
Tracking suitable habitat for tree populations
under climate change in western North America

Laura K. Gray & Andreas Hamann

Received: 3 August 2011 /Accepted: 6 July 2012
# Springer Science+Business Media B.V. 2012

Abstract An important criticism of bioclimate envelope models is that many wide-ranging
species consist of locally adapted populations that may all lag behind their optimal climate
habitat under climate change, and thus should be modeled separately. Here, we apply a
bioclimate envelope model that tracks habitat of individual populations to estimate adaptational
lags for 15 wide-ranging forest tree species in western North America. An ensemble classifier
modeling approach (RandomForest) was used to spatially project the climate space of tree
populations under observed climate trends (1970s to 2000s) andmulti-model projections for the
2020s, 2050s and 2080s. We find that, on average, populations already lag behind their optimal
climate niche by approximately 130 km in latitude, or 60 m in elevation. For the 2020s we
expect an average lag of approximately 310 km in latitude or 140 m in elevation, with the most
pronounced geographic lags in the Rocky Mountains and the boreal forest. We show that our
results could in principle be applied to guide assistedmigration of planting stock in reforestation
programs using a general formula where 100 km north shift is equivalent to approximately 44m
upward shift in elevation. However, additional non-climatic factors should be considered when
matching reforestation stock to suitable planting environments.

1 Introduction

Bioclimate envelope models, also referred to as species distribution models, have emerged
as a widely used modeling technique to illustrate the discrepancy between current species
distributions and their predicted potential habitat under climate change (e.g. Overpeck et al.
1991; Thomas et al. 2004). Bioclimate envelope models correlate species census data with
environmental predictor variables using a wide range of statistical and machine-learning
methods (e.g. reviewed by Guisan and Zimmermann 2000). The limitations and weaknesses
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of the bioclimate envelope model approach have been thoroughly discussed and the general
consensus is that bioclimate envelope projections should not be literally interpreted as
predicted demographic response of species to climate change, and that loss of habitat
predicted by bioclimate envelope models does not necessarily entail extirpation of current
populations (e.g. Botkin et al. 2007; Hampe 2004; Thuiller et al. 2008).

Despite their limitations for modeling demographic response, bioclimate envelope mod-
els can still be useful for a conceptually much simpler practical task: guiding climate change
adaptation strategies for forestry that involve habitat restoration, reforestation, or conserva-
tion objectives (Gray et al. 2011). For such management applications, the primary task is to
match the correct planting stock with anticipated climate conditions, rather than to predict
complex demographic processes and biological interactions under changing climate. How-
ever, selecting appropriate planting stock not only requires choosing an appropriate species
but also genotypes of locally adapted populations that match anticipated planting environ-
ments (e.g. Ying and Yanchuk 2006). Therefore, we need to include genetic structure of
species in bioclimate envelope models.

In widespread tree species, genetically differentiated populations are uniquely and often
narrowly adapted to their local environments (Morgenstern 1996). Hence, climate change
impacts will not be limited to the trailing edge of a species range, but instead may apply to
populations throughout the species range. Under climate change, all populations may
occupy environments at or beyond the margins of their individual climate niches (Davis
and Shaw 2001; Hampe 2004; Millar et al. 2007). This is also supported by empirical
evidence suggesting that genetic population structure in widespread forest trees should not
be ignored. For example, O’Neill et al. (2008) and Wang et al. (2006b, 2010) found that
when genetic structure was considered, the predicted growth and survival of locally adapted
lodgepole pine (Pinus contorta) populations was reduced. Chen et al. (2010) found that
northern and high elevation Douglas-fir (Pseudotsuga meniesii) populations are more
vulnerable to climate change than the populations from the southern end of the species
range, presumably due to narrow genetic adaptation of local populations.

In this study we illustrate how genetic population structure can be integrated in bioclimate
envelope modeling by using ecosystem delineations as modeling units, which serve as proxy
for locally adapted species populations. For practical applications of seed movement, we can
then identify the geographic origin of locally adapted populations that best match the antici-
pated future climate. In this study we project suitable habitat for populations of 15 wide-ranging
tree species in western North America under observed and projected climate change. Our
objective is to determine how far populations already lag behind their assumed optimal climate
habitat, and how these adaptational lags of populations are predicted to change in the future.

