
Introduction 

One issue that is encountered in methods with multiple predictor variables is 
understanding the contributions of these variables to explaining the variation in the 
response variable. From plots we can see the effects of predictor variables on the response 
variable but distinguishing the effects of one predictor from another can be difficult. This is 
especially true in the cases of multicollinearity where predictor variables are linearly 
related to one another. Enter variance partitioning which gives us a way to break down the 
variance explained by predictor variables in redundancy analysis (RDA), canonical 
correspondence analysis (CCA), and multiple linear regression analysis. This can be used to 
quantify the unique variance explained by individual predictor variables or predictor tables 
as well as their overlap with other variables in the model. In this way, variance partitioning 
enables us to better understand the effects of our predictor variables on the response 
variable. 

Variance partitioning works by computing variance explained by variables in partial 
models. Partial models are models creating using a subset of the predictor variables in the 
full RDA / CCA / multiple linear model. The fractions of variance explained in these partial 
models can then be used to calculate the fraction of variance explained by each variable. In 
this method, we use the adjusted R2 of each model as the metric of variance explained. We 
use the adjusted R2 in place of unadjusted R2 as values for different models will be inflated if 
there are a difference number of variables in a given model. This is because the value of R2 

will naturally increase as the number of variables in a model increases. At a certain point, 
additional variables stop explaining variance in the model and start to explain random 
effects, which causes the model to look like more variance is explained (a phenomena 
known as ‘overfitting’).  

Note: Variance partitioning and commonality analysis refer to the same methodology and 
you will see people using them interchangeably. However, some people use variance 
partitioning to refer exclusively to when it is used for RDA and CCA whereas they would 
use commonality analysis when it is used for univariate multiple linear regression. 

Variance Partitioning for RDA and CCA 

In this first example we will manually partition the variance for a dataset to illustrate how 
this method works. Then we will verify these results using the varpart function from the 
vegan library 

temp <- read.csv("./AB_Climate_Trees.csv") 
head(temp) 
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rownames(temp) <- temp$ECOSYS #Set row names 
ecolabels=temp$ECOSYS 
species.dat=temp[,11:23] #extract species frequent to its own data frame 
environ.dat=temp[,3:10] #extract climate data to its own data frame 
geographic.dat=temp[,2] #extract location data 
 
library(vegan) 
 
#Let's look at how all of our data looks 
edaPlot <- rda(species.dat ~ ., data=environ.dat) 
plot(edaPlot, choices=c(1,2), type="text") 
 
# Notice how MCMT and MAT seem to be somewhat related. Let's investigate with 
variance partitioning 
# We will create a model using only these two variables to examine their 
relationship with the species frequency data. 
 
# RDA of full model, gives us the fractions of [a+b+c] 
rda.all <- rda(species.dat ~ MAT + MCMT, data=environ.dat) 
# fractions [a+b] 
rda.MAT <- rda(species.dat ~ MAT, data = environ.dat) 
#fractions [b+c] 
rda.MCMT <- rda(species.dat ~ MCMT, data = environ.dat) 
 
plot(rda.all, choices=c(1,2), type="text") #check the plot 
 
#fractions [a+b+c] 
RsquareAdj(rda.all)  
 
abc <- RsquareAdj(rda.all)$adj.r.squared # Extract the adjusted r-squared for 
the full model 
 
#fraction [a+b] 
ab <- RsquareAdj(rda.MAT)$adj.r.squared 
 
#fraction [b+c] 
bc <-  RsquareAdj(rda.MCMT)$adj.r.squared 
 
#individual fractions 
b <- ab + bc - abc 
a <- ab - b 
c <- bc - b 
 
out <- varpart(species.dat, ~ MAT, ~ MCMT, data=environ.dat) 
 
#Let's see if our calculations match those that `varpart` calculated 
out$part$fract #Fractions (ab, bc, abc) 
 



out$part$indfract #Individual Fractions (a,b,c) 
 
#The nice feature about varpart is that it allows you to plot your results as 
a Venn diagram 
plot(out, bg = c("hotpink","skyblue"), Xnames = c("MAT", "MCMT")) 

In this example we only manually calculated the fractions for a model with two predictor 
variables. Doing this kind of analysis can be helpful in better understanding how your 
explanatory variables relate to one another. Consider what the plot you just created tells 
you about the relationship of MCMT and MAT. Can you tie this back to what you saw in the 
first RDA plot you made (hint: think about what vector length signifies). 

Though we only investigated two variables in the example, varpart can handle up to four 
explanatory variables or tables. This can be helpful if you have several variables that all 
appear to be related to one another (from exploratory data analysis) or as indicated by the 
literature. 

The overall variance explained by the variable will always be positive. but sometimes a 
fractions of a variable will be negative. At first this seems impossible - how can a variable 
explain negative variance? But what this is telling us that the variable is actually interfering 
the variance explained in the rest of the model (Peterson and Mahajan 1976). 

Significance testing of variance partitioning 

We can also calculate p-values for the variation fractions we calculate by using 
permutations of the R2 values for each fraction. The output of varpart contains a Testable 
column which indicates whether we can express the fraction as an RDA for testing. We can 
construct an RDA for each fraction and calculate p-values using the anova function. It is 
important that the full model be significant before individual partitions should be 
examined. In this case, a significant p-value indicates. This process is demonstrated below 
using the previous model. 

