
Lab 9 - Spatial analysis: Trend surface analysis and PCNM 
 

by Benoit Gendreau-Berthiaume 
 
Spatial structure in ecological communities is increasingly recognized as being important for the 
understanding of the processes driving communities. In ecological communities, spatial patterns 
are either driven by environmental factors or biotic processes. Thus to adequately understand 
ecological communities it is important to identify the spatial structures and then relate these 
patterns to underlying processes. Different ecological processes can occur at different spatial 
scale (fine vs broad scales). It is thus important to detect and quantify spatial patterns over a wide 
range of scales. 
 
Previously, geographic coordinates have been used directly as explanatory variables in 
constrained ordinations (RDA, CCA) by using polynomial terms (x, x

2
, x

3
). This method is called 

trend-surface analysis. The problem with this method is that it was conceived to model broad scale 
patterns and thus finer spatial structure cannot be detected. Nowadays, trend-surface analyses 
are used to detrend data. This is usually done by regressing all variables on the X-Y coordinates 
and retaining the residuals. 
 
A recent method has been developed to detect and quantify spatial patterns over a wide range of 
spatial scales: Principle coordinates of neighbour matrices PCNM (Brocard and Legendre 2002). 
The PCNM method has been found to be best applied to detrended data (Borcard et al. 2004). 
This is because if a general trend is present in the data, about half the PCNM variables would be 
used to describe this general trend and thus their role in modeling finer spatial patterns would go 
unnoticed. 
 
For this lab we will be using mites species data (mite.csv), environmental variables data (env.csv) 
and the geographic coordinates of the sites sampled (xy.csv) to explore the PCNM method. 
 
9.1. Install required packages and functions for this lab 
 
You can skip this step and move to the front row of the lab, which has everything installed already. 
If you want to do it youself, here are the instructions: 
 
PCNM only works on the latest version of R. You can download it here:  
http://cran.r-project.org/bin/windows/base/ 
 

Then, you need to install the packages “packfor”, “AEM”, and “PCNM” available here:  
https://r-forge.r-project.org/R/?group_id=195 

 

You need another number of packages, so easiest to execute this directly out of R with this code: 
install.packages("ape") 

install.packages("spdep") 

install.packages("ade4") 

install.packages("vegan") 

install.packages("packfor", repos="http://R-Forge.R-project.org") 

install.packages("AEM", repos="http://R-Forge.R-project.org") 

install.packages("PCNM", repos="http://R-Forge.R-project.org") 

 

Now double-click the desktop icon to start R, set your working directory, and add a special 
function, which is included with the data package that you can download from the course website: 
setwd("C:/Documents and Settings/866-W24/Desktop/PCNM_Lab") 

source("sr.value.R")    #Function must be in working directory 

 
 



Now can start importing the data, which is in a different format this time: 
 mite=read.table("mite.txt") 
mite.env=read.table("mite_env.txt") 

mite.xy=read.table("mite_xy.txt") 

 
Because RDA analyses (used in this lab) have been found to be inappropriate for raw species 
abundance data involving many null abundances (which is the case with the mite data), a 
Hellinger transformation of the raw mite data is made prior to the RDA analysis (Legendre and 
Gallagher 2001). 
 

#Hellinger data transformation 

mite.h=decostand(mite, "hellinger")  

 

  

9.2. Trend surface analysis 
 
First let’s visualize different spatial pattern modelled by trend-surface analysis using a theoretical 
example.  
  
#First simple models on a square, regularly sampled surface 

#contruct a plot a 10 x 10 grid 

 

xygrid=expand.grid(1:10, 1:10) 

plot(xygrid) 

 

xygrid.c=scale(xygrid, scale=FALSE) #centring 

plot(xygrid.c) 

X=xygrid.c[,1]   # give the x coordinate of each sample point 

Y=xygrid.c[,2] # give the y coordinate of each sample point 

 

#Plot some first, second and third-degree functions of x and y 

par(mfrow=c(3,3)) 

s.value(xygrid, (X)) 

s.value(xygrid, (Y)) 

s.value(xygrid, (X^2)) 

s.value(xygrid, (Y^2)) 

s.value(xygrid, (X*Y)) 

s.value(xygrid, (X^2*Y)) 

s.value(xygrid, (Y^2*X)) 

s.value(xygrid, (X^3)) 

s.value(xygrid, (Y^3)) 