2 Materials and methods

To generate future habitat projections for individual populations we build on an ecosystem-
based modeling technique developed by Hamann and Wang (2006). This approach uses
climate variables to characterize multivariate climate conditions within delineated ecosystem
polygons. Ecosystem units are the dependent class variable in this modeling approach.
Although soil and topographic variables could be added as predictors (e.g. Mbogga et al.
2010), we choose to exclude static variables from this modeling effort. Therefore, ecosystem
delineations simply serve as modeling units that represent relatively homogenous climate
conditions. Species distributions are subsequently derived by replacing the predicted eco-
system unit with species’ probability of presence or frequency values calculated from sample
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plot data as explained in more detail below. In this study, we extend this approach by using
the ecosystem modeling units as a proxy for tree populations. This assumes that genetic
differentiation within species is largely accounted for by ecosystem delineations. Transfer-
ring planting material within such ecosystem delineations would usually not be associated
with significant reduction in growth and survival relative to local sources (Ying and Yanchuk
2006; Hamann et al. 2005, 2011).

2.1 Bioclimate envelope modeling

Predictions of ecosystem classes were carried out with an ensemble classification tree
analysis implemented by the RandomForest software package (Breiman 2001) for the R
programming environment (R Development Core Team 2008). RandomForest grows mul-
tiple classification trees from bootstrap samples of the training data and determines the
predicted class by majority vote over all classification trees (Cutler et al. 2007). Importance
values for predictor variables were calculated as the number of times that a climate variable
contributed to a correct classification in a bootstrapped cross-validation procedure with
different permutations of predictor variables. As dependent variable, we use 770 fine-scale
ecosystem delineations for western North America as described in Roberts and Hamann
(2012). From each ecosystem we randomly sampled 100 1 km grid cells, which were
climatically characterized, and subsequently used as training data for classification tree
analysis.

2.2 Baseline climate data and future projections

For climatic characterization of ecosystems we use interpolated climate data that were
generated with the Parameter Regression of Independent Slopes Model (Daly et al. 2008).
These surfaces were derived from climate normal data observed at weather stations in the
United States and Canada for the 1961–1990 period. This database was enhanced with lapse-
rate based down-sampling to 1 km resolution and an estimation of biologically relevant
climate variables (Mbogga et al. 2009). From this dataset of more than 50 monthly, seasonal,
and annual climate variables, we chose ten predictor variables that are biologically important
and that had relatively low collinearity. These included mean annual temperature, mean
warmest month temperature, mean coldest month temperature, continentality (difference
between mean January and mean July temperature), mean annual precipitation, growing
season precipitation (May to September), the number of frost free days and the number of
growing degree days above 5 °C. All of these variables are described in detail by Wang et al.
(2006a). We also included two dryness indices that are based on estimates of potential
evapotranspiration and water deficit: annual and summer climate-moisture indices according
to Hogg (1997).

Climate projections for western North America for the 2020s, 2050s, 2080s were
generated by overlaying projections from general circulation models expressed as the
difference from the 1961–1990 normal period. For each future period, 18 climate projections
base on four major Special Report on Emissions Scenarios (SRES) families (AIFI, A2, B1,
B2), implemented by five modeling groups (CGCM, Canada; CSIRO2, Australia,
HADCM3; United Kingdom; ECHAM4, Europe; and PCM, United States) were used.
Model-emission scenario combinations ECHAM4-A1FI and ECHAM4-B1 were unavail-
able resulting in a total of 18 future projections per time period. To represent recent climate
trends we use the 1997–2006 decadal average, which can be interpreted as observed climate
change over a 25-year period (the mid-point of the 1961–1990 climate baseline period and
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the mid-point of the recent decadal average: 1975 to 2000). For more details refer to Mbogga
et al. (2009) and Wang et al. (2012).

