SYMMETRIC TIGHT FRAMELET FILTER BANKS WITH
THREE HIGH-PASS FILTERS

BIN HAN

ABSTRACT. In this paper we continue our investigation of symmetric tight framelet filter banks (STFFBs)
with a minimum number of generators in [7]. In particular, we shall systematically study STFFBs with
three high-pass filters which are derived from the oblique extension principle. To our best knowledge,
except the papers [1, 11], there are no other papers in the literature so far systematically studying this
problem. In this paper we show that there are two different types, types I and II, of STFFBs with
three high-pass filters. Then we provide a detailed analysis and a complete algorithm to obtain all type I
STFFBs with three high-pass filters. Our results not only significantly generalize the results in [1, 11], but
also help us answer several unresolved problems on STFFBs. Based on [7], we also propose an algorithm
to construct all type II STFFBs with three high-pass filters and with the shortest possible filter supports.
Several examples are given to illustrate the results and algorithms in this paper.

1. INTRODUCTION AND MOTIVATIONS

Motivated by the interesting papers by Chui and He [1] and Han and Mo [11], continuing our lines
developed in [7, 9] on symmetric tight framelet filter banks with a minimum number of generators,
in this paper we are particularly interested in systematically studying and developing algorithms to
construct all symmetric tight framelet filter banks with three high-pass filters and with the shortest
possible filter supports.

To proceed further, let us recall some definitions and notation. By [o(Z) we denote the linear space
of all sequences u = {u(k)}xez : Z — C on Z such that {k € Z : wu(k) # 0} is a finite set. For
u = {u(k)}rez € lo(Z), its z-transform is a Laurent polynomial defined to be u(z) := >, _, u(k)z"

For a matrix P(z) = >, _, Px2" of Laurent polynomials, we define P*(z) := >, , HTz_k, where Py
denotes the complex conjugate of the transpose of the matrix F.

The oblique extension principle introduced in [2, 3] is a general procedure to construct tight wavelet
frames through the design of tight framelet filter banks. Let ©,a, by, ..., bs € lo(Z) with ©* = ©. We
say that {a;b1,...,bs}e is a tight framelet filter bank if

o) e bfzfg]*:m,e(z), )

where
_ |©(2) — ©(z%)a(z)a*(z) —0(z%)a(z)a*(—2)
Mol = (P SII o ol s 1.2)
In particular we write {a; by, ..., bs} for {a; by, ..., bs}s, where § is the Dirac sequence such that §(0) =
and d(k) =0 for all k € Z\{0}. Recall that a sequence u : Z — C has symmetry if

w(k) = eu(c — k), VkeZ with ee{-1,1}, ceZ. (1.3)

The filter u is symmetric if (1.3) holds with € = 1, and is antisymmetric if (1.3) holds with e = —1.
Note that (1.1) implies M} o = M,e, from which we must have ©* = ©. Consequently, since
©* = O, we see that © is symmetric if and only if © has real coefficients.
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2 BIN HAN
Since filters that we consider in this paper are not necessarily real-valued, there is another closely
related but different notion of symmetry. We say that u has complex symmetry if

u(k) = eu(c — k), VkeZ with ee{-1,1}, ceZ. (1.4)

Obviously, for a real-valued sequence u, there is no difference between symmetry and complex symmetry.

For a given low-pass filter @ and a moment correcting filter ©, to obtain high-pass filters by, ..., b
in a tight framelet filter bank, we have to factorize the given matrix M, ¢ in (1.2) so that (1.1) holds.
To reduce computational complexity in the implementation of a tight framelet filter bank, we often
prefer a small number s of high-pass filters. If s = 1, then we must have det(M,e(z)) = 0 for all
z € C\{0} which is too restrictive to be satisfied by many filters a and ©. In fact, a tight framelet filter
bank {a;b1}e with s = 1 is essentially an orthogonal wavelet filter bank, see [8, Theorem 7]. When
s = 2, a necessary and sufficient condition has been given in [7, Theorem 4.2] (also see [9, 12] for special
cases) in terms of the filters a and © such that {a; by, bs}e is a tight framelet filter bank with [complex]
symmetry. Moreover, several algorithms have been proposed in [7, 9] to construct tight framelet filter
banks {a;b1,by}e with [complex| symmetry. However, for any given low-pass filter a and a moment
correcting filter ©, the necessary and sufficient condition in [7] is still too restrictive. As a matter of
fact, there are only a handful examples of symmetric tight framelet filter banks {a; b1, by}e with two
high-pass filters known in the literature ([2, 3, 7, 9, 12, 13, 14, 15] and references therein).

To have more flexibility in constructing tight framelet filter banks with [complex] symmetry from a
given low-pass filter ¢ and a moment correcting filter ©, it is very natural to consider more than two
high-pass filters. This naturally leads us to study in this paper symmetric tight framelet filter banks
with three high-pass filters. For the particular case s = 3, the perfect reconstruction condition in (1.1)
can be rewritten as

O(z%)a(2)a*(2) + by (2)b}(2) + ba(2)b5(2) + bs(2)bi(2) = ©(2) (1.5)
and
O(2%)a(z)a*(—z) + by (2)bj(—2) + by(2)b5(—2) + bz(2)bj(—2) = 0. (1.6)
Currently, there are two particular constructions proposed in [1, 11] for designing symmetric tight
framelet filter banks {a; by, be,b3}e with particular choices of moment correcting filters ©. For the
special case © = §, Chui and He [1] found a simple solution for constructing a real-valued symmetric
tight framelet filter bank {a;by,be,b3}. More precisely, for any real-valued low-pass filter a having
symmetry and satisfying
a(z)a*(z) +a(—z)a*(—z) < 1, VzeT:={(eC : |(|=1}, (1.7)
define filters by, by, b3 by (see [1, Proof of Theorem 3])
bi(2) := [u(2?) + zu*(2%)]/2, by(2) := [u(2?) — zu*(2%)]/2, bs(z) := za*(—2), (1.8)
where u is a Laurent polynomial with real coefficients obtained via the Fejér-Riesz lemma through
1 —a(2)a*(2) — a(—2)a*(—2) = u(2*)u*(z?). (1.9)

Then it is straightforward to directly check that {a; by, b, b3} is a real-valued tight framelet filter bank
with symmetry. Conversely, if {a; by, bs, b3} is a tight framelet filter bank, then the condition in (1.7)
on the filter @ must hold ([1]). Indeed, from the perfect reconstruction condition in (1.1), we must have
det(M,s(2)) = 0 for all z € T. Since det(M,s(z)) = 1 —a(z)a*(z) — a(—z)a*(—=z), we see that (1.7)
must hold.

We now describe the method in [11]. Let a be a real-valued low-pass filter with symmetry. Suppose
that there exists a Laurent polynomial 8 with symmetry and real coefficients such that

0 (—2)0(z) = 0*(2)0(—2), 0*(2)0(—=2) — O(z%) > 0, VzeT, (1.10)

where

O(z) := 0*(2)[a(z)a*(2)0(—=) + a(—=z)a*(—2)0(z)]. (1.11)
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Define

bi(2) := a(2)[v(2?) +v*(2H)]/2, ba(2) :=a(z)[v(z?) —v*(2?)]/2, bs(z) :=za*(—2)0*(2), (1.12)

where v is a Laurent polynomial with real coefficients obtained via the Fejér-Riesz lemma such that
v(2)v*(z) = Oy(2) with 0y(2?) := 0*(2)8(—2) — ©(z?). By direct calculation, one can easily verify that
{a;b1,b9,b3}e is a real-valued tight framelet filter bank with symmetry. Note that the condition in
(1.10) becomes (1.7) when @ = 1. Under the condition that a(1) = 1 and 8(1)@(—1) = 1, it has been
proved in [11, Theorem 1.2] that such a desired Laurent polynomial @ always exists provided that the
standard refinable function associated with the low-pass filter a has stable integer shifts. But generally
the length of the moment correcting filter © in (1.11) is long.

The problem of symmetric tight framelet filter banks (STFFBs) with three high-pass filters seems to
be completely and satisfactorily solved in [1, 11] at least for special cases of moment correcting filters.
This probably partially explains that to our best knowledge there are no papers other than [1, 10, 11]
available in the literature addressing STFFBs with three high-pass filters. On one hand, using three
high-pass filters, we can increase the flexibility and freedom in the construction of STFFBs. On the
other hand, such added flexibility and freedom by using three high-pass filters also make the task much
more difficult in finding all possible STFFBs with three high-pass filters and with short supports. This
paper is largely motivated by the interesting papers [1, 11] by re-examining the problem of STFFBs
with three high-pass filters in a systematic way. To explain our motivations better, let us recall some
definitions. For a filter v = {u(k)}rez € lo(Z), if u(m)u(n) # 0 and u(k) = 0 for all k € Z\[m, n], then
we define the filter support and length of u to be

fsupp(u) := fsupp(u) := [m, n], len(u) :=len(u) := | fsupp(u)| :=n —m.

