Geophysics 424 A1Final examElectromagnetic and Potential field methods

Date :Tuesday April 23rd 2013, 9 am - noonLocationCCIS L1-029Instructor :Dr. Martyn UnsworthTime allowed :3 hoursTotal points =109

Instructions

Attempt all questions.

Notes and books may **not** be used.

Calculators may be used.

Cell phones and all other electronic devices must be switched off and stored.

All questions must be directed to the invigilator.

A separate formula sheet will be distributed

Question 1 : Maxwell's Equations (Total points = 18)

A low frequency electromagnetic (EM) wave is vertically incident on the Earth's surface.

The EM fields vary with time as $e^{i\omega t}$ with angular frequency ω

At this location, the Earth has a **uniform conductivity** $\sigma = 0.001$ S/m

The electric field is **polarized** in the x-direction and E_x does not vary in the x-direction.

Displacement current can be ignored

(1a) Use Maxwell's equations to show that in the Earth the electric field (E_x) satisfies the following partial differential equation

$$\frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} = i w \mu \sigma E_x$$
 (7 points)

(1b) Consider a non-plane wave whose amplitude varies with y as :

$$E_x(y,z) = E_x(z)\sin(\frac{2\pi y}{\lambda})$$

Show that in this case, the partial differential equation in (a) simplifies to an ordinary differential equation

$$\frac{d^2 E_x(z)}{dz^2} + k_a^2 E_x(z) = 0 \text{ and derive a value for } k_a$$
(6 points)

(1c) MT measurements show that the non-planar nature of the wave can be observed at periods greater than 200 s. What value of λ does this require?

(5 points)

Question 2 : Magnetotellurics (Total = 15 points)

(a) The figure below shows a section through the continental lithosphere. It is not drawn to scale.

(2a) Label **approximate depths** for each interface.

(2b) Label typical resistivity values (nearest factor of 10).

(2c) What is the **physical cause** of the observed resistivity in each layer?

(15 points)

Question 3 : Magnetotellurics (Total = 14 points)

An AMT survey is taking place at a mine where a mineralized zone is located at a depth of 1 km.

An AMT system is used that can record data in the frequency band 10000 - 1 Hz

- (3a) Sketch the apparent resistivity curve that would be measured at 'A' (4 points)
- (3b) The instrument was then deployed in a mine tunnel at a depth of 500 m.Sketch the apparent resistivity curve that will be measured at 'B'. (5 points)
- (3c) What type of sensor is used to measure the magnetic field in an AMT survey? (1 point)
- (3d) What **sample rate** and **recording time** would be needed to collect AMT data in this frequency range? (4 points)

Question 4 : Frequency domain EM methods (Total = 13 points)

An EM31 survey takes place where a clay layer (resistivity = $20 \Omega m$) overlies granitic bedrock (resistivity = $1000 \Omega m$)

TX-RX separation was 3 m and frequency was 9.1 KHz.

- (4a) At location 'A', the clay layer is 1 m thick. What apparent conductivity will the instrument read in **vertical dipole mode** when placed on the surface? (**3 points**)
- (4b) Repeat part (4a) if the instrument is carried 1 m above the surface at 'A'.(4 points)
- (4c) Comment on the difference between your answers to 4a and 4b (2 points)
- (4d) The instrument is then moved to 'B' where the depth of the clay layer is unknown. The instrument reads an apparent conductivity = 0.02 S/m in vertical dipole mode when carried 1 m above the ground.

How thick is the clay layer?

(4 points)

Question 5 : Controlled source EM measurements (Total points = 34)

A frequency domain electromagnetic (EM) system with co-axial transmitter (TX) and receiver (RX) is mounted on a bird that is flown beneath a helicopter.

- primary field frequency, f = 20,000 Hz
- transmitter-receiver offset, L = 10 m.
- area of transmitter loop = A
- transmitter current = I
- ground clearance of TX-RX bird, h = 30 m

The **primary magnetic field** components at point B are given by:

$$H_{r}^{p} = 3IA r z / 4\pi (r^{2} + z^{2})^{\frac{5}{2}}$$
$$H_{z}^{p} = IA (2z^{2} - r^{2}) / 4\pi (r^{2} + z^{2})^{\frac{5}{2}}$$

(5a) Which **component** of the total magnetic field will the RX measure? (2 points)

(5b) The in-phase component of the total magnetic field is required to be **accurate** to 10 ppm. No noise is present in the secondary magnetic field.

What is the minimum **distance change** in TX-RX separation that will be required to meet this specification?

(5 points)

(5c) What is the minimum **angular rotation** of the RX that can be tolerated for the in-phase component of the data to be accurate to 10 ppm? Give your answer in **degrees.**

(4 points)

(5d) "A good conductor produces a secondary magnetic field that is in-phase with the primary magnetic field in a frequency domain EM survey".

Explain this statement. Use a phase diagram and explain the physics.

(8 points)

(5e) The EM system was flown across a **vertical conductor** and the following response was obtained.

Using the **characteristic curves** shown below, determine as much as possible a about the target. List all the assumptions you make. (10 points)

(5f) A vertical conductor has a conductance of 4 S. At what maximum depth can it be detected by this system? (5 points)

Characteristic curves for vertical co-axial TX-RX and vertical plate

Response parameter, $Q = \sigma W f$ Depth parameter, D = H / L

- W = width of conductor
- σ = conductivity of conductor
- H = depth to top of conductor below TX-RX bird
- f = TX frequency (Hz)
- L = TX-RX separation

Question 6 : Ground-penetrating radar (Total = 15 points)

GPR is being used to study the subsurface structure shown below. A reflector is located at a depth dVelocity in the Earth is v_1 above the reflector and v_2 below Radar frequency is 200 MHz and TX-RX distance is x m The transmitter is fixed and the receiver is moved.

(6b) Derive an expression for the travel time for a **reflected wave** when the transmitter (TX) and receiver (RX) are separated by a distance x.

(3 points)

(6c) Sketch these two travel time curves on the figure above. (3 points)

(6d) GPR travel times for the reflection are listed in the table below. Calculate v_1 and dGraph paper is available if needed

(5 points)

x (m)	T(ns)
1	76.0
2	79.1
3	83.9
4	90.1
5	97.6

(6e) Calculate the moisture content of layer 1 (θ_v)

(2 points)