2.3 Tree species inventory data

For species and population level analysis we selected 15major forest tree species of commercial
importance in western North America: pacific silver fir (Abies amabilis Douglas ex J. Forbes),
Alaska yellow-cedar (Chamaecyparis nootkatensis (D. Don) Sudworth), tamarack (Larix
laricina (Du Roi) K. Koch), western larch (Larix occidentalis Nuttall), Engelmann spruce
(Picea engelmannii var. engelmannii Parry ex Engelmann), white spruce (Picea glauca
(Moench) Voss), black spruce (Picea mariana (Miller) Britton), Sitka spruce (Picea sitchensis
(Bongard) Carrière), lodgepole pine (Pinus contorta Douglas ex Loudon), western white pine
(Pinus monticola Douglas ex D. Don in Lambert), ponderosa pine (Pinus ponderosa Douglas
ex Lawson & C. Lawson), Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western red-
cedar (Thuja plicata Donn ex D. Don in Lambert), western hemlock (Tsuga heterophylla
(Rafinesque) Sargent), and trembling aspen (Populus tremuloides Michaux). The scientific
names are according to the Flora of North America Editorial Committee (1993+).

Species frequency across western North America was determined with approximately 30,000
forest inventory plots fromwestern Canada (Hamann andWang 2005) and approximately 18,000
forest inventory plots from the western United States (Bechtold and Patterson 2005). As a
common measure of species frequency, we use an estimated percent areal cover of the canopy
projected to the ground, scaled by the total canopy cover of the forest inventory plot. Since this
measure was not available for data from the western United States, we used percent basal area as a
proxy for frequency as in Schroeder et al. (2010). Species frequencies for each ecosystem were
calculated as average across all sample plots that fall within an ecosystem polygon. We also
calculated probability of presence of a species for each ecosystem unit. This was simply the
proportion of inventory plots across all sample points where the species was present.

2.4 Model evaluation

We use a receiver operating characteristics (ROC) curve of the predicted probability of
species presence to evaluate the statistical accuracy of the bioclimate envelope model for
individual species. Overall model performance was evaluated by the area under the ROC
curve (AUC), which represents the probability that the model classifier will correctly
identify a randomly chosen true species presence (Fawcett 2006; Fielding and Bell 1997).
The AUC of the ROC curve balances the ability of the model to detect a species when it is
present (sensitivity) against its ability to not predict a species when it is absent (specificity).
We further report model sensitivity and specificity, which were reported as an average over a
full range of thresholds between zero and one. All ROC and AUC calculations were carried
out with the ROCR package (Sing et al. 2005) for the R programming environment (R
Development Core Team 2008).

3 Results

3.1 Variable importance and model accuracy

RandomForest importance values indicate that most climate predictors have fairly equal
roles in habitat predictions, with growing season precipitation, mean annual precipitation,
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and continentality being higher contributors to classifications (Table 1). Temperature related
variables that describe the growing season apparently contribute less to the classification
analysis. The most important variable to differentiate among western North American
ecosystems in a classification tree analysis was found to be mean growing season precipi-
tation, followed by mean annual precipitation, which is fairly highly correlated (r00.79).

Model evaluation statistics for species presence/absence predictions are shown in Table 2.
Except for the wide-ranging tree species, the total error rate of false positives and false
negatives is low, in the single digit percentage range. AUC values are consistently high,
ranging from 0.81 to 0.95, again with species that have restricted distributions having the
best predictive accuracy (e.g. Sitka spruce). For the majority of species, the number of false
negative errors is higher than the number of false positive errors, indicating that model
prediction error is predominantly driven by omission error, or falsely predicting species
absence. Similarly, model sensitivity, or the proportion of true species presences, is low and
model specificity is high for all species, indicating that true species absences were well
modeled.