The filter support fsupp(u) is simply the shortest interval containing all the positions of the nonzero
coefficients of u. From (1.5) and the fact ©* = © which is implied by (1.6), it is easy to see ([7, 8]) that

max(len(by), len(by),len(bs)) > len(a) + len(O).

From any given filters a, ©® with [complex] symmetry, it is natural and important to construct all tight
framelet filter banks {a; by, by, b3} having [complex] symmetry and the shortest possible filter supports:

max(len(by), len(bs),len(bs)) = len(a) + len(O©). (1.13)

We now illustrate that it is not always possible to derive a symmetric tight framelet filter bank via (1.8)
or (1.12) such that the condition in (1.13) holds for the shortest possible filter support. Let a € ly(Z)
be a nontrivial filter having symmetry and satisfying (1.7). Assume that

len(a) is an even integer. (1.14)

Then we must have len(1 — a(z)a*(z) — a(—z)a*(—z)) = 2len(a) and hence, any solution of a Laurent
polynomial u to (1.9) must satisfy len(u) = len(a)/2. Note that the two endpoints of the interval
fsupp(u(2?)) must be even integers while the two endpoints of the interval fsupp(zu(z~2)) must be odd
integers. Therefore, regardless of the choice of u, for the high-pass filters b; and by defined in (1.8),
len(b;) must be an odd integer, and len(b;) = len(by) > 2len(u) = len(a). Since len(a) is an even
integer, we conclude that len(b;) = len(by) > len(a). Therefore, under the condition in (1.14), any tight
framelet filter bank {a; by, be, b3}, which is constructed via (1.8), cannot have the shortest possible filter
support as described in (1.13). The same phenomenon can be said to (1.12) if £ len(©) is an odd integer.
There are many filters having symmetry and satisfying both (1.7) and (1.14). For example, the B-spline
filter a® of order m is defined to be

aB(z):=2""(1 + 2)™, m € N. (1.15)
Obviously, all B-spline filters satisfy the condition in (1.7) and len(a?) = m. For example, let a := af
be the B-spline filter of order 4. On one hand, the necessary and sufficient condition in [7, Theorem 4.2]
fails for both symmetry and complex symmetry with © = §. Hence, it is impossible to derive a tight
framelet filter bank {a; b1, by} with symmetry or complex symmetry from the low-pass filter a. On the

other hand, since the condition in (1.7) is obviously true, a tight framelet filter bank {a; by, by, b3} with
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symmetry and real coefficients can be derived from the low-pass filter a via (1.8). Since len(a) = 4 is
an even integer, any tight framelet filter bank obtained via (1.8) cannot have the shortest filter support
as described in (1.13). This naturally motivates us to ask the following question:

Q1: For every B-spline filter a® of order m € N, is it possible to construct a symmetric real-valued
tight framelet filter bank {aZ;by, by, b3} such that max(len(b;),len(by),len(bs)) = len(a2)?

Though the above problem for B-spline filters has been checked for the particular cases m = 3,...,6
in [1], it remained unclear whether a positive answer to all B-spline filters is always possible. More gen-
erally, since in this paper we are interested in obtaining all symmetric tight framelet filter banks with
three high-pass filters and with the shortest possible filter support, it is of interest to ask whether or not
the methods proposed in [1, 11] essentially yield all symmetric tight framelet filter banks {a; by, b, b3}
having the shortest possible filter support. Based on our results in this paper, we shall show that for
every B-spline filter a?, we can always construct a symmetric real-valued tight framelet filter bank

m?

{aB: by, by, b3} such that max(len(b),len(by),len(bs)) = len(aZ). We shall also show that many sym-
metric tight framelet filter banks with the shortest possible filter support cannot be obtained via the
methods in [1, 11].

The main purpose of this paper is to find and construct all possible tight framelet filter banks
{a;b1,by,b3}e with [complex] symmetry and with the shortest possible filter supports, when filters
a and © are given in advance and satisfy the necessary condition det(M,e(2)) > 0 for all z € T.
On one hand, the method in [1] can only handle the special case ©® = § and its generalization to a
general moment correcting filter is not available in the literature. On the other hand, the method in
[11] can only handle moment correcting filters © taking the particular form in (1.11). Therefore, it is
of interest for us to find an algorithm to handle the general case for constructing tight framelet filter
banks {a; by, by, b3}e with [complex] symmetry from any given filters a and ©.

By studying the relations of symmetry centers of filters in a symmetric tight framelet filter bank with
three high-pass filters, we classify all such tight framelet filter banks into type I and type II. A detailed
study of type I symmetric tight framelet filter banks {a; by, by, b3}e leads to a complete algorithm (for
type I), which enables us to obtain all type I symmetric tight framelet filter banks with three high-pass
filters (and without any support constraint). This not only generalizes the method in [1] (see (1.8)) to
a general moment correcting filter, but also widens the method in [1] even for the special case © = § by
finding new tight framelet filter banks {a; by, be, b3} which are impossible to obtain via (1.8). Based on
these results, we are able to show that a symmetric real-valued tight framelet filter bank {aZ; b, bs, b3}
having the shortest possible filter support can always be constructed from every B-spline filter . This
affirmatively settles Q1. In fact, our algorithm for type I in this paper can construct not only all type
I symmetric tight framelet filter banks with three high-pass filters but also some type II tight framelet
filter banks with three high-pass filters. Built on results in [7] for symmetric tight framelet filter banks
with two high-pass filters, in this paper we also propose another algorithm (for type II) to construct all
symmetric tight framelet filter banks with three high-pass filters and with the shortest possible filter
supports.

This paper is also motivated by the interpolatory filter al = {—3,0, 3,1, 2

3201 327 27 327
isfies the condition in (1.7) with len(al) = 6. Therefore, as we discussed above, a real-valued symmetric
tight framelet filter bank {al; by, by, b3} satisfying max(len(b),len(by),len(b3)) = len(al) cannot be con-
structed using the method in (1.8). Indeed, the example {al; i, bs, b3} constructed in [1, Example 9]
has max(len(b;),len(by),len(bs3)) = 7 > len(al). More generally, we shall show in Example 4 of this
paper that every tight framelet filter bank {al; b1, bo, b3} with symmetry, which is constructed by our
algorithm for type I (see Algorithm 1), must satisfy max(len(b;), len(by),len(bs)) > 7 > len(al). On the
other hand, we shall prove in Theorem 6 that for any filter a having complex symmetry and satisfying
(1.7), we can always construct a (complex-valued) tight framelet filter bank {a; by, bo, b3} with complex
symmetry such that max(len(b), len(by),len(bs)) = len(a). As a consequence, we indeed can construct a
(complex-valued) tight framelet filter bank {al; by, by, b3} with complex symmetry and with the shortest
possible filter support. This naturally leads us to the following question:

0, —%}[_373] which sat-
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Q2: Does there exist a real-valued symmetric tight framelet filter bank {al; by, by, bs} such that

max(len(b;), len(by), len(bs)) = len(al)?

Using our algorithm for type II (see Algorithm 2) developed in this paper, we shall provide a positive
answer to the above question Q2.

The structure of the paper is as follows. In Section 2 we shall study the relations of symmetry
centers of a symmetric tight framelet filter bank {a; by, be, b3}e. Using the relations between symmetry
centers, we naturally classify all symmetric tight framelet filter banks {a; by, by, b3 }e into type I and type
IT. We then provide a detailed analysis and a complete algorithm for type I symmetric tight framelet
filter banks {a; by, ba, b3}e in Section 2. To illustrate our algorithm developed in Section 2 for type I,
we present several examples of tight framelet filter banks {a; by, b, b3}e with [complex] symmetry in
Section 3. In Section 4, we first investigate the symmetry patterns of a symmetric tight framelet filter
bank {a; by, by, b3}e having the shortest possible filter supports in (1.13). Based on this result and [7]
for symmetric tight framelet filter banks with two high-pass filters, we propose an algorithm for type II
in Section 4 to construct all symmetric tight framelet filter banks with three high-pass filters and with
the shortest possible filter supports. Using our algorithm for type II, we shall provide some examples
of type II symmetric tight framelet filter banks with three high-pass filters in Section 4.

2. TYyPE I SYMMETRIC Ti1IGHT FRAMELET FILTER BANKS WITH THREE HIGH-PASS FILTERS

In this section we first show that there are two types of tight framelet filter banks {a;b;,bs,b3}e
with [complex| symmetry, according to the relations between symmetry centers of the filters. Then we
provide a detailed analysis and a complete algorithm for type I tight framelet filter banks {a; by, b2, b3}e
with [complex] symmetry. As a byproduct, our results in this section not only generalize the method in
[1] and provide a natural explanation for the method in [1] (see (1.8) for detail) but also enable us to
settle the question Q1 in Section 1.