 

You can play around with the different functions and see what spatial pattern they model 
 

 
Now let’s run the trend surface analysis of the actual mite data. First we will use a function poly() 
to construct third-degree orthogonal polynomials of the geographic coordinates. Then we will run a 
RDA with the polynomials as explanatory variables. 
 

mite.poly.ortho=poly(as.matrix(mite.xy), degree=3)  #raw=F default 

colnames(mite.poly.ortho)= 

 c("X","X2","X3","Y","XY","X2Y","Y2","XY2","Y3")  

 

#RDA using all 9 polynomial terms 

mite.trend.rda.ortho=rda(mite.h~., data=as.data.frame(mite.poly.ortho)) 

 



#Computation of the adjusted R2. 

R2adj.poly=RsquareAdj(mite.trend.rda.ortho)$adj.r.squared 

 

Adjusted R
2
 measures the unbiased amount of explained variation. This is because the number of 

explanatory variable in the species matrix influences the R
2
 thus inflating the apparent amount of 

explained variance because of random correlations.  
 
One could want to reduce to number of explanatory variable to retain only the most significant and 
important ones. To reduce the risk of incorporating too many variable Blanchet et al. (2008) 
proposed a forward selection based on two criterions. The forward selection is stop if either the 
significance level alpha is reached (i.e.variable is non-significant) or the global R

2
adj is exceeded 

(i.e. a variable brings the R
2
adj of the current model over the value of the R

2
adj of the global model). 

 
 

#Forward selection using Blanchet et al.(2008) double stopping criterion 

mite.trend.fwd=forward.sel(mite.h, mite.poly.ortho, 

adjR2thresh=R2adj.poly) 

 

#New RDA using the 6 terms retained 

mite.trend.rda=rda(mite.h~., 

 data=as.data.frame(mite.poly.ortho)[,mite.trend.fwd[,2]]) 

summary(mite.trend.rda) 

 

#overall test and test of canonical axes 

anova.cca(mite.trend.rda, step=1000) 

anova.cca(mite.trend.rda, step=1000, by="axis") 

 

Questions: How much of the total variance is explained by the first three axis of the RDA (use 
summary function)? How much of the variance explained by the constrained ordination is 
explained by the first axis (See Accumulated constrained eigenvalues)? 
 

Let’s Plot the three independent significant spatial 
structures. For square bubbles type "s.value" 
instead of "sr.value" 
 

mite.trend.fit=scores.cca(mite.trend.r

da, choices=c(1,2,3), 

 display="lc", scaling=1)     

#For explanation on scaling see below 

par(mfrow=c(1,3)) 

sr.value(mite.xy, mite.trend.fit[,1]) 

sr.value(mite.xy, mite.trend.fit[,2]) 

sr.value(mite.xy, mite.trend.fit[,3]) 

 

 
 
Scaling: There are two types of scaling in ordinations, scaling 1 & 2. In scaling 1 the distance in 
the biplots are approximations of their Euclidean distances in multidimentional space. In scaling 2 
the angles between descriptors in the biplot reflect their correlation. In the present case, scaling 1 
is used to display “pure” spatial model i.e. the linear combination of spatial variables, in  
a projection preserving the Euclidean distances among sites. In this case the descriptors (PCNM 
variables) are orthogonal thus we know they are independent and we are thus not interested in 
their correlation with one another. 
 
 
 



9.3. Detrending the mite data 
 

Because the PCNM method has been found to be best applied to detrended data (see lab 
introduction) before running the PCNM analysis on the mite data, the data is detrend by regressing 
all variables on the X-Y coordinates and retaining the residuals. Before detrending we however 
test if the trend is significant. 
 

anova(rda(mite.h, mite.xy))  #result: significant trend 

 

#computation of linearly detrended mite data 

mite.h.det=resid(lm(as.matrix(mite.h)~., data=mite.xy)) 

 

 
 
9.4. PCNM visualisation 
 
Before running the PCNM on the mite data let’s visualize what PCNM might look like for a two 
dimensional sampling design. For this purpose we will build an equispaced grid of 20 by 20 points 
separate 1m apart. 
 