3.2 Habitat projections and uncertainty

The first row of maps in Fig. 1 illustrates the shift in projected ecosystem modeling units that
contain Douglas-fir under recent climate change. We indicate aggregated ecosystem model-
ing units with different colors representing major ecosystem classes. The second row of
Fig. 1 illustrates the expected frequency of Douglas fir under the 1961–1990 baseline and
under climate change trends observed over the last 25 years, represented by a recent decadal
average (1997–2006 relative to the 1961–1990 baseline). Similar maps in first row of Fig. 2
indicates where Douglas-fir climate conditions would generally be suitable for the species to
represent a major forest component in the future, based on an average of predictions for a
variety of climate change scenarios. A low average frequency could therefore represent
either a low frequency in most model runs or a higher frequency in few model runs. The
second row of Fig. 2 quantifies uncertainty in habitat projections for the 2020s, 2050s, and
2080s. Red and blue indicate complete model agreement for absence and presence respec-
tively. Intermediate shades indicate areas of uncertainty, which substantially increase to-
wards the 2080s. In the example for Douglas-fir, by the end of the century uncertainty for the
interior distribution appears to be so high that no reliable predictions can be made: over large

Table 1 Importance of predictor
climate variables in RandomForest
predictions of ecosystem modeling
units for western North America.
Importance values for predictor
variables were calculated as the
number of times that a climate
variable contributed to a correct
classification in a bootstrapped
cross-validation procedure with
different permutations of predictor
variables

Climate variable RF importance

Mean annual temperature (°C) 6424

Mean warmest month temperature (°C) 5835

Mean coldest month temperature (°C) 7974

Continentality (°C) 8463

Mean annual precipitation (mm) 9049

Growing season precipitation (mm) 9825

Climate moisture index (cm) 7134

Growing season climate moisture index (cm) 6352

Degree days >5 °C (days) 6862

Frost free period (days) 6811
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areas approximately half the models project species presence and half predict absence of
suitable species habitat.

Species frequency projections and maps of model uncertainty for all other species are
provided as Online Resources 1–15. Notable observations are the projection of substantial
loss of climate habitat for boreal species, such as black spruce (Online Resource 1a),
tamarack (Online Resource 8a) and trembling aspen (Online Resource 9a). Losses of
projected climate habitat are pronounced at the southern fringe of the boreal forest, and
the dry boreal forest regions in the eastern rain shadow of the Canadian Rocky Mountains.
These losses of suitable realized climate niche space are consistently predicted with high
certainty, regardless of the climate change scenario. Although yellow cedar and western
hemlock are predicted to lose suitable climate habitat at their southern coastal range limits
(Online Resource 10 and 15), habitat of coastal species appears to be generally well
maintained at the species level. Habitat projections based on observed climate trends,
represented by the 1997–2006 decadal average, are generally in the direction and magnitude
of climate change predictions. Especially at higher latitudes, habitat projections based on
observed climate trends appear to be approaching or exceeding those expected for the 2020s,
for example black spruce (Online Resource 1a), aspen (Online Resource 9a), or white spruce
(Online Resource 14a).

3.3 Elevation versus latitudinal shifts

Habitat projections for individual species populations are summarized by broad geographic
regions (Table 3), and we report latitudinal and elevation shifts further aggregated over all 18
climate change scenarios. An important observation is that elevation and latitude shifts
predicted by climate envelope modeling are not independent over multiple populations or

Table 2 Sampling and biogeographical information for species, as well as statistics that describe the
predictive accuracy of the species distribution model for 15 major forest tree species in western North America

Species Presenta Range
(sqkm)