Since we shall extensively discuss filters having symmetry or complex symmetry in this paper, it
is convenient for us to record the symmetry pattern of a filter by using symmetry operators. For a
nontrivial filter u, we define the symmetry operator S and the complex symmetry operator S to be

Su(z) := ul;iz)1> and  Su(z) = uu*((?).

It is obvious that a filter u has symmetry in (1.3) if and only if Su(z) = €z°. Similarly, a filter u has
complex symmetry in (1.4) if and only if Su(z) = ez“.

We now investigate the relations between symmetry centers of filters in a tight framelet filter bank
{a; b1, bs, b3}e with [complex] symmetry. According to the following result, there are two types of tight
framelet filter banks {a; by, b, b3}e with [complex]| symmetry.

Proposition 1. Let {a; by, b, bs}e be a tight framelet filter bank such that all the filters ©,a, by, by, b €
lo(Z) are not identically zero and have symmetry (or complex symmetry by replacing S with S below):

SO(z) =1, Sa(z) =€z, Sby(z) = €127, Sba(z) = €22, Sbs(z) = €32% (2.1)

for some €, €1, €9, €5 € {—1,1} and ¢, ¢y, ca,c3 € Z. Up to reordering of by, be, bs, one of the following two
types must hold:

Type I: ¢3 — ¢ is even and ¢; — ¢,co — ¢ are odd. Moreover, the following identities must hold:
O(z%)a(z)a*(—2) + bs(2)b5(—2) =0, bi(2)bi(—2) + by(2)b}(—2) = 0; (2.2)
Type II: all c3 — ¢, ¢y — ¢,co — € are even.
Proof. Using the fact that S(u(z)v(z)) = Su(z)Sv(z), we see that
S(0(z%a(z)a*(—2)) = (—1), S(be(2)by(—2)) = (—1)%, (=1,2,3.

If (=1)% # (—1)° for all £ = 1,2,3, moving all the terms involving by, by, by to the right side of (1.6),
then we must have ©(z?)a(z)a*(—z) = 0, which is a contradiction to our assumption. By the same
argument, we see that there are exactly either one or three of (—1)“,(—1)%, (—1)® having the same
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value as (—1)°. Without loss of generality, we assume (—1)% = (—1)¢ # (—1)* = (—1)°* which is type
I, or (1) = (—1)® = (—1)® = (—1)° which is type II.

For type I, by (1.6), since the two sides of

O(z%)a(z)a*(—2) + bs(2)b3(—2) = —bi(2)b}(—2) — by(2)bj(—2)
have different symmetry patterns (—1)¢ and (—1)°*!, we see that (2.2) must hold. O

The filter a in a tight framelet filter bank {a; by, b9, b3}e is often a low-pass filter satisfying a(1) = 1,
which will force ¢ = 1 in Proposition 1. The constructed symmetric tight framelet filter banks with
three high-pass filters in [1] can be either Type I or Type II, but all of them satisfy the special condition
in (2.2), which can be easily seen from (1.8). However, all the symmetric tight framelet filter banks
{a; b1, bs, b3} constructed in [10, 11] must be Type II, since (2.2) cannot hold due to (1.12).

In the rest of this section, we provide a detailed study for all symmetric tight framelet filter banks
{a; b1, bo, b3 }te satisfying the condition in (2.2).

Let us first investigate moment correcting filters in a symmetric tight framelet filter bank. For a
Laurent polynomial p and 2z, € C\{0}, by Z(p, z9) we denote the multiplicity of zeros of p(z) at z = z.
The following result provides a necessary and sufficient condition for ©(2%) = 0(2)0*(—z) and its
proof provides an algorithm for constructing all the possible desired Laurent polynomials @ satisfying

O(2?%) = 0(2)0*(—=2).
Theorem 2. Let © € ly(Z) such that © is not identically zero.

(i) There exists a Laurent polynomial 0 such that ©(z?) = 0(2)0*(—z2) for all z € C\{0} if and only
if © = ©. Moreover, if © = ©, then there must exist a Laurent polynomial @ with complex
symmetry such that ©(z?) = 0(2)0*(—=2).

(ii) There exists a Laurent polynomial @ with symmetry such that ©(2%) = 6(2)0*(—z) if and only if
©* = O, © has real coefficients, and Z(©, ) is an even integer for every —1 < x < 0. Moreover,
if the three conditions on © are satisfied, then there must exist a Laurent polynomial 6 with
symmetry and real coefficients such that ©(2?) = (2)0*(—=z).

For both (i) and (ii), the symmetry center of 0 satisfying ©(2?) = 6(2)0*(—z) must be an integer.

Proof. We first show that ©(z?) = 0(2)0*(—2) always implies ©* = ©, and if  has symmetry or complex
symmetry, then the symmetry center of  must be an integer. Indeed, we have ©*(2%) = 6*(2)0(—z).
Replacing z by —z, we conclude that ©*(2%) = 6*(—2)0(z) = ©(z?). Hence, ©* = ©. Suppose
that € has symmetry or complex symmetry and 3, with ¢ € Z, is the symmetry center of 6. Then
fsupp(0) = [c — ng,ng] for some integer ng. Now it is trivial to see that fsupp(0(z)0*(—z)) = [c —
2ng,2ng — c|. Since the endpoints of the interval fsupp(©(2?)) must be even integers, we conclude from
fsupp(0(2)0*(—z)) = fsupp(©(z?)) that ¢ must be an even integer; that is, the symmetry center £ of 0
must be an integer.

We just proved the necessity part of item (i). We now prove the sufficiency part of item (i) with
complex symmetry. We construct 6 as a product of some selected factors from ©(2?). Since © has the
complex symmetry ©* = ©, by [7, Proposition 2.2], according to the location of the roots of ©, the
Laurent polynomial © has two types of factors:

Type 1: (2 — ¢)?©®9) with ¢ € C and || =1 (that is, ¢ € T). 6 takes the factor
(2= VO™ + V" with m+n=2(8,(),

where m and n are nonnegative integers and V/C € C is a solution to (1/¢)* = (.
Type 2: [(z — ¢)(z7 — {)]*®9) with ¢ € C and 0 < [¢| < 1. @ takes the factor

(2 = VOET = VOI"(z + VOET + V" with m+n=2(6,(),
where m and n are nonnegative integers.
Then Z(0,2) = Z(0,z ') for all z € C\{0}. By [7, Proposition 2.2], after multiplying some number
from T with @, @ has complex symmetry. By construction, the two Laurent polynomials ©(z?) and
0(2)0*(—z) have the same zeros on C\{0}. Hence, ©(2%) = X\2™0(2)0*(—z) for some constant A € C\{0}
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and m € Z. By ©*(2?) = ©(z?) and noting A\(—2)™0(—2)0*(z) = O((—2)?) = ©(2?) = \2™0(2)0*(—=2),
we have 6*(2)0(—z) = (—1)"0(2)0*(—z) and

A2"0(2)0%(—2) = O(2%) = ©%(2%) = Az7"0*(2)0(—2) = AM(—1)"27"0(2)0*(—=2).

Thus, A\2™ = A(—1)™z~" which implies m = 0 and A € R\{0}. If A > 0, replace 8 by V/A8; if A < 0,
replace 0 by 1/|\|z0(z). Now it is straightforward to check that ©(z%) = 0(2)0*(—2).

Necessity of item (ii). We proved that ©* = © and hence S© = 1. Since 0 has symmetry, say,
SO(z) = €92, then © must have symmetry SO(z?) = SO(2)S0*(—z) = (—1)%. Since we proved that
cp must be an even integer, we have S© = S© = 1. Therefore, by [7, Lemma 2.3], © must have real

coeflicients.
Plugging 2 = iz, z € R\{0} into ©(2%) = 6(2)0*(—=2)

O(—2?) = 0(iz)0((ix)~') = 0(iz)0(iz)/SO(ix

0(2)0(—z71), we deduce that
) = |0(ix)|?/SO(ix).

Hence, Z(©, —z?) must be an even integer for all x > 0. This proves the necessity part of item (ii).
Sufficiency of item (ii). Since © has symmetry and real coefficients, © has six types of factors:

Type 1: (z — 1)%®1. @ takes the factor (z — 1)™(z 4+ 1)" with m +n = Z(©, 1), where m and n are

nonnegative integers.

Type 2: (241)%(®:~ ) By our assumption, Z(©, —1) is an even integer. @ takes the factor (z2+1)%

Type 3: [(z — )(z7+ — )]*®9 with 0 < ¢ < 1. 0 takes the factor

(2 = VOET = VOI"(z + VOE + VO with m+n=Z(8,).

e-1)/2.