# Equispaced 20x20 grid 

 

xygrid2=expand.grid(1:20, 1:20) 

plot(xygrid2) 

xygrid2.dl=dist(xygrid2) 

thresh=1                               #Truncation to threshold 1 

xygrid2.dl[xygrid2.dl>thresh]=4*thresh #Truncate the distance matrix 

 

#PCoA of truncated matrix 

xygrid2.PCoA=cmdscale(xygrid2.dl, eig=T, k=nrow(xygrid2)-1)  

#warning message normal 

 

#Count number of positive eigenvalues 

nb.ev2=length(which(xygrid2.PCoA$eig>0.000000001)) 

#Matrix of PCNM variables 

xygrid2.PCNM = xygrid2.PCoA$points[,1:nb.ev2] 

 

Now let’s plot some PCNM variables modelling 
positive spatial correlation to better visualise what they 
represent. 
 

 

par(mfrow=c(4,2)) 

somePCNM2=c(1,2,5,10,20,50,100,150) 

for (i in 1:length(somePCNM2)){ 

 sr.value(xygrid2, 

xygrid2.PCNM[,somePCNM2[i]], 

 method="greylevel", 

csize=0.35,sub=somePCNM2[i], csub=2) 

 } 

 

 

You can explore different PCNM variables by changing 

the numbers in somePCNM2 
 

 



9.5. PCNM of the mite data 
 

 Construct the matrix of PCNM variables step by step... (This is an optional section, if you are 
not interested in doing this manually, skip to the next bullet which does the same automatically 
with PCNM 

 

xy.d1=dist(mite.xy) 

spanning=spantree(xy.d1)   

#chosing the threshold as the maximum distance between two points  

dmin=max(spanning$dist) 

#truncate the distance matrix 

xy.d1[xy.d1>dmin]<- 4*dmin 

 

#PCoA of truncated distance matrix 

xy.PCoA=cmdscale(xy.d1, k=nrow(mite.xy)-1, eig=T) 

 

#Count the positive eigenvalues 

nb.ev=length(which(xy.PCoA$eig>0.0000001)) 

 

#construct a data frame with PCNM variables 

mite.PCNM=as.data.frame(xy.PCoA$points[1:nrow(mite.xy), 1:nb.ev]) 

summary(mite.PCNM) 

 

The next step would be to calculate Moran’s I for each Eigenvectors for the threshold distance (in 
this case 0 to 1.011187). This is not done here. Instead we use the automatic PCNM function that 
calculated them for us (next section). 
 
 

 Construct the PCNM variables automatically 
using PCNM() 

 

For PCNM analysis it is possible to use the function 
PCNM() of the package PCNM. This method will 
automatically construct the PCNM variables and also 
calculate the Moran’s I for each variable. In this 
function, the default method to determine the 
threshold distance is by using the minimum spanning 
tree but one can also decide what threshold distance 
he wants. The minimum spanning tree method 
insures that all points are connected which is 
important for the PCNM analysis. 
 
xy.d1=dist(mite.xy) 

mite.PCNM.auto=PCNM(xy.d1) 

summary(mite.PCNM.auto) 

 

#plot the minimum spanning tree used to find the truncation distance 

plot.spantree(mite.PCNM.auto$spanning, mite.xy) 

dmin= mite.PCNM.auto$thresh     #truncation distance 

nb.ev=length(mite.PCNM.auto$values)   #nbr of eigenvalues 

 

Moran's I of the PCNM variables (in the first distance class 0 to truncation threshold). 
 

#Expected value of I, no spatial correlation 

mite.PCNM.auto$expected_Moran    

 



#Moran’s I for each PCNM variables 

mite.PCNM.auto$Moran_I      

 

#Eigenfunction with positive spatial correlation 

select=which(mite.PCNM.auto$Moran_I$Positive == T) 

mite.PCNM.pos= 

 as.data.frame(mite.PCNM.auto$vectors)[,select] 

 

 Run the global PCNM analysis on the *detrended* mite data 
 

Now that we have selected only the PCNM that model positive spatial correlation we can run the 
RDA using only these PCNM variables. 
 
mite.PCNM.rda=rda(mite.h.det~., mite.PCNM.pos) 

anova.cca(mite.PCNM.rda) 

