
Lab Practice of Seminar on Kriging and Variogram modelling on 2D data 

By Yuanyuan Xia and Amir Mahdi Latifi, Winter 2021, REN R 690 

 

Seminar Video: 

https://www.youtube.com/watch?v=GUm48aRQM50&t=1097s&ab_channel=AmirMahdiLatifi 

 

Background: 

Kriging is a method of spatial interpolation of spatial data, based on prerequisite covariance 

calculations. In this seminar, Amir has covered Ordinary Kriging applications in geology and 

mining, as well as the prior variogram calculation and modeling. Yet the applications of Kriging 

are not limited to geology and mining but with any spatial data (e.g., climate data, geographic 

distributions of certain species of animal, etc.), Kriging is a powerful tool to estimate the value 

of the variables of interest with limited available samples. This lab aims at providing some 

useful instructions on how to implement Kriging with R.  

 

1. Load the data, packages and attach the grid 

Please download the data set 2D_MV_200Wells.csv before starting (original could be found 

at ‘https://github.com/GeostatsGuy/GeoDataSets’). A CSV file will be provided at our course 

webpage. 

The data file consists of variables porosity, permeability and acoustic impedance and the X 

and Y coordinates at the sampling location. Although the data is a 2D set, Kriging can also be 

applied in 3D data sets. Install the package ‘gstat’ (geostatistical methods by Edzer Pebesma), 

‘sp’ (spatial points addition to regular data frames), and ‘plyr’ (splitting, applying, and 

combining data by Hadley Wickham) for the next steps.  

a) Install packages and library: 

library(gstat)                           # geostatistical methods by Edzer Pebesma 

library(sp)                       # spatial points addition to regular data frames 

library(plyr)                                # manipulating data by Hadley Wickham 

 

b) Specify the grid parameters 

Please download griddef.txt for the grid parameters input. You can always change grid 

parameters based on your own need (the block size that fits your needs best). These 

parameters define how large your grid cells would be. Smaller grid cells and higher 

numbers of cells result in an increase in computation time, but also increases the level of 

details in the final model. For this dataset, the block size is set as 10 meters in X and Y 

directions (xsize =10, ysize = 10), 400 blocks in each direction (nx = 400, ny = 400), and the 

origin point of the grid is xmin=5.0 and ymin=5.0 (this is the center location of the first grid 

cell). 

https://www.youtube.com/watch?v=GUm48aRQM50&t=1097s&ab_channel=AmirMahdiLatifi
https://github.com/GeostatsGuy/GeoDataSets


 

nx = 400                          # number of cells in the x direction 

ny = 400                             # number of cells in the y direction 

xmin = 5.0                              # x coordinate of lower, left cell center  

ymin = 5.0                            # y coordinate of lower, left cell center  

xsize = 10.0                            # extent of cells in x direction 

ysize = 10.0                            # extent of cells in y direction  

 

c) Import the data set 

mydata = read.csv("2D_MV_200Wells.csv")   

head (mydata) 

 

The imported data should look like this: 

 

 

d) Data Preparation 

Before starting, our CSV dataframe has to be converted to a series of spatial points for 

visualization in the next steps. In this example, X and Y coordinates are supposed to be 

defined here for our data points.  

 

class(mydata)                               # confirms that it is a dataframe 

coordinates(mydata) = ~X+Y                  # indicate the X, Y spatial coordinates 

 

After the conversion, we can further check the summary statistics and do the visualization 

of the spatial coordinates we created: 

 

summary(mydata)                              # confirms a spatial points dataframe 

head(coordinates(mydata))                    # check the first several coordinates 

The results for this step should look like this: 



 

 

 

 

 

 

 

 

e) Normal score transformation 

For calculation of the experimental variograms, we often work with Gaussian transformed 

data to produce more interpretable variograms. 

Ashton Shortridge (2008) has written the function to achieve the transformation. Apply 

the raw data and define it as a vector X, with the function below, R will returns an object 

with normal score values as a member vector [my_transform_object]$nscore. 