Type 4: [(z — O)(z7! — )]*®9 with —1 < ¢ < 0. By our assumption, Z(©,() is an even integer. 6
takes the factor [(2% — ()(272 — ()] 2(0,0)/2

Tme [(z— )& Z?ﬂeowthGTN{ 1,1}. 6 takes the factor [(z—/C)(z— /)] [(z-+/C) (z4++/C)]"
with m +n =2(0,(

Type 6: [(22 — 2Re(¢)z + [¢]|*) (272 — 2Re(¢) 21 + |¢[*)]?®9) with 0 < [¢| < 1 and ¢ € R. 0 takes the
factor

(2% = 2Re(v/Q)z + ¢)) (22 = 2Re(v/C) 2t + [CDI™[(2* + 2Re(v/ Q)2 + [¢]) (272 + 2 Re(v/Q)z " + [¢])]"

with m +n = Z(©,¢). Then Z(0,z) = Z(0,27') for all z € C\{0} and 0 has real coefficients. By
[7, Proposition 2.2], @ must have symmetry. By the same argument as in item (i), after multiplying a
monomial with 8, we have ©(z2%) = 0(2)0*(—=z). O

If © = 1, then it is easy to see that all the solutions 8 to ©(z%) = 0(2)0*(—=z) are 8(z) = \2?* with
AeTand k € Z.
To study (2.2), we need the following result.

Lemma 3. For filters a,b,© € lo(Z) which are not identically zero,
O(z%)a(z)a*(—2) + b(2)b*(—2z) =0 (2.3)
if and only if
0(2%) = 0(2)0*(—2), a(z) =d.(2)a(2), b(2) =d.(2)0(2)za*(—2) (2.4)

for some Laurent polynomials 6,d,, and a. Moreover, if all a,b, ©® have [complex] symmetry (and/or real
coefficients), then all Laurent polynomials 6,d,,a have [complex] symmetry (and/or real coefficients).

Proof. The sufficiency part can be directly verified. We only prove the necessity part. Define d, :=
ged(a, b), the greatest common divisor of a and b. Then we can write a(z) = da(2)a(z) and b(z) =
da(2)b(z) for some Laurent polynomials & and b. Now (2.3) holds if and only if

0(2%)a(2)a*(—2) + b(z)b*(—z) = 0. (2.5)
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Since ged(a,b) = 1, we must have b(z) | ©(22)a*(—z). Hence, ©(22)3*(—z) = 2716*(—2)b(2) for some
Laurent polynomial 8. Plugging this relation back into (2.5), we see that b(z)[ _19*( 2)a(z)+b*(—2)] =
0. Therefore, we must have b(z) = 20(z)3*(—z) and hence b(z) = d,(2)b(2) = da(2)0(2)23*(—z). Now

O(22)a*(—2) = 210" (—2)b(2) = 0(2)0* (—2)a* (—2),

from which we see that ©(z?) = 0(2)0*(—z2).

If all filters a,b, © have [complex] symmetry (and/or real coefficients), then d, := ged(a,b) can have
[complex] symmetry (and/or real coefficients), see [7, Lemma 2.4]. Now it is easy to check that all filters
0,d,,a have [complex] symmetry (and/or real coefficients). O

We now have a complete picture of (2.2) in Proposition 1 which covers all type I tight framelet filter
banks {a; by, by, b3}e with [complex] symmetry.

Theorem 4. Let ©,a, by, by, b3 € lg(Z) be filters which are not identically zero. Then {a; by, by, bs}e is a
tight framelet filter bank with [complex] symmetry (and real coefficients) satisfying (2.2) if and only if

O(2%) = 0(2)0*(—2), a(z) =da(2)a(2), bs(z) =d.(2)0(2)z3*(—2) (2.6)
and

by (2)bi(2) + ba(2)b3(2) = p(2),  bi(2)bi(=2) + ba(2)b5(—2) =0, (2.7)
where 6,d,,a are Laurent polynomials with [complex] symmetry (and real coefficients) and

P(2) = O(2) — da(2)d;(2)0(2)[a(2)a"(2)0"(=2) + a(—2)a"(—2)8"(2)]. (2.8)

Proof. (2.6) follows directly from Lemma 3. The second part of (2.7) is from (2.2). By (1.5) and (2.6),

we have
bi(2)bj(2) + ba(2)b3(2) = ©(2) — ©(2%)a(2)a*(2) — bs(2)b3(2) = p(2).
The sufficiency part can be directly verified. 0
We have the following necessary and sufficient condition to completely solve (2.7) as follows:

Theorem 5. If there exist by, by of Laurent polynomials with [complex] symmetry (and real coefficients)
such that (2.7) holds, then

(i) p(z) = 0 for all z € T. For the case of symmetry (or real coefficients), p has real coefficients;

(ii) p((zg) = dp(2)d5(z) for some Laurent polynomial d, with [complex] symmetry (and real coeffi-

cients), where q(z?) := ged(p(z), p(—2)).

Conversely, if items (i) and (ii) are satisfied, then there exists a solution {by,bs} of Laurent polynomials

to (2.7) and all the solutions {by,bs} of Laurent polynomials to (2.7), with by,by having [complex]
symmetry (and real coefficients), are given by

bi(2) = dp(2)dg(2)b(2),  ba(2) = dp(2)da(2) A= 1b* (=), (2.9)

where k € Z, A € T (X € {£1,%i} for the case of complex symmetry; N € {£1} for the case of real
coefficients), dq and b are Laurent polynomials with [complex] symmetry (and real coefficients) satisfying

dq(2)d3(2) = dq(=2)d5(=2),  dq(2)d5(2) | a(z?) (2.10)
and
b(z)b*(2) 4+ b(—z)b*(—2) = ch((l();d*)(z)' (2.11)

For complex symmetry (and real coefficients), without loss of any solutions, we can take dq = 1.

Proof. Obviously, (2.7) implies p(z) = by(2)bj(2) + ba(2)b3(2) > 0 for all z € T and Sp = 1 by p* = p.
For the case of symmetry, since b; and by have symmetry, we have S(b;(2)bi(z)) = Sby(2)Sb}(z) =1 =
S(ba(z)b3(2)). Therefore, Sp = 1. By [7, Lemma 2.3] and Sp = Sp = 1, the Laurent polynomial p must
have real coefficients.

Applying Lemma 3 with © = 1 to the second identity in (2.7), we have 8(z) = A\2?* and

bi(2) =d(2)b(z),  ba(z) = d(2)AZHb*(—2), (2.12)
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where k € Z, A € T (A € {£1,+i} for the case of complex symmetry; A € {£1} for the case of real
coefficients), and d, b are Laurent polynomials with [complex] symmetry (and real coefficients). Hence,
the first identity in (2.7) becomes

d(2)d*(2)C(z%) = p(z) with C(2?) := b(2)b*(2) + b(—2)b*(—2). (2.13)
By (2.13) and the definition q(z?) = ged(p(z), p(—=2)), we see that
q(2?) = ged(p(2), p(—2)) = C(22)D(2?) with D(z?) := ged(d(2)d*(2),d(—z)d*(—2)). (2.14)

Hence, by (2.13) again,
pz) () (:)C(D)  d(2)d(2)
q(z?)  C(z?)D(z?) D(z%)
For the case of symmetry (and real coefficients), since d has symmetry, by the trivial relation d*(z) =
d(z-1), we have Z(d*,z) = Z(d,z) for all z € R\{0}. Therefore, by the definition of D in (2.14), for all
x € R\{0},
Z(D(2%),z) = min(Z(dd*, x), Z(d(—)d*(—),z)) = 2min(Z(d,x), Z(d, —x)), ¥V € R\{0}.
Thus, by (2.15) we see that

Z(55, v) = Z(dd*, 2) — Z(D(2%),z) = 2max(0,Z(d, z) — Z(d, —)) € 2Z. (2.16)
For the case of symmetry, we proved that the Laurent polynomial p must have real coefficients. Hence,

both q and qp((ZZZ)) also have real coefficients. By item (i) and [7, Lemma 2.4], we have qp((j) > 0 for all

(2.15)

z € T. Applying [7, Theorem 2.9], we see that item (ii) holds for some Laurent polynomial d, with
symmetry.

For the case of complex symmetry (and real coefficients), we have Z(d*, z) = Z(d, z) for all z € C\{0}
since d has complex symmetry. Therefore, (2.16) must hold for all z € C\{0}. Applying [7, Theorem 2.8],
we see that item (ii) holds for some Laurent polynomial d, with complex symmetry (and real coeflicients).

Sufficiency. If items (i) and (ii) are satisfied, one can directly check that {b;, by} given in (2.9), with d,
and b satisfying (2.10) and (2.11), is indeed a solution to (2.7). Taking dq = 1 and noting that q(z) > 0
for all z € T, by [7, Theorems 2.6 and 2.7], we see that there always exists a desired b satisfying (2.11).