 

Since the analysis is significant, compute the adjusted R
2
 and run forward selection of the PCNM 

variables. 
 

mite.R2a=RsquareAdj(mite.PCNM.rda)$adj.r.squared 

mite.PCNM.fwd= forward.sel(mite.h.det, as.matrix(mite.PCNM.pos), 

 adjR2thresh=mite.R2a) 

nb.sig.PCNM=nrow(mite.PCNM.fwd) 

 

#Identity of Significant PCNMs in increasing order 

PCNM.sign=sort(mite.PCNM.fwd[,2]) 

#Write the significant PCNMs to a new object 

PCNM.red=mite.PCNM.pos[,c(PCNM.sign)] 

 

Now that we have selected the best PCNM variables we run a new PCNM analysis with the 10 
significant PCNM variables  
 

mite.PCNM.rda2=rda(mite.h.det~., data=PCNM.red) 

summary(mite.PCNM.rda2) 

mite.fwd.R2a=RsquareAdj(mite.PCNM.rda2)$adj.r.squared 

anova.cca(mite.PCNM.rda2) 

axes.test= anova.cca(mite.PCNM.rda2, by="axis") 

nb.ax=length(which(axes.test[,5]<=0.05)) #number of significant axes 

 

Finally lets plot the two significant canonical axes of the 
RDA with the 10 significant PCNM variables. 
 

mite.PCNM.axes=scores.cca(mite.PCNM.rda2, 

choices=c(1,2), 

 display="lc", scaling=1) 

par(mfrow=c(1,2)) 

sr.value(mite.xy, mite.PCNM.axes[,1])   

sr.value(mite.xy, mite.PCNM.axes[,2]) 

 

Now that we know that spatial structures are present in 
the mite data it is possible to determine how these two 
significant spatial patterns (two significant canonical 
axes) are related to the environmental variables using 

linear regression models (using function lm()). 

However before running the regressions we first have to 
test for normality of residuals of these linear models. 



#Normality test for first axis 

shapiro.test(resid(lm(mite.PCNM.axes[,1]~., data=mite.env))) 

hist(resid(lm(mite.PCNM.axes[,1]~., data=mite.env))) 

 

It is often more useful to plot histogram of the residuals and assess the normality visually. This is 
because the Shapiro-Wilk test is overly conservative when you have large sample size and not 
very meaningful when sample size is small. 
 

#Linear model of the first axis 

mite.PCNM.axis1.env=lm(mite.PCNM.axes[,1]~.,data=mite.env) 

summary(mite.PCNM.axis1.env) 

 

#Normality verification for second axis 

hist(resid(lm(mite.PCNM.axes[,2]~., data=mite.env))) 

 

#Linear model of the second axis 

mite.PCNM.axis2.env=lm(mite.PCNM.axes[,2]~.,data=mite.env) 

summary(mite.PCNM.axis2.env) 

 

Question: Are both these spatial pattern related to the same environmental variables? How much 
variance in these spatial patterns is explained by the environmental variables? 
 
Other question: Would it be possible to evaluate which mite species are most related to the 

observed spatial patterns? Try: plot(mite.PCNM.rda2, display="sp", scaling=2)  

Scaling 2 is used because we are now interested in the angle between species vectors. 
 
Questions: What does this graph mean? How do you interpret this result with those regarding the 
environmental factors? 
 
 
9.6 Variation partitioning of the Mite – trend – Environment – PCNM variables 
 
Variation partitioning enable us to determine the various unique and combined fractions of 
variation explained in the mite community data by the environmental data, the broad scale spatial 
pattern (trend surface analysis) and the finer scale spatial patterns (PCNMs). For this analysis it is 
better not to detrend the data and instead test for a linear trend and incorporate it explicitly in the 
partitioning procedure.  In the following section we will independently forward select the X-Y 
coordinates, the environmental variables and the PCNM variables before variation partitioning. 
 

