
Raster information from blue colour band

Spatial Data Processing and Land Classification with terra

Ren R 690 Seminar, Winter 2023

Benjamin Panes: bpanes@ualberta.ca

Introduction

The purpose of this lab is to demonstrate some spatial processing in R using two
classification techniques: LDA and Random Forest. This will be done using the
“terra” package, an expanded replacement for the “raster” package that includes a
wide variety of additional functions, like vector operations. You can find a list of terra
functions here: https://cran.r-project.org/web/packages/terra/terra.pdf, or in the
included terra.pdf.

We will be using Landsat 8 imagery from a scene of the Central Valley in California
captured on the 14th of June, 2017. Specifically, we will be using surface reflectance
for bands 2 through 7. You can read more about Landsat 8 spectral bands here:
https://www.usgs.gov/landsat-missions/landsat-8. Landsat data were downloaded
from the Earth Explorer portal under Landsat Collection 2 Level-2:
https://earthexplorer.usgs.gov/. You can learn more about this specific data product
here: https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-
reflectance. The bands were converted from 16-bit to 8-bit rasters, clipped to the
study area, and renamed.

Spatial Rasters

To get started, first load each band individually. We have 6 bands which will allow us
to make predictions using a wide range of the electromagnetic spectrum.

Band 2 (B2) Blue

Band 3 (B3) Green

Band 4 (B4) Red

Band 5 (B5) Near Infrared (NIR)

Band 6 (B6) Shortwave Infrared 1 (SWIR 1)

Band 7 (B7) Shortwave Infrared 2 (SWIR 2)

First, install and load terra.

install.packages("terra")

library(terra)

Make sure you download the data for the lab and set your working directory to the
data folder (You should have the land class symbology, a folder with the 6 bands,
study area, and a .csv of training points). You can then load each band as a raster.

setwd("[your saved directory]/terra/Data")

B <- rast("Rasters/B2.tif")

G <- rast("Rasters/B3.tif")

R <- rast("Rasters/B4.tif")

NIR <- rast("Rasters/B5.tif")

SWIR1 <- rast("Rasters/B6.tif")

SWIR2 <- rast("Rasters/B7.tif")

B #Some information about the raster

https://cran.r-project.org/web/packages/terra/terra.pdf
https://www.usgs.gov/landsat-missions/landsat-8
https://earthexplorer.usgs.gov/
https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance
https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-reflectance

terra allows for easy visualization of spatial data with the plot function.

gscale <- colorRampPalette(c("black","white")) #An easy

function to create a colour ramp for plots

plot(B,col=gscale(256)) #256 represents the number of

possible values (These are 8-bit rasters, so 0-255)

To visualize a composite image, first you can create a raster stack (a raster with
multiple bands). This can be done by stacking the rasters that you have already
loaded, or loading multiple bands at once.

Using loaded rasters:

B.List <- list(B,G,R,NIR,SWIR1,SWIR2)

B.Stack <- rast(B.List) #Same function as single band

B.Stack #There are now 6 layers and names

From file:

B.List <- list.files(path="./Rasters" ,full.names=TRUE)

B.Stack <- rast(B.List)

We probably want simpler variable names. The current ones came from the original

files.

names(B.Stack) #Current names

names(B.Stack) <- c("B","G","R","NIR","SWIR1","SWIR2")

names(B.Stack) #Check for new names

You can also plot a single band from a
stack.

plot(B.Stack,y=1,

col=gscale(256))

With a raster stack, you can use
plotRGB to plot a coloured image
using the red, green, and blue bands
(or substitute other bands for different
compositions).

data.frame(names(B.Stack))

#Check for band numbers

plotRGB(B.Stack,

r=3,g=2,b=1,stretch="lin",

smooth=TRUE)

You might notice that some of these colours do not look natural. To create a natural
looking imagine, you would need another program to manually adjust the levels of
each band.

Spatial Vectors

terra can also work with vector files. Try overlaying the last plot with a polygon for the
study area.

Greyscale plot of blue colour band

S.Area <- vect("./Study Area")

plot(S.Area,add=TRUE,border="yellow",lwd=5)

Next we can look at the training data

T.Points <- vect("./Training Points")

plot(T.Points,add=TRUE)

S.Area

T.Points # Compare the

projections (coord. ref.)

As you can see, there are no error
messages if the projection is off: the data
just won’t be drawn.

T.Points <- project(

T.Points,S.Area)

plot(T.Points,add=TRUE)

Predictions

Now that we’ve confirmed the sample points and rasters match spatially, we can
extract the raster values to our points.

T.Data <- extract(B.Stack,T.Points) #Only contains raster

information

T.LC <- as.data.frame(T.Points)[2] #Land class column

T.LC$ID <- row.names(T.LC) #ID field for merge

names(T.LC)[1] <- "LC"

T.Data <- merge(T.Data,T.LC,by="ID") #Merge land class and

extracted raster data

T.Data <- T.Data[,-1]

T.Data$LC <- as.factor(T.Data$LC) #Factors are considered as

classes for prediction

We will need the rest of our raster data in a format that LDA and randomForest can
use to make predictions, that can also be converted back into a raster for
visualization. If the prediction models were pre-generated, terra has an in-built
predict function for spatial data.