We now show that all the solutions to (2.7) can be obtained in this way. By the above argument in
the proof of items (i) and (ii), all (2.12)-(2.15) must hold.

For the case of complex symmetry (and real coefficients), since d has complex symmetry, we have
Z(dd*, z) = 2Z(d, z) for all z € C\{0}. Consequently, by the definition of D, we have D(z) = d(z)d*(2)
with d(z2) := ged(d(2),d(—z)). Hence, d(z) =d o(2)d(2?) for some Laurent polynomial d, with complex
symmetry (and real coefficients). It follows directly from (2.15) that such d, indeed satisfies

o) AR ) E)
q(z?) D(z2)  d(22)d*(22) P
Now define b(z) := d(22)b(z) and Az2*1 ;= X\z%*1Sd(22). By d(z) = dy(2)d(2?), (2.12) becomes
bi(z) = dp(2)b(2) and by(z) = dp(z)j\z%“b*(—z). Moreover, the first identity of (2.7) implies that
(2.11) holds with dy = 1.
For the case of symmetry, applying [7, Algorithm 1] with p;(z) = qp(z) and py(z) = d(z), we can

(%)

construct a Laurent polynomial d, with symmetry such that

()5 | 255, dp | and  god (i o) = 1 (217

Hence, dq(2) := dap(é )) is a well-defined Laurent polynomial with symmetry. It follows from (2.15) that

s P o) 1 dE) )
P @a,a) ~ P 2 e ) A P4l (2.18)
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From the above identity and the relation in (2.17), we see that p(z) a7 Mwust be a monomial and

q(Z2)dCI(Z) q
hence must be a positive constant by its nonnegativity. Therefore, by multiplying a proper positive

constant with d,, we can assume that this monomial is 1, that is, % = dp(2)ds(2). By the definition
dq(2) = jp((zz)), we have d(z) = dp(2)dq(2). Now it follows from (2.18) that dq(z)d}(2) = D(2*). Thus, by

(2.14) we sce that (2.10) is satisfied. Defining b(z) := b(z), we see from (2.12) that

o)) B (2) 4 b2 (~)] = Bt = (=)

Now it is easy to deduce from the above relation that (2.11) must hold. U

The problem in (2.11) has been well studied in [7, 9] and (2.11) always has a desired solution (see [7,
Theorems 2.6 and 2.7]). In the following, we outline two ways of constructing all desired solutions b to

(2.11). Define q(z?) := dq(%j)(z). By (2.10) and item (i) of Theorem 5, q is well defined and q(z) > 0 for

all z € T. We now state the first method using Fejér-Riesz lemma. Since q(z) > 0 for all z € T, using
Fejér-Riesz lemma, we can obtain a Laurent polynomial u such that u(z)u*(z) = q(z). For the case of
complex symmetry, define

b(2) := [u(2?) + epz®u*(2?)]/2  with epb € {—1,1} and ¢, being an odd integer. (2.19)

Then b is a solution to (2.11) with the complex symmetry Sb(z) = €,2%. For the case of symmetry (and
real coefficients), since g must have real coefficients, we can further require u to have real coefficients.
Define

b(2) := [u(z?) + epz®u(27?)]/2  with e € {~1,1} and ¢, being an odd integer.  (2.20)

Then b in (2.20) with u having real coefficients provides a solution to (2.11) with symmetry and real
coefficients. Define [—m, m| := fsupp(q). We often take ¢, = 2m + 1 and fsupp(u) C [0,m] so that
the constructed filter b has the shortest possible filter support contained inside [0,2m + 1]. We now
discuss the second method using sum of squares of Laurent polynomials. By [7, Theorem 2.6], there
exist Laurent polynomials u; and us, with complex symmetry such that
up(z)ui(z) + ua(z)uz(z) = q(z) with Su(2) = z. (2.21)
Sus(2)
For the case of symmetry (and real coefficients), under the additional assumption that Z(q, ) € 2Z for
all x € (0,1), by [7, Theorem 2.7] or [9, Lemma 4.4], there exist Laurent polynomials u; and uy with
symmetry and real coefficients such that

up(2)ui(z) + ua(2)uz(z) = q(z) with = z. (2.22)

Now define
b(2) := [u1(2?) + zug(2?)]/V2. (2.23)

Then b in (2.23) is also a solution to (2.11) with [complex| symmetry (and real coefficients) such
that epz® := Sb(z) = Su;(2?) (or ez := Sb(z) = Su;(z?) for the case of symmetry) with ¢, be-
ing an even integer. Define [—m,m| := fsupp(q). Then the relation in (2.21) or (2.22) will force
max(len(u;),len(uz)) = m and consequently, we must have len(b) < 2m = len(q). All the solutions to
(2.21) or (2.22) can be obtained using [7, Theorems 2.8 and 2.9].

It is also not difficult to see that all the solutions b with Sb(z) = €,2% (or Sb(z) = €,2%®) to (2.11)
are obtained by either (2.19) or (2.23) according to the parity of c¢.

Summarizing the above results on (2.2), we have the following algorithm to construct all tight framelet
filter banks {a; by, be, bs}e with [complex] symmetry (and real coefficients) satisfying (2.2).

Algorithm 1. Let a,0 € ly(Z) be filters having [complex] symmetry (and real coefficients) such that
Sa(z) = €z and S© = SO = 1, where e € {—1,1} and ¢ € Z (for complex symmetry, replace S by S).
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(S1) Construct a Laurent polynomial @ with [complex] symmetry (and real coefficients) by Theorem 2
such that ©(2%) = 0(2)0*(—z);
(S2) Select a Laurent polynomial d, with [complex] symmetry (and real coefficients) such that d, | a.
Write a(z) = da(2)a(z) for a unique Laurent polynomial a;
(S3) Define p as in (2.8) and q(2?) := ged(p(2), p(—2)). If the necessary and sufficient condition in
items (i) and (it) of Theorem 5 is satisfied, then find a Laurent polynomial d, with [complex]

symmetry satisfying d,(z)d5(2) = qp((;)). If item (i) or item (ii) of Theorem 5 fails, then stop and
restart the algorithm by selecting other choices of @ in (S1) and d, in (S2);
(S4) Select a Laurent polynomial dq with [complex] symmetry (and real coefficients) satisfying (2.10).

Without loss of any generality, we can take dq = 1 for complex symmetry (and real coefficients).

(S5) Define g(2?%) := dq(qz()zd?(z). Since item (1) of Theorem 5 implies q(z) = 0 for all z € T, we
can always construct a Laurent polynomial b with [complex] symmetry (and real coefficients) by
(2.20) (or by (2.19) for complex symmetry) or by (2.23) such that (2.11) holds.

Define
bi(z) = dp(2)dq(2)b(2), ba(z) =dp(2)dq(2)2b*"(—2), bs(2) :=da(2)0(2)za"(—2). (2.24)
Then {a; by, bs,bs}te is a tight framelet filter bank with [complex] symmetry (and real coefficients).

Since we have essentially finitely many choices of @ in (S1) and d, in (S2) as well as dq in (S4) (we only
have to consider all those 6 in (S1) with symmetry center from {0,1} and d, in (S2) with symmetry
center from {0, 3}), Algorithm 1 can be used to find all tight framelet filter banks with [complex]
symmetry satisfying (2.2). As a consequence, all type I symmetric tight framelet filter banks with three
high-pass filters can be obtained via Algorithm 1, since (2.2) must hold for type I tight framelet filter
banks by Proposition 1. Note that Algorithm 1 can be also used to construct all type II symmetric
tight framelet filter banks satisfying the additional assumption in (2.2).

Under the extra condition p(—z) = p(z) (for example, this holds if 8 = d, = 1), we have q(2?) =
ged(p(z), p(—2)) = p(z). Therefore, item (ii) of Theorem 5 is automatically true by taking d, = 1 and
we only need to check the condition in item (i) of Theorem 5. For the particular case of @ = d, = 1,
item (i) of Theorem 5 becomes (1.7).

For all B-spline filters, we are now ready to completely resolve the question Q1 on symmetric real-
valued tight framelet filter banks {aZ; by, bo, b3} with the shortest possible filter supports.

Theorem 6. Let a € lo(Z) be a real-valued filter with symmetry such that (1.7) is satisfied. If len(a) is
an odd integer or if
Z(p,x) € 2Z, Vz e (0,1) with p(z) :==1—a(z)a*(z) —a(—z)a*(—=), (2.25)
then there always exist real-valued filters by, be, by € lo(Z) with symmetry such that {a;by,be, b3} is a
tight framelet filter bank with symmetry and
max(len(by), len(bg), len(bs)) = len(a). (2.26)
In particular, both (1.7) and (2.25) hold for every B-spline filter a = a2 of order m € N.

Proof. Take @ =1, d, =1, and dq = 1 in Algorithm 1. Then q(2?) =p(z) = 0 for all z € T and d, = 1.