Relative
abundanceb

Error
ratec

Model
specificity

Model
sensitivity

AUC

Black spruce 4489 710,748 0.14 0.07 0.88 0.58 0.90

Douglas-fir 8808 1,002,592 0.21 0.12 0.86 0.60 0.88

Engelmann spruce 6223 581,058 0.09 0.10 0.86 0.56 0.81

Lodgepole pine 11275 1,016,718 0.13 0.19 0.77 0.61 0.82

Pacific silver fir 1615 172,348 0.16 0.02 0.95 0.64 0.93

Ponderosa pine 3967 591,394 0.23 0.06 0.93 0.59 0.88

Sitka spruce 1016 217,983 0.21 0.02 0.95 0.65 0.95

Tamarack 406 324,392 0.03 0.01 0.91 0.61 0.93

Trembling Aspen 7241 1,135,473 0.14 0.12 0.76 0.64 0.83

Western hemlock 4860 362,021 0.19 0.05 0.94 0.67 0.94

Western larch 821 119,669 0.05 0.01 0.95 0.54 0.86

Western redcedar 3798 305,163 0.08 0.06 0.92 0.68 0.94

Western white pine 820 185,919 0.02 0.01 0.92 0.60 0.89

White spruce 7115 848,866 0.10 0.11 0.84 0.61 0.88

a Out of approximately 54,716 sample plots, including non-forested plots
b Expected proportion of basal area or crown cover when present in a sample plot
c Error Rate0(False Positive + False Negative)/(Total Positive +Total Negative)
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multiple model runs. For example, an approximate climate match to a current population
may in the future be found at higher elevation and the same latitude, at the same elevation
but higher latitude, or through a combination of northward and upward shifts. This leads to a
strong negative correlation between predicted elevation and predicted latitudinal shifts for
particular species–region combinations, represented by symbols in Fig. 3.

Fig. 1 Projections of Douglas-fir habitat for the 1961–1990 reference period and under recent climate change
1997–2006. The first rows of maps show projections of individual populations. In the second row, ecosystem
modeling units were replaced with known species frequencies
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This relationship shown in Fig. 3 for the consensus projections of multiple populations
holds true for individual model runs. Although similar climate change scenarios may
produce rather different combinations of elevation and latitude shifts for individual

Fig. 2 Projections of Douglas-fir habitat for under climate scenarios for the 2020s, 2050s and 2080s. In the
first row, ecosystem modeling units were replaced with known species frequencies. The second row shows the
degree of consensus among projections based on multiple climate change scenarios

Climatic Change



Table 3 The geographic regions that we use to summarize shifts in suitable habitat are defined by four
ecological classification systems. The table lists the “zone” name for BC (Meidinger and Pojar 1991), the
“natural subregion” name for AB (NRC 2006), the “ecoregion” name for SK and MB (Selby and Santry
1996), or the “level III natural region” name for the US (EPA 2007)

Region Ecosystem polygons

North Coast BC: Coastal Western Hemlock and Mountain Hemlock north of 51° latitude;
US: Alaskan Panhandle

Mid Coast BC: Coastal Western Hemlock, Coastal Douglas-Fir and Mountain Hemlock
south of 51° latitude; US: Coast Range and Puget Lowlands

South Coast US: Southern and Central California Chaparral and Oak Woodlands

North Coast Mountains BC: Engelmann Spruce-Subalpine Fir and Interior Cedar-Hemlock north
of 51° latitude.

Mid Coast Mountains BC: Engelmann Spruce-Subalpine Fir, Interior Douglas-Fir, Mountain Spruce
south of 51° latitude; US: Cascades and North Cascades

South Coast Mountains US: Klamath Mountains, Southern California Mountains, Sierra Nevada

Canadian Rockies BC: Engelmann Spruce-Subalpine Fir, Interior Cedar-Hemlock, Interior
Douglas-Fir, Mountain Spruce and Sub-boreal Spruce within the mountain
range; AB: Alpine, Subalpine, Montane and Upper Foothills

US Rockies US: Northern Rockies, Idaho Batholiths, Middle Rockies,Canadian Rockies,
Wasatch and Uinta Mountains, and Southern Rockies within mountain range

Boreal BC: Boreal White and Black Spruce; AB: Athabasca Plain, Boreal Sub-arctic,
Northern Mixedwood, Central Mixedwood, Dry Mixedwood, Kazan Uplands,
Lower Boreal Hills and Peace-Athabasca Delta; SK/MB: Athabasca Plain,
Churchill River Upland, Mid-boreal Upland, Mid-boreal Lowland and Boreal
Transition

Sub-boreal Mixedwood BC: Sub-Boreal Spruce, Sub-Boreal Pine-Spruce and Spruce-Willow-Birch