#Which fractions can we test? 
out <- varpart(species.dat, ~ MAT, ~ MCMT, data=environ.dat) 
out #The only one we can't test is [b] 
 
# RDA of full model, gives us the fractions of [a+b+c] 
rda.all <- rda(species.dat ~ MAT + MCMT, data=environ.dat) 
# Marginal effect of MAT: fractions [a+b] 
rda.MAT <- rda(species.dat ~ MAT, data = environ.dat) 
# Marginal effect of MCMT: fractions [b+c] 
rda.MCMT <- rda(species.dat ~ MCMT, data = environ.dat) 
# Partial effect of MAT [a] 
rda.MAT.MCMT <- rda(species.dat~ MAT + Condition(MCMT), data = environ.dat) 
# Partial effect of MCMT [c] 
rda.MCMT.MAT <- rda(species.dat ~ MCMT + Condition(MAT), data = environ.dat) 
 
anova(rda.all)      #[a+b+c] 
anova(rda.MAT)      #[a+b] 



anova(rda.MCMT)     #[b+c] 
anova(rda.MAT.MCMT) #[a] 
anova(rda.MCMT.MAT) #[c] 

Partitioning variance between different tables of variables 

With this varpart function that we have just confirm works as expected, we can also all 
investigate the variance explained by different types of variables. This was the original 
purpose of variance partitioning in community ecology as described by Borcard et al. 1992. 
They were interested in partitioning out the variance explained by geographic gradients 
from environmental variables. Below we work through some simulated data to see how 
much variance is uniquely explained by environment variables for imaginary species. 

temp <- read.csv("./SpeciesDat.csv")  
head(temp) # Check data 
 
rownames(temp) <- paste(temp$BIOME, temp$plotNum) 
species.dat=temp[,10:15] #Extract species columns 
environ.dat=temp[,c(4:6, 9)] #Extract environmental variables 
geo.dat=temp[,2:3] #Extract geographical variables (longitude and latitude in 
our case) 
 
#Before we do any analysis, look at ordination plots. 
 
#Plot all the variables of interest, do any variables seem highly related to 
the geographic variables? 
eda.both <- rda(species.dat, temp[,c(2:6, 9)]) 
plot(eda.both, choices=c(1,2), type="text") 
 
#Let's see how our just environmental data looks 
eda.environ <- rda(species.dat ~ ., data=environ.dat) 
plot(eda.environ, choices=c(1,2), type="text") 
eda.environ 
 
#Let's also see how things look just based on latitude and longitude. 
#Does it look like some variance is explained just by geographical gradients? 
eda.geo <- rda(species.dat ~ ., data=geo.dat) 
plot(eda.geo, choices=c(1,2), type="text") 
 
#Variance partitioning 
out <- varpart(species.dat, environ.dat, geo.dat) 
plot(out, bg = c("hotpink","skyblue"), Xnames = c("Environmental Data", 
"Geographical Data")) 
#Does it look like the geographical data explains a significant amount of 
variance in the data beyond the environmental data? 
 
# Let's test that with significance testing 
out #This tells us ab, bc, abc, a, and c are testable. b is not 
 



anova(eda.both) #abc 
anova(eda.environ) #ab 
anova(eda.geo) #bc 
anova(rda(species.dat ~ environ.dat$MAT + environ.dat$MSP + environ.dat$ELEV 
+ environ.dat$MCMT + Condition(geo.dat$lat_y + geo.dat$long_x))) #a 
anova(rda(species.dat ~ environ.dat$MAT + environ.dat$MSP + environ.dat$ELEV 
+ environ.dat$MCMT + Condition(geo.dat$lat_y + geo.dat$long_x))) #c 

Variance Partitioning for Multiple Linear Regression 

Variance partitioning can also be done for univariate multiple linear regression analysis. I 
will not go too much into multiple linear regression analysis as it is not the topic of this 
seminar nor covered in this course, but if you know how to use it then this could be a 
helpful tool. In the following example we use a dataset from the lattice library to first 
build a multiple linear model for predicting ozone levels and then we partition the variance 
of that model. 

ozone <- lattice::environmental 
head(ozone) 
plot(ozone) 
 
#Looking at the plots, temperature and wind seem to have a negative linear 
correlation 
 
lm.oz <- lm(ozone~ radiation + temperature + wind, data=ozone) 
summary(lm.oz) 
anova(lm.oz) #Temperature seems to be a good predictor variable based on sum 
sq. 
plot(lm.oz) #The curvature in the residuals plot is a little concerning, but 
let's proceed 
 
#For the linear model we add the variables as so: varpart(Y, X1, X2, X3) 
varp.oz <- varpart(ozone$ozone, ozone$radiation, ozone$temperature, 
ozone$wind) 
plot(varp.oz, bg = c("red", "yellow", "blue"), Xnames = c("Radiation", 
"Temperature", "Wind")) 

As you can see the syntax is quite similar for the univariate and multivariate cases, it just 
depends on the data you provide the varpart method. 

Optional Including Interaction terms  

An interaction term actually improves the model as shown below. We can also examine 
how the variance explained by this interaction term . 

library(car) 
library(ggplot2) 
ozone$wind_cut <- cut_number(ozone$wind, 4) 
ggplot(ozone, aes(x = temperature, y = ozone)) + geom_point() + 
facet_wrap(~wind_cut, nrow=2) #Looks like there is some interaction between 



wind and temperature  
 
lm.oz2 <- lm(ozone ~ temperature * wind + radiation, data = ozone)  
summary(lm.oz2) 
anova(lm.oz2) #Interaction term is significant 
plot(lm.oz2) 
 
varp.oz2 <- varpart(ozone$ozone, ozone$temperature * ozone$wind, 
ozone$temperature, ozone$wind, ozone$radiation) 
varp.oz2 
plot(varp.oz2, bg = c("#003f5c", "#bc5090", "#ff6361", "#ffa600"), Xnames = 
c("Temp * Wind", "Temp", "Wind", "Rad")) 
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