If len(a) is odd, then fsupp(q) C [17162“(“), len(g)fl]. Therefore, by Fejér-Riesz lemma, there exists a

polynomial u with real coefficients such that fsupp(u) C [0, %] and u(z)u*(z) = q(z). Define b as in
(2.20) with ¢, = 1 and ¢, = len(a), where we used the assumption that len(a) is an odd integer. Then

fsupp(b) C [0,len(a)] and Sh(z) = 2'*@. Define
bi(z) = b(2), by(2) = zb*(—2), bs(2) = za*(—=z). (2.27)

It is straightforward to check that len(by) = len(by) = len(b) < len(a) and len(bs) = len(a). There-
fore, {a; b1, b9, b3} is a desired real-valued tight framelet filter bank with symmetry and satisfies (2.26).
Moreover, it is a type II symmetric tight framelet filter bank satisfying (2.2), since

Sby(z) = zen@, Sby(z) = —z*len(@), Sbs(z) = 2°Sa*(—2z).
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If len(a) is an even integer, we can still use (2.20) to derive a real-valued tight framelet filter bank
{a; b1, by, b3} with symmetry. However, we will end up with len(b;) = len(by) = len(b) > len(a) + 1.

If (2.25) holds, we use (2.23) instead of (2.20) to achieve short filter supports. Since q(z?) = p(z), by

the relation Z(q,x) = Z(p, y/x) for all 2 € (0,1), we conclude that Z(q,x) € 27Z for all z € (0,1). Note

that fsupp(q) C [-m, m|, where m := len(a) — H_gﬂ Thus, it is guaranteed by [7, Theorem 2.7] or

9, Lemma 4.4] that (2.23) has a solution with real coefficients and max(len(uy),len(uz)) < % =
Define €;2°* := Su;(z). Due to the symmetry constraint Su;(z) = zSus(z), we have Suy(z) = 21
If ¢; and % have the same parity (that is, ¢; — § € 2Z), then we must have len(uz) < len(u;) = %,
from which and the definition of b in (2.23) we conclude that len(b) < 2len(u;) = m. If ¢; and % have
different parity, then we must have len(u;) < len(uy) = %, from which and the definition of b in (2.23)
we conclude that len(b) < 2len(uy) = m. Now by (2.27), we see that the condition in (2.26) is satisfied.
In fact, if len(a) is odd, then len(b;) = len(by) < m < len(a).

Since a2 (2)]? = cos®™(£/2) < cos?(£/2) with z = e % it is trivial to see that 1 — aZ(2)(aZ(2))* —

aB(—2)(@B(—2))* > 1 — cos?(¢/2) — sin?(£/2) = 0 for all ¢ € R and m € N. Hence, (1.7) is satisfied

with @ = af. We now prove that (2.25) is satisfied. (2.25) holds for a = af since p = 0. Define
flz) =1—2m—(1—2z)™,x€R. Form >1and z <0, we have 1 —2 > —z > 0 and

flla)=m[1—2)" " = 2" > m[(1—2)""" = (—2)" '] > 0.

Therefore, f is a strictly increasing function on (—oo,0] and hence, f(z) < f( ) =0 for all z < 0.
Noting that 1 — ”2” < 0 for all z € (0,1), we conclude that p(z) = f(1 — 22— ") < 0 for all z € (0,1).

Hence, Z(p,z) = 0 for all z € (0,1) and (2.25) holds. O

For the case of complex symmetry, using the same argument as in Theorem 6 for the case of (2.25)
but employing [7, Theorem 2.6] instead of [7, Theorem 2.7}, we have

Theorem 7. Let a € lo(Z) be a filter with complex symmetry such that (1.7) is satisfied. Then there
always exist (complex-valued) filters by, by, by € lo(Z) with complex symmetry such that {a; by, by, b3} is a
tight framelet filter bank with complex symmetry and (2.26) holds for the shortest possible filter support.

3. EXAMPLES OF SYMMETRIC TIGHT FRAMELET FILTER BANKS USING ALGORITHM 1

In this section we present several examples of symmetric tight framelet filter banks {a; by, bs, b3}e
which are constructed using Algorithm 1 in Section 2.
For a function f: R — C, we use the following notation:

Fren(@) = [N kyn] f(2) == (A2 ™ f(Ax — k), A\ kn,z €R.

In particular, we define fyr := firo = |AY2f(A- —k). Suppose that {a;bi,...,bs}e is a finitely
supported tight framelet filter bank with a(1) = ©(1) = 1. The standard refinable function/distribution
¢* associated with the low-pass filter a is defined to be

= H a(e™7%),  ¢eR. (3.1)

Since a(1) = 1 and a € ly(Z), the function ¢ is a well-defined continuous function. Let @ be a Laurent
polynomial satisfying ©(z) = (2)0*(z). We define functions 7, %, ... % by

D€)== 0(e)pa(€)  and  Pobe(€) == by(e ) gu(E/2),  L=1,...,s, E€R.
It is guaranteed by [6, Theorem 2 and Corollary 10] that all functions 7, %%, ... 9%’ € Ly(R) and both
{n(-—k&) : kEZ}U{wgf,’,’i :jeNU{0},keZ,t=1,...,s} and {Q,ngb]‘j; L jEL ke L=1,..., 5}
are (normalized) tight frames for Ly(R), that is, |

1Ay = D 1L = RN+ D > I esiol ZZZ| (fUs")P, ¥ f € LyR).

kez j=0 ¢=1 keZ JEZ 0=1 keZ
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It is interesting to point out that there is indeed a one-to-one correspondence between filter banks
and frequency-based framelets, recently established in [6, Theorem 2]. Hence, in this paper we mainly
concentrate on filter banks and Laurent polynomials. For references on tight wavelet frames, see [2, 3,
5, 6, 14] and references therein.

For a filter w, if u(z) = (2 — 1)™v(z) for some Laurent polynomial v with v(1) # 0, then we define
vm(u) := m, called the order of vanishing moments of u. To study the frequency information of a filter
u, we also use the notation @(€) := u(e™%) in this paper.

We now present a few examples using Algorithm 1. When © = §, without further mention we always
take @ = 1 such that 8(2)0*(—z) = 1 in Theorem 2.

Example 1. Let a = af (- — 2) = {3, 1, g, T, 75 }[-2.2) be the centered B-spline filter of order 4 and
© = 4. Then 8 = 1. Picking d, = 1 in Algorithm 1, we have a(z) = a(z) and q(2%) = p(z) =
(27t = 2)2(272 4 30 4 2%). Then dy(z) = 1 satisfies dp(2)d}(z) = 1 = %. Selecting dq = 1, by

Theorem 6, we can use (2.23) with G = q to have b(z) = (1 — 2?)(z7" 4+ 2/7 + 2). Hence,
by (2) = dp(2)dq(2)b(2) = b(2) = {15, %, 0, =%, = 13
ba(2) = dp(2)dq(2)2b"(— )—Zb*(— ) ={%, —%.0,%
by(2) = dy(2)6(2)2a"(—2) = 152" (1 - 27)" = {55, — 1.

Then Sby(z) = —22,Sby(2) = —1,Sbs(z) = 22 (type IT) and vin(by) = vm(by) = 1,vi(bs) = 4. A

slightly different example is obtained in [1, Example 6] through ad hoc construction.

We can also take d,(z) = 1+ z in Algorithm 1. Then a(z) = £272(z + 1), p(z) = & (1 — 2)(1 —
2 H[B(z72 4+ 2%) + 12(27' + 2) + 34], and q(z) = 1. Hence, d,(2) = ‘2/45(2_1 D[3271 46 + 4v/3i + 32]
satisfies dp(2)d5(2) = p(2) = P) Take dq = 1 and the trivial choice b = Y2 satisfying b(z)b*(z) +

q(z?) 2
b(—z)b*(—z) = 1. Then

ma

) 1_16}[—2,2]7

=

3 _1 L}
180 4016 [-1.3]

L

=

by (2) = dp(2)dq(2)b(2) = L2dp(2) = {— Y5, —¥Orav2l JOLdval oy ),
by(2) = dp(2)dq(2)2b"(—2 ) by (2) = {—Y—f,—*/éﬁ‘éf‘, Sord/2 8} ),

bs(z) =da(2)0(z)za*(—2) = E(l +2)(z - 1) ={~ 16, 8, ,—%, E}[UA]'

Then Sby(z) = —271,Sby(2) = —2,Sb3(2) = —2* (type I) and vm(b;) = vi(by) = 1,vm(b3) = 3. See
Figure 3.1 for graphs of the associated refinable function ¢® and framelet functions ¥*%, %% and 3.