Canadian Interior Plateau BC: Ponderosa Pine and adjacent Interior Douglas-Fir

US Interior Plateau US: dry conifer forest occurring in selected parts of the Blue Mountains,
Middle Rockies, North Cascades, and Eastern Cascades Slopes and
Foothills

Fig. 3 Plot of the projected northward shift verses the shift in mean elevation for all populations of all species
listed in Table 4. A linear regression trend line representing the overall trend δ Elevation0δ Latitude×0.44 is
also provided for each period
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ecosystem units (data not shown), elevation and latitudinal shifts can consistently be
described by the formula: δ Elevation0δ Latitude×0.44. In other words, a 100 km north
shift in latitude with the elevation held constant is equivalent to a 44 m upward shift in
elevation with the latitude held constant. The standard error estimate for the slope of this
relationship (0.44) is 0.06. The linear relationship explains 37, 54, and 56 % of the total
variance in the predicted elevation versus northward shifts for the 1997–2006, 2020s and
2050s climates, respectively. Based on this formula we report the average elevation shift
given a zero latitudinal change, and the average latitudinal shift, given a zero elevation
change (Table 4).

3.4 Tracking habitat of populations

Under 1997–2006 climate conditions, representing an approximately 25-year climate change
relative to the 1961–1990 reference period, climate habitat of populations across western
North America has shifted on average 130 km north or approximately 60 m up in elevation.
The largest habitat shifts due to observed climate trends were identified for the boreal and the
Canadian and US Interior Plateau regions. This reflects warming trends of approximately +1.5 °C
or more in mean annual temperature for these regions, and a reduction of mean annual
precipitation by up to 20 % for the 1997–2006 average relative to the 1961–1990 reference
period (data not shown).

Projected latitudinal or elevation shifts for western North America on average double for
the 2020s (310 km north, 140 m elevation), and double again for the 2050s (590 km north,
260 m elevation) compared to habitat shifts calculated for the 1997–2006 observed climate
(Fig. 3). As observed in the recent past, the most prominent shifts for the 2020s are predicted
for the boreal and the US and Canadian Rockies regions. This primarily affects
climate habitat for populations of black spruce, white spruce, aspen, and tamarack.
For the 2050s northern and coastal populations of tree species are also projected to
experience large geographic lags. For example, populations of yellow cedar, Sitka
spruce, pacific silver fir, western hemlock and western redcedar would be affected
(Table 4).

To provide a measure of variability of projections given in this table, average standard
deviations across all populations for northward shifts are 123 km for the 2020s and 249 km
for the 2050s. Average standard deviations for elevation shifts are 54 and 110 m for the
2020s and 2050s, respectively. Standard deviations for the 2080s are very large at the
population level and even at the species level (Fig. 1 and Online Resources 1d–15d).

4 Discussion

4.1 Characteristics of the ecosystem-based modeling approach

Rather than just informing where habitat is lost, maintained, or gained at the species level,
our modeling approach provides geographically referenced matches between current pop-
ulations and matching climate conditions under climate change. Under the assumption that
populations are indeed adapted to local climate conditions (e.g. Gray et al 2011), our
projections suggest that northern and high elevation populations may be as vulnerable to
climate change as populations at the trailing edge of the species range. Our analysis supports
empirical data by Chen et al. (2010), and confirms reservations by Hampe (2004) on the
correct interpretation of species distribution model projections.
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Table 4 Northward and elevation shift of suitable habitat for populations relative to the 1961–1990 reference
projection, averaged over 18 climate change scenarios. We report elevation change for a constant latitude, and
latitudinal change for a constant elevation. For seed transfer these values represent maximum limits for a
latitudinal or elevation transfer

Species Region 1997–2006 shifts 2020s shifts 2050s shifts

North
(km)

Elevation
(m)

North
(km)

Elevation
(m)

North
(km)

Elevation
(m)

