Geophysics 424 A1Final examElectromagnetic and Potential field methods

Date :December 16 2016 2- 5 pmLocationCCIS L1-029Instructor :Dr. Martyn UnsworthTime allowed :3 hoursTotal points =110

Instructions

Attempt all questions

Notes and books may not be used

Non-programmable calculators may be used

Cell phones and all other electronic devices must be switched off and stored

All questions must be directed to the invigilator

A separate formula sheet will be distributed

Name _:

Question 1 : Resistivity of rocks (Total = 14 points)

The figure below shows a section through the continental lithosphere.

It is not drawn to scale.

			Surface	
Sedimentary Basin	ρ=	Ωm	7 =	km
				(
Upper crust	ρ=	Ωm		• 1.0000
			z =	km
Lower crust	ρ =	Ωm		
			z =	km
Lithospheric upper mantle	ρ =	Ωm		
			z =	km
Asthenosphere	ρ=	Ωm		

(1a) Label **approximate depths** for each interface on the diagram

(1b) Label **typical resistivity** values on the diagram (nearest factor of 10).

(1c) What is the **physical cause** of the observed resistivity in each layer?

(14 points)

Question 2 : Maxwell's Equations (Total = 15)

An electromagnetic wave has an angular frequency ω

In layer 1 it travels at velocity v_1 and at an angle θ_1 to the normal with a wavenumber k_1 In layer 2 it travels at velocity v_2 and at an angle θ_2 to the normal with a wavenumber k_2

(2a) State Snell's law. Use Snell's Law to show that $|k_1|\sin\theta_1 = |k_2|\sin\theta_2$

(5 points)

(2b) Consider the case when Layer 1 is the air, and Layer 2 is the Earth which has a conductivity of σ_2 . It can be shown that

$$k_1 = \omega \sqrt{\mu_0 \varepsilon_0}$$
 and $k_2 = \sqrt{-i\omega \mu_0 \sigma_2}$

where μ_0 is the permeability of free space, ε_0 is the permittivity of free space.

Derive an equation for θ_2 in terms of θ_1 , ω and the material properties (4 points)

- (2c) Derive an equation for the maximum possible value of θ_2 (2 points)
- (2d) Consider the case when $\sigma_2 = 0.01$ S/m and f = 10 Hz. What will be the maximum value of θ_2 ? (2 points)

(2e) How could this phenomenon be used to measure the conductivity of the Earth? (2 points)

Question 3 : Magnetotellurics (Total = 18 points)

Broadband MT data (1000-0.001 Hz) are being used to image a coastal aquifer in the Canadian Arctic. Site A is located on rock, while B is located on sea ice

- (3a) Sketch the apparent resistivity and phase data at sites A and B. Clearly label the data from sites 'A' and 'B' (12 points)
- (3b) To avoid the problem of working on sea ice, the researchers returned when the sea ice had melted and placed a seafloor MT instrument at site C. Sketch the apparent resistivity that would be measured at C (6 points)
 - You can approximate the structure at each location is 1-D.
 - Be quantitative where possible. Ignore the resistivity of the sea ice
 - Assume that EM signals can be detected after travelling 3 skin depths in seawater

DRAW YOUR ANSWER ON THE FIGURE ABOVE

Question 4 : Frequency domain EM methods (Total = 13 pts)

An EM31 survey takes place where a clay layer (resistivity = 50 Ω m) overlies granitic bedrock (resistivity = 500 Ω m)

- TX-RX separation was 3 m and frequency was 9.1 KHz.
- (4a) At location 'A', the clay layer is 1 m thick. What apparent conductivity will the instrument read in **vertical dipole mode** when placed on the surface? (**3 points**)
- (4b) Repeat part (4a) if the instrument is carried 1 m above the surface at 'A'. (4 points)
- (4c) Comment on the difference between your answers to 4a and 4b (2 points)
- (4d) The instrument is then moved to 'B' where the depth of the clay layer is unknown. The instrument reads an apparent conductivity = 0.01 S/m in vertical dipole mode when carried 1 m above the ground.

How thick is the clay layer at 'B'?

(4 points)

Q5 : Frequency-domain electromagnetics (Total = 8 pts)

"A good conductor produces a secondary magnetic field that is in-phase with the primary magnetic field in a frequency domain EM survey".

Explain this statement. Use a **phase diagram** and explain the **basic physics**.

How does this influence data collection in airborne EM surveys?

(8 points)

Question 6 : VLF (Total = 8 points)

VLF measurements with an EM16 are being used to locate an ore body.

The transmitter has a frequency of 21 KHz.

The VLF instrument measures the **tilt angle**.

- (6a) Sketch a map of the ideal orientation of the VLF profile, primary magnetic field and transmitter. (3 points)
- (6b) Assume the survey is performed in the ideal orientation.Sketch the **tilt angle** data recorded along the profile shown above. (3 points)
- (6c) What is the **maximum depth** at which the orebody can be detected with VLF? (2 points)

Question 7 : Time domain EM methods (Total = 20 pts)

A time domain survey is using the transmitter waveform shown on the next page. The primary magnetic field is shown in (A)
The ore body (a conductor) behaves as an **inductor and resistor in series**.
(7a) Define the **mutual inductance** between two electric circuits (2 points)

(7b) Sketch the secondary voltage induced in the conductor in (B) Explain how the secondary voltage is related to the primary magnetic field.
(4 points)
(7c) Sketch the time variation of the secondary current in (C)

(70)	Show both GOOD and BAD conductors on same graph.	(6 points)
(7d)	Sketch the time variation of the secondary magnetic field at the Show both GOOD and BAD conductors on same graph.	RX in (D) (4 points)
(7e)	Sketch the time variation of the total magnetic field at the RX ir Show both GOOD and BAD conductors on same graph.	n (E) (4 points)

Your answer will be **qualitative** in (7b) - (7e).

Briefly explain how you obtained your answer in each case.

Question 8 : Ground-penetrating radar (Total = 14 points)

- GPR is being used to study the glacier shown above
- The radar system has a closely spaced transmitter and receiver system.
- Radar frequency is 200 MHz
- TX-RX distance is very small compared to the thickness of the ice.
- A rock is located at the base of the ice at x = 0 m and acts as a diffractor
- (8a) Derive an equation for the two-way travel time of the reflection from the bed of the glacier (2 points)
- (8b) Derive an equation for the travel time of a signal diffracted from the rock. Assume that the TX and RX are coincident. (3 points)
- (8c) The figure below shows radar data collected on the glacier. Numerical values are also given in a table. Calculate v_1 and d (6 points)
- (8d) Estimate the velocity in the bedrock (v_2) (3 points)

x(m)	arrival 1(ms)	arrival 2(ms)
-300.000	2.000	5.385
-200.000	2.000	3.887
-100.000	2.000	2.603
0.000	2.000	2.000
100.000	2.000	2.603
200.000	2.000	3.887
300.000	2.000	5.385