Geophysics 424 Mid-term exam
 Wednesday February $29^{\text {th }} 2012$

Name \qquad

Student number

Time allowed : 55 minutes.
Attempt all FOUR questions
Note the number of points allocated for each part.
Calculators and rulers may be used
Notes and textbooks may not be used during the exam
Explain all working
Please hand in this exam, with your name and student number listed above
Total points for whole exam $=46$

Question 1 - Resistivity of rocks (Total = 6 points)

A shale is partially saturated with brine
The shale has well connected pores with a porosity of 2%
Brine salinity $=10 \mathrm{~g}$ per litre
The rock grains have a resistivity of $1000 \Omega \mathrm{~m}$
Well log measurements give a bulk resistivity is $45 \Omega \mathrm{~m}$
(1a) Use Archie's Law to calculate the degree of saturation (S)
(4 points)
(1b) State two assumptions made in your answer to (a)

Question 2 : Maxwell's equations (Total = 13 points)

A plane EM wave is travelling vertically downwards in the air in the z-direction. The electric field is polarized in the x-direction. The surface of the Earth is at $z=0$

Magnetic permeability of air and Earth	$=\mu=\mu_{0}$
Dielectric permittivity of air and Earth	$=\varepsilon=\varepsilon_{0}$
Electrical conductivity of Earth	$=\sigma$
Angular frequency of wave	$=\omega$

Incident wave in air

$$
\begin{aligned}
& E_{x}(z, t)=\mathrm{A} \exp \left(-\mathrm{ik}_{\mathrm{o}} \mathrm{z}\right) \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}} \\
& E_{x}(z, t)=\mathrm{B} \exp \left(\mathrm{ik}_{\mathrm{o}} \mathrm{z}\right) \mathrm{e}^{-\mathrm{i} \omega} \\
& E_{x}(z, t)=\mathrm{C} \exp \left(-\mathrm{k}_{1} \mathrm{z}\right) \mathrm{e}^{-\mathrm{i} \omega t}
\end{aligned}
$$

Reflected wave in air
Transmitted signal in Earth
Wavenumbers in each medium are:

$$
\mathrm{k}_{0}=\omega \sqrt{\mu \varepsilon} \quad \text { and } \quad \mathrm{k}_{1}=(1-\mathrm{i}) \sqrt{\frac{\omega \mu \sigma}{2}}
$$

You can assume that $H_{y}=\frac{-1}{i \omega \mu} \frac{\partial E_{x}}{\partial z}$
(2a) State two boundary conditions that can be applied at $\mathrm{z}=0$
(2b) Derive an expression for C in terms of $\mathrm{k}_{0}, \mathrm{k}_{1}$ and A .
(2c) Derive an expression for the impedance $\left(\mathrm{Z}_{\mathrm{xy}}\right)$ in terms of ω, μ and σ

Question 3: Magnetotelluric sounding curves (Total = 15 points)

The figure above shows the MT data collected over a 3-layer Earth. In (a)-(d), explain how you derived your answer.
(3a) Estimate the resistivity and thickness of the upper layer?
(3b) Estimate the resistivity and thickness of the second layer?
(3c) What can you determine about layer 3?
(3d) Are the apparent resistivity and phase consistent? (Yes/No) Explain your answer briefly

Question 4 : Magnetotellurics (Total = 12 points)

(a) Why can it be difficult to use seismic reflection for subsalt imaging? Describe how MT exploration can be used effectively in this context.
(4 points)
(b) Name the two sources of MT signals, and approximate frequencies
(c) MT data was recorded at three frequencies.

The apparent resistivity values were $\left[\rho_{1} \rho_{2} \rho_{3}\right]$
The data had uncertainties of [$e_{1} e_{2} e_{3}$]
The model that fit the data had a response of $\left[\begin{array}{lll}m_{1} & m_{2} & m_{3}\end{array}\right]$
Write an expression for the root-mean-square misfit of the response to the data.
(4 points)