Black spruce Boreal 223 98 439 193 834 367

Canadian Rockies 106 46 317 140 642 283

Sub-boreal Mixedwood 143 63 329 145 704 310

Douglas-fir Canadian Interior Plateau 399 176 287 126 482 212

Canadian Rockies 133 58 345 152 668 294

Mid Coast 141 62 242 106 535 235

Mid Coast Mountains 88 39 164 72 417 183

South Coast 75 33 380 167 544 239

Sub-boreal Mixedwood 161 71 348 153 424 317

US Interior Plateau 193 85 133 58 721 39

US Rockies 175 77 240 106 407 179

Engelmann spruce Canadian Rockies 62 27 344 151 719 317

Mid Coast Mountains 31 14 195 86 399 176

US Interior Plateau 51 22 404 178 557 245

US Rockies 299 132 264 116 379 167

Lodgepole pine Boreal 166 73 337 148 709 312

Canadian Rockies 62 27 322 142 633 278

Mid Coast Mountains 113 50 260 114 571 251

Sub-boreal Mixedwood 75 33 380 167 544 239

US Interior Plateau 154 68 264 116 786 202

US Rockies 168 74 309 136 542 238

Pacific silver fir Mid Coast 175 77 267 118 544 239

North Coast 215 95 323 142 739 325

Ponderosa pine US Interior Plateau 102 45 392 172 586 258

US Rockies 231 102 278 122 533 294

Sitka spruce Mid Coast 75 33 95 42 268 118

North Coast 157 69 354 156 834 367

Tamarack Boreal 114 50 337 148 675 297

Canadian Rockies 10 4 366 161 549 242

Trembling aspen Boreal 197 87 387 170 735 323

Canadian Rockies 81 36 334 147 624 275

Sub-boreal Mixedwood 192 84 360 158 514 226

US Interior Plateau 130 57 133 58 765 39

US Rockies 92 40 137 60 372 164

Western hemlock Canadian Rockies 281 124 411 181 772 339

Mid Coast 135 59 182 80 417 184

North Coast 159 70 366 161 856 377

Western larch Canadian Rockies 170 75 404 178 648 285

US Rockies 196 86 532 234 803 353
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Compared to other species distribution models, our ecosystem-based approach appears to
yield similar levels of predictive accuracy (e.g. Schroeder et al. 2010; Roberts and Hamann
2012). We find the best accuracy for coastal species with AUC values above 0.9, which is
generally interpreted as excellent predictive accuracy. Almost identical AUC values were
obtained in semi-independent cross-validations (Roberts and Hamann 2012) and the ap-
proach yielded fair accuracy in truly independent regional and palaeoecological validations
(0.78 and 0.75, respectively). A notable difference to standard species distribution models is
that error rates in our ecosystem-based modeling approach are driven by omission error (e.g.
Rehfeldt et al. 2009). From a management perspective, determining species choice for
management applications should therefore be quite safe because we tend to underpredict
rather than overpredict suitable habitat.

4.2 Adaptational lag implies a need for assisted migration

Our results suggest that climate change observed over the last 25 years has already resulted
in a notable lag of populations relative to their 1961–1990 climate niches. These lags are in
the same direction and approximately half of the magnitude as in climate change predictions
for the 2020s (Table 4, Fig. 3). Our analysis implies that seed could be moved 130 km north
or 60 m up in elevation, although the values vary for different species and different regions
in western North America. Notably, this recommendation relies on a number of assumptions
that we discuss in more detail in the following paragraphs.

Standard reforestation practice in western North America relies on seedzone delineations
to restrict seed movement from collection locations to panting sites, sometimes in combi-
nation with transfer limits expressed in geographic or elevation distances (e.g. Ying and
Yanchuk 2006; Hamann et al 2011). These rules are based on the assumption that popula-
tions are broadly adapted due to high gene flow (e.g. Morgenstern 1996). As a consequence,
current planting stock recommendations are made for broad macro-climatic regions, repre-
sented by ecosystem or seedzone delineations (Hamann et al 2011; Ying and Yanchuk 2006).
In contrast, there are no seed collections or breeding programs that provide especially
adapted genotypes for particular soil conditions or topographic positions. Instead, foresters