 

nscore <- function(krig) {                      

  # Takes a vector of values x and calculates their normal scores. Returns  

  # a list with the scores and an ordered table of original values and 

  # scores, which is useful as a back-transform table. See backtr(). 

  nscore <- qqnorm(krig, plot.it = FALSE)$krig  # normal score  

  trn.table <- data.frame(krignscore=sort(krig),nscore=sort(nscore)) 

  return (list(nscore=nscore, trn.table=trn.table)) 

} 

npor.trn = nscore(mydata$porosity)                  # normal scores transform 

mydata[["NPorosity"]]<-npor.trn$nscore        # append the normal scores transform  

head(mydata)                                       # check the result 

 

The NS transformed data should look like this: 

 

 

Run summary statistics for the normal score transformed data and visualize original and 

normal scored transformed data to check the outcome of the transformation: 

 

summary(mydata$NPorosity) 

par(mfrow=c(2,2))                              



hist(mydata$porosity,main="Porosity (%)",xlab="Porosity (%)",nclass = 15) 

plot(ecdf(mydata$porosity),main="Porosity",xlab="Porosity (%",ylab="Cumulative 

Probability")  

hist(mydata$NPorosity,main="N[Porosity (%)]",xlab="N[Porosity (%)]",nclass = 15) 

plot(ecdf(mydata$NPorosity),main="N[Porosity]",xlab="N[Porosity(%)]",ylab="Cumulat

ive Probability")  

 

f) Spatial Visualization 

Visualize a porosity location map. 

spplot(mydata,"porosity", do.log = TRUE, 

key.space=list(x=.85,y=0.97,corner=c(0,1)), 

scales=list(draw=T),xlab = "X (m)", ylab = "Y (m)",main ="Porosity (%)") 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Experimental Variogram Calculation and Modelling 

First, the experimental variogram must be calculated for the major and minor directions. 

Usually, to determine these directions we can observe the location map. The spread of highs 

and lows usually refer to the major direction of continuity. Here we found the major direction 

is 35°, but it is highly recommended to change this parameter a couple of times to check how 

the experimental variogram results change. In theory, the points in the major direction should 

be most continuous. Cutoff here refers to the maximum acceptable distance to pair points. 

Width refers to the tolerance for distances between pairs of points.  

 

por.vg.035 = variogram (NPorosity~1, mydata, cutoff=3000, width=500, alpha=35.0, 

tol.hor=22.5) # 035 directional  

por.vg.125 = variogram(NPorosity~1,mydata,cutoff = 3000,width =500,alpha = 

125.0,tol.hor=22.5) # 125 directional 

 

Variogram modeling (two structures) is implemented with the following command: 

por.vm.ani <- vgm(psill = 0.6, "Exp", 800, anis = c(035, 0.5),nugget=0.4) 

por.vm.ani                      # check the variogram model parameters 

 

This is the two structures variogram model, psill refers to the contribution of the first structure, 

800 is the range of the first structure and nugget effect refers to the starting points on y axis 

of the variogram model.   

 

The results is displayed below: 

 

 

 

Visualize the variogram model: 

name = c("035","125")                          # make name matrix 

color = c("blue","red")                        # make color matrix 

plot(por.vg.035$dist,por.vg.035$gamma,main="Porosity Anisotropic Variogram",xlab="  

Lag Distance (m) ",ylab=" Semivariogram ",pch=16,col=color[1],ylim=c(0,1.2)) 

points(por.vg.125$dist,por.vg.125$gamma,pch=16,col=color[2]) abline(h = 1.0) 

unit_vector = c(sin(35*pi/180),cos(35*pi/180),0) # unit vector for 035 azimuth 

vm.ani.035 <-

variogramLine(por.vm.ani,maxdist=3000,min=0.0001,n=100,dir=unit_vector,covariance=

FALSE) # model at 035 

lines(vm.ani.035$dist,vm.ani.035$gamma,col=color[1]) # include variogram model  

unit_vector = c(sin(55*pi/180),-1*cos(35*pi/180),0) # unit vector for 125 azimuth 

vm.ani.125 <- 

variogramLine(por.vm.ani,maxdist=3000,min=0.0001,n=100,dir=unit_vector,covariance=



FALSE) # model at 125  

lines(vm.ani.125$dist,vm.ani.125$gamma,col=color[2]) # include variogram model 

legend(2000,.8,name, cex=0.8, col=color,pch=c(16,16,16),lty=c(1,1,1)) # add legend 

 

 

 

 

 

 

 

 

 

In the above figure, points represent the experimental variogram calculation results, while the 

lines (blue and red for the major and minor directions) represent the model for the calculated 

results.  