 Test trend. If significant, forward selection of coordinates 
 
#Test if trend is significant 

mite.XY.rda=rda(mite.h, mite.xy) 

anova.cca(mite.XY.rda) 

 

#Forward selection of coordinates 

mite.XY.R2a= RsquareAdj(mite.XY.rda)$adj.r.squared 

mite.XY.fwd= forward.sel(mite.h, as.matrix(mite.xy), 

adjR2thresh=mite.XY.R2a) 

 

#Write the significant coordinates to a new object 

XY.sign= sort(mite.XY.fwd$order)  

XY.red=mite.xy[,c(XY.sign)] 

 

 Test and forward selection of environmental variables 
 



Because the variation partitioning method can only handle numeric variables, we have to recode 
the environmental variables 3 to 5 into dummy binary variables. 
substrate= model.matrix(~mite.env[,3])[,-1] 

shrubs= model.matrix(~mite.env[,4])[,-1] 

topo= model.matrix(~mite.env[,5])[,-1] 

mite.env2=cbind(mite.env[,1:2], substrate,shrubs, topo) 

 
#test environmental variables 

mite.env.rda=rda(mite.h, mite.env2) 

anova.cca(mite.env.rda) 

 

#Forward selection 

mite.env.R2a=RsquareAdj(mite.env.rda)$adj.r.squared 

mite.env.fwd=forward.sel(mite.h, mite.env2, 

 adjR2thresh=mite.env.R2a, nperm=9999) 

 

#Write the significant environmental variables to object 

env.sign=sort(mite.env.fwd$order) 

env.red=mite.env2[,c(env.sign)] 

colnames(env.red)    #names of significant environmental variables 

 
 

 Test and forward select the PCNM variables 
 
Run the global PCNM analysis on the undetrended mite data. 
#test the significance of PCNM variables 

mite.undet.PCNM.rda=rda(mite.h, mite.PCNM.pos) 

anova.cca(mite.undet.PCNM.rda) 

 
#If significant run forward selection  

mite.undet.PCNM.R2a=RsquareAdj(mite.undet.PCNM.rda)$adj.r.squared 

mite.undet.PCNM.fwd=forward.sel(mite.h, as.matrix(mite.PCNM.pos), 

 adjR2thresh=mite.undet.PCNM.R2a) 

 

#the number of significant PCNM 

nb.sig.PCNM = nrow(mite.undet.PCNM.fwd) 

# Identity of significant PCNMs in increasing order 

PCNM.sign=sort(mite.undet.PCNM.fwd$order) 

#Write significant PCNMs to a new object 

PCNM.red=mite.PCNM.pos[,c(PCNM.sign)] 

 

 

 Mite - environment - trend - PCNM variation partitioning 
 

mite.varpart= varpart(mite.h, env.red, XY.red, PCNM.red) 

par(mfrow=c(1,2)) 

showvarparts(3) 

#can also try inserting fraction names using 

showvarparts(3, c("Env","Trend","PCNM","","","","","")) 

plot(mite.varpart, digits=2)  #see book for other option p 260 

 
Question: How much variance is explained by the whole set of environmental variables and spatial 
variables? 
 



 

  
 

 Tests the significant fractions [a], [b] and [c]  
 

#Fraction [a] pure environmental 

anova.cca(rda(mite.h,  env.red, cbind(XY.red, PCNM.red))) 

#Fraction [b] pure trend 

anova.cca(rda(mite.h, XY.red, cbind(env.red, PCNM.red))) 

#Fraction [c] pure PCNM spatial variation 

anova.cca(rda(mite.h, PCNM.red, cbind(env.red, XY.red))) 

 

 
Questions: Are all the pure fractions (environmental, trend and PCNM) significant? 
How much variance is explained by the environmental variables? How much of this variance is not 
spatially structured?  
 
The fraction of variance explained by “pure” (not spatially structured) environmental variables 
represents species-environment relationships associated with local environment. 
 
Question: How much variance is explained only by the trend and the PCNM variables 
respectively?  
 
Questions:How much variance is jointly explained by the environmental variables, the Y 
coordinate of the sampling sites (only significant coordinate in the trend) and the PCNM variation?  
 
“This is a typical case of induced spatial variation, were spatial structure of the environmental 
factors produces a similar spatial structure in the response data” (Brocard et al. 2011). However 
one should be careful before inferring causal species-environment relationships i.e. the 
environmental variables directly influence the species. This is because the correlation between 
environmental variables and mite community can also be due to unmeasured processes that 
influence both the mite community and the environmental variables. 
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