formed by dissolving 9 g of sodium chloride in 1 litre of water.

The brine has a conductivity of 1 S/m

Estimate the mobility of the ions.

Assume that the sodium (Na^+) and chloride (Cl^-) ions have the same mobility

(5 points)

Useful data

Volume of 1 litre of water	$10^{-3} \mathrm{m}^3$
Molar weight of sodium chloride	58.4 g / mol
Avogadro's number	$6.02\ 10^{23}$
Charge on electron	1.6 10 ⁻¹⁹ C

Question 2 : Ground-penetrating radar (Total = 7 points)

You are studying the structure of some layered sand deposits and the survey is required to resolve layers 50 cm thick to a maximum depth of 3 m

You have the choice of using GPR (Frequency = 100 MHz) or seismic reflection (signal frequency = 100 Hz)

The sand has the following properties

- electrical resistivity of 4000 Ω m
- radar velocity of 0.15 m/ns
- seismic velocity of 2000 m/s.

Which geophysical method will work in this case? Explain your answer.

Hint : The thinnest layer resolved has thickness = $z = \lambda/4$, where λ = wavelength

Question 3 : Magnetotellurics (Total = 10 points)

An MT instrument records 5 channels of data with a continuous sample rate of 8 Hz.

Each data sample takes 16 bytes of disk space.

The instrument has an 16 MB memory card.

- (a) What will be the highest frequency recorded?
- (b) How long can data be recorded before the memory is full?
- (c) What will be the **lowest frequency** recorded?
- (d) Give **two reasons** for burying the magnetometer in an MT survey.

Question 4 : Magnetotellurics (Total = 21 points)

(a) The figure below shows a section through the continental lithosphere. It is not drawn to scale.

Label **approximate depths** for each interface.

Label typical resistivity values (nearest factor of 10).

What is the **physical cause** of the observed resistivity values in each layer?

(15 points)

(b) Describe two applications of magnetotellurics in hydrocarbon exploration.

For each

- describe the contrasts in resistivity that make MT applicable.
- State why seismic exploration fails in each case

(6 points)

Question 5 : Maxwell's Equations (Total = 20 points)

An electromagnetic (EM) wave is vertically incident on the Earth's surface.

The EM fields vary with time as $e^{i\omega t}$ with angular frequency ω

At this location, the Earth has a **uniform conductivity** σ

The electric field is **polarized** in the x-direction and E_x does not vary in the x-direction.

(a) Use Maxwell's equations to show that E_x satisfies the following partial differential equation

$$\frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} = i w \mu \sigma E_x$$
(9 points)

State any assumptions made in your derivation.

(b) Consider a **non-plane wave** whose amplitude varies as a function of y as :

$$E_x(y,z) = E_x(z)\sin(\frac{2\pi y}{\lambda})$$

Show that in this case, the partial differential equation in (a) simplifies to an ordinary differential equation

$$\frac{d^2 E_x}{dz^2} + k_a^2 E_x = 0 \qquad \text{and derive a value for } k_a$$
(6 points)

(c) Using the numerical values listed above, estimate the **highest frequency** at which the non-planar nature of the wave will be noticed when $\lambda = 100$ km.

(5 points)

Question 6 : Frequency domain EM methods (Total = 20 points)

A frequency domain electromagnetic system with **co-axia**l transmitter (TX) and receiver (RX) is flown beneath a helicopter. The system parameters are:

- primary field frequency, f = 20,000 Hz
- transmitter-receiver offset, L = 10 m.
- ground clearance of TX-RX bird, h= 30 m
- noise level 10 ppm (both in phase and quadrature)
- (a) The EM system was flown across a **vertical conductor** and the following response $(H_S\,/\,H_P)$ was measured.

Explain the **sign** of the **in-phase** response with a **diagram** showing magnetic field lines for primary and secondary magnetic fields.

(5 points)

(b) Determine as much as possible about the target.

List all the assumptions you make. (10 points)

(c) A vertical conductor has a conductance of 4 S. What is the maximum depth at which it can be detected by this system? (5 points)

Characteristic curves for co-axial TX-RX and a vertical plate

Response parameter, $Q = \sigma W f$ Depth parameter, D = H / L

- W = width of conductor
- σ = conductivity of conductor
- H = depth to top of conductor below TX-RX bird
- f = TX frequency (Hz)
- L = TX-RX separation

Question 7 : Time domain EM methods (Total = 13 points)

A time-domain EM system is being used to measure the resistivity during a ground water survey. The system parameters are:

10 m x 10 m square loop
I = 100 amps
N = 10
r = 100 m

(a) The transient below was collected at 'A'.

Selected data values are listed in the table on the next page.

Time (s)	(nT/s)
0.0001	1.100e+004
0.001	5.599e+001
0.01	1.852e-001
0.1	5.883e-004

Calculate the conductivity of the gravel. Justify any assumptions you make.

(7 points)

(b) A second transient was recorded at 'B' where a **high conductivity clay layer** was present . Sketch the transient at 'B' on the graph above. Be quantitative where possible.

(6 points)