Table 4 (continued)

Species Region 1997–2006 shifts 2020s shifts 2050s shifts

North
(km)

Elevation
(m)

North
(km)

Elevation
(m)

North
(km)

Elevation
(m)

Western redcedar Canadian Rockies 274 121 379 167 697 307

Mid Coast 155 68 254 112 568 250

North Coast 128 56 328 145 753 331

Western white pine Canadian Rockies 314 138 496 218 749 329

Mid Coast Mountains 12 5 147 65 392 172

White spruce Boreal 207 91 419 184 817 359

Canadian Rockies 57 25 307 135 627 276

Sub-boreal Mixedwood 106 47 356 157 685 301

Yellow cedar Mid Coast 70 31 262 115 515 227

North Coast 153 68 371 163 830 365
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choose appropriate species for various micro-site conditions, soils, or topographic positions,
guided by handbooks for local site classifications.

Our modeling approach accounts for current reforestation practices by using the same or
similar ecosystem delineations as modeling units, that also serve to restrict seed transfer in
current reforestation practice. We further make similar foundational assumptions: Optimality
of local populations refers to the same concept as equilibrium assumptions in species
distributions modeling, and seed zones are often approximated with the help of ecosystem
delineations even when genetic data from provenance trials is available (Hamann et al.
2011). Therefore, violation of these assumptions has similar consequences in projections as
in current reforestation programs. For example, local optimality does not always apply,
compromising the potential maximum productivity of current plantations (Matyas 1990).
Our future projections would simply perpetuate any adaptational lag and sub-optimal
productivity that pre-existed during the 1961–1990 reference period.

We should further note that in the modeling approach we use, soil and topographic
variables matter in determining the realized niche, even though we do not use these variables
as predictors. Hence, local silvicultural prescriptions need to be transferred along with
species populations. For example, if a species currently occurs only on deep, nutrient rich
soils in a particular ecosystem or seedzone, and a forester considers a climate-based seed
transfer according to Table 4, then the target sites further north or higher in elevation should
also have deep, nutrient rich soils. The projections of Table 4, like current seed zones, offer
guidance as to which planting stock is best for a broad climatic region. Species selection for
specific planting sites still remains an important responsibility of forest managers.

4.3 Uncertainty requires short-term adaptation strategies

Even though the life span of most tree species included in this study exceeds the 2080s, we
think that forest resource managers need to focus on the immediate future when developing
seed transfer prescriptions for a number of reasons. First, uncertainty in habitat projections
for the 2020s are moderate, but they dramatically increase towards the 2080s (Fig. 2, Online
Resources 1–15). Secondly, since trees are most vulnerable to climatic factors at the seedling
stage (Black and Bliss 1980; Donovan et al. 1988), we could not currently plant genotypes
that would be optimally adapted to 2080s climate. Third, long-distance transfers far outside
the current species range implied by 2080s projections may lead to issues not considered by
the model (e.g. required mycorrhizal associations, or changes to day length regimes that
control the species’ phenology). Therefore, seed transfers according to the 1997–2006 and
2020s projections will have the best chance of success. Although we realize that this will
mean that tree populations will continue to lag behind their optimal climate, targeting current
and 2020s climate conditions is still a low-risk improvement over status-quo management
practices that essentially target climate conditions of the past century.

Another compelling argument to locally change status-quo management practices are the
substantial number of observed climate change impacts on forest heath and productivity (e.g.
Allen et al. 2010; Barber et al. 2000; McDowell et al. 2010; Michaelian et al. 2010; Peng et
al. 2011). Such additional sources of information allow forest practitioners to weigh the risk
of changing existing practices against the risk of status-quo management, exemplified in a
case study for aspen by Gray et al (2011). Although the link between changing climate
conditions and ecological impacts can be quite complex (e.g. Hennon et al. 2006; Woods et
al. 2005), we think that these observations in combination with climatic habitat projections
are a compelling argument for testing different species or different genotypes that may be
better adapted to new climatic realities.

Climatic Change
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