Example 2. Let a = af(- — 2) = {ﬁ, oL 1%, %, %, 35 f[-2,3) be the shifted B-spline filter of order 5

and © = §. Then @ = 1. Picking d, = 1 in Algorithm 1, we have a(z) = a(z), q(z?) = p(z) =
2e(1—272)(1 = 22)(2> + 14 + 2?). Then d, = 1. Setting dq(z) = 1 and using (2.19) with q = q, we
have b(z) = \/5(\[ VAVS2) (> — 1)2(27L 4+ 1) (=21 4+ 4v/3 46 — z). Hence,

b1(2) = dp(2)dg (2)b(2) = b(2) = {PIZA, B8, B S, - WIS, B,

) 32 16 7 16 32
ba(2) = dp(2)dq(2)2b*(—2) = 2b*(—z) = {VI2/0, —2/00/I0 IS Wi 2VEVID 2WEVISY o,

bs(2) = da(2)0(2)28" (—2) = 5527 (2 = 1)° = {—55, &, — %, T — 55 35 1 -2.3)-
Then Sb;(z) = 2,Sba(2) = —2,Sb3(z) = —=z (type II) and vm(b) = 2, vin(by) = 1, vm(bs) = 5.
Since (2.25) is satisfied (see Theorem 6), we can also use (2.23) with § = q to have b(z) = %0(2~2 —

(2 +v3 4+ v2)(z + V3 — V2). Hence, v
(Z) = dP(Z)dQ(Z)b( ) ( )_ 32 ) 160’—’_ 16 ) 39 } [(—2,2]»
b2(2) = dp(z)dq<z)2b*(_z) = Zb*(_ ) _{ 32 ) 16 70 - 13607 32 }[ 1,3]s
(

by(2) = da(2)0(2)28"(—2) = 52 7° (2 = 1)’ = {—55, 55, — 16 16> 33> ;) -23]



14 BIN HAN

(a) ¢° (b) yotr (c) g2 (d) ppte (c) [@l, B1], [bal, B3]

(f) ¢° (g) pobr (h) b2 (i) ypobs G) [al, |ba], |bs]

FIGURE 3.1. (a)—(e) for the tight framelet filter bank {a; by, bo, b3} with symmetry con-
structed by Algorithm 1 in Example 1 with a = a®(-—2) and d, = 1. (a), (b), (c), (d) are
the graphs of the standard refinable function ¢* and the framelet functions ¢®" , b2
Y@ respectively. (e) is the magnitudes of @ (in solid line), by (in dashed line), by (in

dotted line), and by (in dashed-dotted line) on the interval [—m, x]. (f)—(j) for the tight
framelet filter bank {a; by, by, b3} with symmetry constructed by Algorithm 1 in Example 1
with the choice d,(z) = 1 + 2. For the graphs in (g) and (h), the solid lines are for the
real parts and the dotted lines are for the i imaginary parts of the framelet functlons bt
and ¥, (j) is the magnitudes of @ (in solid line), by (in dashed line), and by (in dotted

line), on the interval [—7,7]. Note that by (€)] = [ba(€)].

Then Sby(z) = —1,Sby(z) = —22,Sb3(2) = —=z (type 1) and vm(b;) = vm(by) = 1,vm(bz) = 5. A
slightly different example is obtained in [1, Example 7].
We can also take dy(2) = 271 (14 2)* (or da(z) = 1+ 2z) in Algorithm 1. Then a(z) = 552 (2 + 1)

q(z) =27 '+ 14+ z, and dy(2) = ‘;—g(z —1)(z7 2+ (44 2i)z7t +1). Setting dq = 1 and using (2.23), w

have b(z) = ‘/752’_1(2’ +v2 4+ V3) (2 + V3 — V2) satisfying b(2)b*(2) + b(—2)b*(—2) = q(2?). Then

i 1-3v3+(1-2v3)i 3v/3—-1+(2v3-1)i i
bl(’z) = dp(z)dq(z)b(z) = {_3_27 2f;23+2 ) +( ) ) +( L) ) 3+2?3/2§+2 73_2}[73,2%

b2<2’) = dp(z>dq (Z)Zb*(—Z) = {@7 3_2?),/;4_2@7 3f+1_§_(62f+1)17 3f+1+(2f+1)17 2f323 227 _ﬁ}[f2,3]7

by(2) = dy(2)8(2)28" (—2) = —2(1— 27" (L+2)" = {— .~ &, & &, — L}

Then Sby(z) = —271,Sby(2) = —2,Sb3(2) = —23 (type II) and vm(b;) = vm(by) = 1,vm(b3) = 2. See
Figure 3.2 for graphs of the associated refinable function ¢® and framelet functions ¥*%, %2 and 3.

Example 3. Let a = af(- — 3) = {6—4, 35 5, % é—i, 3%, 6—4}[ 3,3 be the centered B-spline filter of order
6 and © = §. Then 6 = 1. Picking d, = 1 in Algorithm 1, we have a(z) = a(z) and q(2?) = p(z) =

sas(1—272)(1 — 2%)(27* + 68272 + 630 + 6827 + z*). Hence dy(z) = 1 satisfies dp(2)d3(z) =1 = q((z2))
Setting dq(2) = 1, by Theorem 6, we can use (2.23) with § = q to have b(z) = (27! — 2)[1=2y3 égﬁ +

163;22‘/37( _1+z)+ (272 + 2%)]. Hence,

16+2v31 1— — 16+2v/31
bl(z) = dp(z)dq<z)b<z) - b(Z) = {6L4’ 3+2 ) - éﬁ?ga 4\/22 17 - ;rg 7_@}[73,3]7
* * V164231 1— —1 V/164+2V31
bQ(z) = dP(’Z)dq(’Z)Zb (_Z) =zb (_ ) - é? - ;2 ) 1 Lézl/ﬁa(h 4\/2 17 ;—2 7_é}[—2,4]7
bs(2) = da(2)0(2)28" (—2) = — 2 2(x — 10 = (-, &, -8, & -2 3 Ly,



Then Sby(z) =

SYMMETRIC TIGHT FRAMELET FILTER BANKS WITH THREE HIGH-PASS FILTERS

(a) ¢° (b) yotr (c) g2 (d) ppte (c) [@l, 511, [bal, B3]

(f) ¢° (g) pobr (h) b2 (i) ypobs () [@l, |ba], bzl |bs]

FIGURE 3.2. (a)-(e) for the tight framelet filter bank {a; by, by, b3} with symmetry con-
structed by Algorithm 1 in Example 2 with a = aZ(- — 2) and using (2.19). (a), (b), (c),
(d) are the graphs of the refinable function ¢® and the framelet functions 1)1, )02 1ha-bs,
respectively. (e) is the magnitudes of @ (in solid line), by (in dashed line), 6; (in dotted
line), and by (in dashed-dotted line) on the interval [—m, 7]. (f)—(j) for the tight framelet
filter bank {a; by, b, b3} with symmetry constructed by Algorithm 1 in Example 2 with
a = a?(-—2) and using (2.23). (k)—(o) for the tight framelet filter bank {a; by, by, b3} with
symmetry constructed by Algorithm 1 in Example 2 with the choice d,(2) = z271(1 + 2)3.
For the graphs in (1) and (m), the solid lines are for the real parts and the dotted lines are
for the imaginary parts of the framelet functions ¢ b1 and (5% b2 (0) is the magnitudes of
a (in solid line), by (in dashed line), by (in dotted line), and by (in dashed-dotted line) on
the interval [—m, 7].

slightly different example is obtained in [1, Example 8].

(k) ¢° (1) pobs (m) yb2 (n) yobs (o) [al, [ba], [bal, b3

15

—1,Sby(2) = —22,Sbs(z) = 2% (type II) and vim(b;) = vm(by) = 1,vim(b3) = 6. A

We can also take d,(z) = z72(1 + 2)® (or dy(2) = (1 + 2) or (1 + 2)®) in Algorithm 1. Then
a(z) = g(z7'+1),q(z) =1, and
dp(Z) _ %(22 . 2—3) + 5+2 35272\/52‘ (Z _ 2_2) + 25414/ 573%/5(7+2\/5)i(1 _ 2_1).
Taking dq = 1 and the trivial choice b = %=, we get by(z) = ‘gd (z) and
(z) . 5v2+21/10-4v5i  2v/10+4/10—4v5(74+2V5)i  2v/10++/10— 4\/(7+2\/z 5f+2\/10 4/5i f}[ 32
o 64 ) 32 ’ ) 64 )

ba(
bs(

Then Sby(z) = —271,Sby(z) = —2,Sbs(z2) = —

z

z

)
)

{ 642’
dp(2)dq(2)2b™(=2) = 2bs(2),
da(2)0

( ( ) (_Z) = (%4(271 - 1)<1 + Z)5 = {(%47 116’ 654’ 0 647 %7 _6%}[*1’5}'