 

3. Ordinary Kriging Estimation and Visualization 

a) Adding coordinates to grid cells: 

The addcoord command below is included to attach coordinates to the grid cells which we 

defined earlier. 

 

  addcoord <- function(nx,xmin,xsize,ny,ymin,ysize) {                   

   coords = matrix(nrow = nx*ny,ncol=2) 

   ixy = 1 

   for(iy in 1:nx) { 

      for(ix in 1:ny) { 

       coords[ixy,1] = xmin + (ix-1)*xsize   

       coords[ixy,2] = ymin + (iy-1)*ysize  

        ixy = ixy + 1 

    } 

  } # Function is written by Michael Pyrcz, 2008 

  coords.df = data.frame(coords) 

  colnames(coords.df) <- c("X","Y") 

  coordinates(coords.df) =~X+Y 

  return (coords.df) 

  }   



 

 

 

 

 

 

From the results, we can see a block model is specified based on our data range with a 

4000*4000 grid in XY plane. 

b) Ordinary Kriging without searching limitations 

porosity.kriged = krige(porosity~1, krig, coords, model = por.vm.ani,maxdist = 

Inf,nmin = 0,omax=Inf) # ordinary Kriging 

summary(porosity.kriged) 

Result is shown below: 

 

 

 

 

 

 

 

 

 

Visualize the Kriging results: 

spplot(porosity.kriged["var1.pred"],main = "Porosity Ordinary Kriging", key.space = 

"right", xlab = "X (m)", ylab = "Y (m)") 

 

 

 

 

 

 

 

 

 

 

When we compare the original porosity data and ordinary Kriging porosity data (in terms of 

their histograms), it is obvious that the Kriging estimation smooths the data (lower standard 

deviation). 



 

Compare the histogram and CPP: 

par(mfrow=c(2,2))                            

hist(mydata$porosity,main="Porosity",xlab="Porosity (%)",nclass = 15)  

plot(ecdf(mydata$porosity),main="Porosity",xlab="Porosity (%)",ylab="Cumulative 

Probability") 

hist(porosity.kriged$var1.pred,main="Kriged Porosity",xlab="Porosity (%)",nclass = 

15) plot(ecdf(porosity.kriged$var1.pred),main="Kriged Porosity",xlab="Porosity 

(%)",ylab="Cumulative Probability") 

 

 

c) Ordinary Kriging with limited search 

The searching radius will impact the results, as a large searching radius will increase the 

number of samples used in the estimation of each grid cell. If a search radius limit is 

implemented in Ordinary Kriging, the results will have higher estimation variances (lower 

accuracy) and would most likely produce sudden changes in values in areas with limited 

sampling.  

Here we set up maximum searching radius as 800 meters, minimum number of pairs used is 

3 and maximum pairs used per octant is 1.  

maxdist = 800                                       # maximum distance to look for 

data 

nmin = 3                                           # minimum number of data for an 

estimate 

omax = 1                                           # maximum number of data per octant     



After setting up the searching parameters, we use the following commands to interpolate and 

visualize the results: 

porosity.kriged.sp = krige(porosity~1, mydata, coords, model = por.vm.ani,maxdist = 

maxdist,nmin = nmin,omax=omax) # ordianry Kriging 

spplot(porosity.kriged.sp["var1.pred"],main = "Porosity Ordinary Kriging / Limited 

Search", key.space = "right", xlab = "X (m)", ylab = "Y (m)") 

 

Comparing to the results of unrestricted ordinary Kriging with reasonable searching limits 

produces less smooth results. With the same command in the previous section, we can 

produce the histogram and CPP for limited searching radius Kriging as well. It is highly 

encouraged to try it out and compare the data smoothness.  

 

Please feel free to contact Yuanyuan (yuanyua1@ualberta.ca) or Amir 

(amirmahdi.latifi@ualberta.ca) if you have any further questions or feedbacks. Thank you for 

the participation in the seminar and lab.  

 

Referenced resources: 

https://github.com/GeostatsGuy 
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