R.Grid <- data.frame(xyFromCell(B.Stack[[1]],

1:ncell(B.Stack)[[1]])) #Creates data frame of coordinates

R.Values <- cbind(R.Grid,values(B.Stack)) #Converts layer

values into columns and binds to coordinates

First, the LDA model and predictions:

library(MASS)

LC.lda <- lda(LC~.,T.Data)

lda.P <- predict(LC.lda,R.Values)

lda.P <- lda.P$class

R.Values$lda <- lda.P

RGB plot of study area and training data

Then, randomForest:

library(randomForest)

LC.rf <- randomForest(data=T.Data,LC~.,ntree=100)

rf.P <- predict(LC.rf,R.Values)

R.Values$rf <- rf.P

To compare the accuracy of the two methods, we can use a confusion matrix. This is
a table that compares predicted classifications to the training data. randomForest
can do this by running the randomForest object.

LC.rf

MASS does not have a built-in function for this, so the process is a bit more involved.

T.lda.P <- predict(LC.lda,T.Data)

T.lda.P <- T.lda.P$class

library(biotools)

C.Matrix <- confusionmatrix(T.Data$LC,T.lda.P)

C.Matrix

We do not have error rates yet, so we need to do some calculations. This is a bit
easier in excel.

write.csv(C.Matrix,"LDA_Confusion_Matrix.csv")

In excel, you just need to divide the correct number of classifications by the total
points in each class (the diagonal cell by the sum of the row) and subtract that from 1
to get the error rate: 1-(d/total). You should get 43.69% for the full table.

The two methods have fairly similar rates, but we should compare the rasters
themselves. First create a raster using the previous data frame:

LC.Raster <- rast(R.Values,

type="xyz",

crs=crs(B.Stack,proj=TRUE))

names(LC.Raster) #Check for

colour bands and both land

class predictions

Then plot the maps. Here we plot the land
classifications over the RGB plot. You can
adjust the alpha level (0-1) to change
transparency.

LC.Symbol <- read.csv(

"Landclass_Symbology.csv",

row.names=1) #Land class

labels and colours

data.frame(names(LC.Raster))

#Confirm layer numbers

randomForest predictions with 50% transparency

LDA map:

plotRGB(LC.Raster,r=3,g=2,b=1,stretch="lin",axes=TRUE,

smooth=TRUE)

plot(LC.Raster,y=7,alpha=0.5,add=TRUE,col=LC.Symbol$colors,

levels=LC.Symbol$labels,legend="topright",type="classes",

plg=list(text.col="white",border="white"))

randomForest map:

plotRGB(LC.Raster,r=3,g=2,b=1,stretch="lin",axes=TRUE,

smooth=TRUE)

plot(LC.Raster,y=8,alpha=0.5,add=TRUE,col=LC.Symbol$colors,

levels=LC.Symbol$labels,legend="topright",type="classes",

plg=list(text.col="white",border="white"))

Switching between the two maps, you should see that while randomForest has a
better accuracy rate, LDA appears to create less noise. Try comparing plotRGB with
some other band combinations to help visually identify each land class:
https://www.esri.com/arcgis-blog/products/product/imagery/band-combinations-for-
landsat-8/

Natural Colour 4 3 2 (R, G, B)

False Colour (urban) 7 6 4 (SWIR 2, SWIR 1, R)

Color Infrared (vegetation) 5 4 3 (NIR, R, G)

Agriculture 6 5 2 (SWIR 1, NIR, B)

Atmospheric Penetration 7 6 5 (SWIR 2, SWIR 1, NIR)

Healthy Vegetation 5 6 2 (NIR, SWIR 1, B)

Land/Water 5 6 4 (NIR, SWIR 1, R)

Natural With Atmospheric Removal 7 5 3 (SWIR 2, NIR, G)

Shortwave Infrared 7 5 4 (SWIR 2, NIR, R)

Vegetation Analysis 6 5 4 (SWIR 1, NIR, R)

You can also plot the training points with the same symbology. Try comparing them
with each prediction and the base imagery.

LC.Points <- merge(T.Points[,2],LC.Symbol,by="id",all.x=TRUE)

#Subset to land class field and merge symbology to points

plot(LC.Points,y="id",add=TRUE,col=LC.Symbol$colors,

levels=LC.Symbol,legend="topleft",plg=list(text.col="white"))

For example, note that there are no wetlands in the bottom left.

https://www.esri.com/arcgis-blog/products/product/imagery/band-combinations-for-landsat-8/
https://www.esri.com/arcgis-blog/products/product/imagery/band-combinations-for-landsat-8/