1 (type I) and vm(b;) = vm(by) = vm(bz) = 1. See

Figure 3.3 for graphs of the associated refinable function ¢¢ and framelet functions ¢)*%, %% and %%,
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(a) o (b) (c) o2 (d) gt (e) [@l, [bal. B2, [B|

(f) ¢° (g) pobr (h) b2 (i) ypobs G) [al, |ba], |bs]

FIGURE 3.3. (a)—(e) for the tight framelet filter bank {a; by, b, b3} With symmetry con-

structed by Algorithm 1 in Example 3 with a = af(- —3) and d,(2) = 1. (a), (b), (c), (d)

are the graphs of the refinable function ¢* and the framelet functions w“ bl, @b q)®bs

respectively. (e) is the magnitudes of @ (in solid line), by (in dashed line), by (in dotted

line), and b3 (in dashed-dotted line) on the interval [—7, 7. (f)—(j) for the tight framelet

filter bank {a; by, b, b3} with symmetry constructed by Algorithm 1 in Example 3 with

the choice d,(2) = 1+ 2. For the graphs in (g) and (h), the solid lines are for the real

parts and the dotted lines are for the imaginary parts of the framelet functions % b1 and

¥®%. (j) is the magnitudes of @ (in solid line), by (in dashed line), by (in dotted line), o

the interval [—m, 7]. Note that |by(€)] = |b2(&)].
Example 4. Let a = a} = {— 312,0, 392, ;, 392,0 32}[ 33 and © = 4. Then 8 = 1. Setting d, = 1 in
Algorithm 1, we have a(z) = a(z) and q(2?) = p(2) = =15(1 — 27 2)*(1 — 22)?(14 — 2% — 2?). Hence,
d, = 1. We observe that Z(q,7 —4+v/3) = 1 and 7 —4+/3 € (0,1). Hence, we cannot use (2.23) to obtain
a filter b with symmetry. Setting dq = 1 and using (2.20) via Fejér-Riesz lemma with q = q, we have
b(z) = %@(1 — 27214 2)3(27 ' + 4v/3 — 8 + 2). Hence,

bl(z):b(z):{f“f,f 2\/7 f+6\/§76f f76f Vo f+6f’f 2f’f+2f}

__64 —3,4]»
bo(2) = 2b*(—2) = {f+2\f72f f’ f+6f’f G\F’G\f f,f+6f’f 2f’ f+2f}[73,4]7

by(2) = 3_122_1(2 DI At e) = 50— 327 2~ 30, 35 -2

Then Sby(z) = 2,Sby(z) = —2,Sb3(2) = 22 (type I) and vm(b;) = 2,vm(by) = 3,vm(b3) = 4. This
example is given in [1, Example 9] with len(b;) = len(by) = 7 > len(a) = 6. Noting a(z) = 273(z +
1)*(2—2—+/3)(2—2++/3) and searching all the possible finitely many choices of @ and d, in Algorithm 1,
we find that there is no tight framelet filter bank {al; b;, by, b3} with symmetry which can satisfy both
max(len(by ), len(by), len(bz)) = len(al) and (2.2) with © = 4.

However, we can still use complex symmetry in Theorem 7 to achieve the shortest possible filter
supports. We have b(z) = & (z — 271)?(z — 2v/3i — 27!) with complex symmetry Sb(z) = —1 and

by (2) = dp(2)dg(2)b(2) = b(2) = {— g5, — ¥, 5, %3, — & 3 L} o
bZ(Z) = dp(Z)d ( )Zb*( ) (_ ) = { 127 161’ 3327 _\g 7_%7 %7 % [—2,4]»
bs(z) = da(z)O(z)za( ) 312'2 1(2 - 1) ( R z) = = 3_92’ ; 3927032}[ 2,4]-

327
Then Sby(z) = —1,Sby(2) = —22,Sbs(z) = 22 (type II) and vm(b;) = 2,vi(by) = 2,vm(bs) = 4. See
Figure 3.4 for graphs of the associated refinable function ¢® and framelet functions %%, ®% and
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¥ We also point out here that if the condition (2.2) is dropped (and therefore, Algorithm 1 cannot
be used), we shall show in Example 9 that there indeed exists a real-valued tight framelet filter bank
{al; b1, by, b3} with symmetry and max(len(by),len(bs), len(bs)) = len(al).

(a) ¢° (b) b (c) b (d) pbe (e) [al, [Bal, Bal, 55|

(f) ¢° (g) s (h) b2 (i) yobs () [al, 611, b2l |bs]

FIGURE 3.4. (a)—(e) for the tight framelet filter bank {a; by, by, b3} with symmetry con-

structed by Algorithm 1 in Example 4 with a = af and (2.20). (a), (b), (c), (d) are the

graphs of the refinable function ¢® and the framelet functions ®%, b2 1)®b respec-

tively. (e) is the magnitudes of @ (in solid line), b, (in dashed line), by (in dotted line),

and by (in dashed-dotted line) on the interval [—7,x]. (£)—(j) for the tight framelet filter

bank {a; by, by, b3} with symmetry constructed by Algorithm 1 in Example 4 with a = a}

and (2.23). (f), (g), (h), (i) are the graphs of the refinable function ¢* and the framelet

functions b1, 02 )@ respectively. For the graphs in (g) and (h), the solid lines are

for the real parts and the dotted lines are for the imaginary parts of the framelet functions

1 and S b2 () is the magnitudes of @ (in solid line), by (in dashed line), by (in dotted

line), and by (in dashed-dotted line) on the interval [—m, ].
Example 5. Let a = af(-—2) = {5.5.5.3 16}04] be the centered B-spline filter of order 4 and
0 = {- 3,3, —3}-1,1- Then 0(2) = @ — 2227 + z) by Theorem 2. Selecting d,(z) = 1+ z in
Algorithm 1, we have a(z) = (272 + 327" +3+2), q(z) = 1, and

dp(2) = L0271z — 1)2[8(272 + 22) + (24 — VT + 8Xi) (271 + 2) + 101 + 12v/7 — 4X% — 8\,
where A & 3.971226296945828 is a real root of

64X° + (—2032 — 5763V T)\* + (9196 + 8224V/7)\? + 82819 + 23580v/7 = 0
and A = 20ZHIVIN -1y 6VT) ~ —9.327304339851380. Take dq = 1 and b(z) = 2. Hence,

by (2) = dp(2)dg(2)b(2) = “2dy(2) = {0.0360843918242, —0.0116507716644 — 0.143299285722 1,
0.229282359208 — 0.0499715330192 7, —0.507431958733 + 0.386541637482 1,
0229282359208 — 0.0499715330192 7, —0.0116507716644 — 0.143299285722 1,
0.0360843918242}(_3.5),

by(2) = dp(2)dq(2)2b"(2) = 2bs(2),

by(2) = da(2)0(2)2a(z) = {¥2, —Y2LEZVE 2343 (o _ 2000V3 VALV By

Then Sby(z) = 1,Sby(z) = 22,Sb3(z) = —2* (type II) and vm(b;) = vm(by) = 2,vm(bs) = 3. See
Figure 3.5 for graphs of the refinable function ¢® and framelet functions 1%, )% and %3

\_/ w
N
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(a) o (b) g (c) pte (d) b (e) [@l, [bal. 55|

FIGURE 3.5. The tight framelet filter bank {a; by, bs, b3}e with symmetry is constructed
by Algorithm 1 in Example 5 with a = af(- — 2). (a), (b), (c), (d) are the graphs of the
refinable function ¢ and the framelet functions 1@, b2 1)®5  respectively. For the
graphs in (b) and (c), the solid lines are for the real parts and the dotted lines are for the
imaginary parts of the framelet functions 1% and ¥*%. (e) is the magnitudes of @ (in

solid line), by (in dashed line), by (in dotted line) on the interval [—m,m]. Note that
[61(&)] = [b2(E)]-

4. TYPE II SYMMETRIC TIGHT FRAMELET FILTER BANKS WITH THREE HIGH-PASS FILTERS

Though Algorithm 1 can be used to construct all type II symmetric tight framelet filter banks satis-
fying the condition in (2.2), there are many type II symmetric tight framelet filter banks which do not
satisfy the condition in (2.2). The construction of all type II tight framelet filter banks {a; by, b2, bs}e
such that the extra assumption in (2.2) fails is much more involved. Using results in [7], in this section
we propose an algorithm to construct all symmetric tight framelet filter banks {a; by, b2, b3}e having the
shortest possible filter support in (1.13). To do so, we first examine in detail the symmetry patterns of
a tight framelet filter bank {a; by, by, b3 }e with [complex] symmetry.

Theorem 8. Let {a; by, bs,bs}e be a tight framelet filter bank such that all the filters ©, a, by, by, by € lo(7Z)
are not identically zero and have symmetry in (2.1) (or complex symmetry by replacing S with S). If

max(len(by), len(by),len(bs)) < len(a) + len(©) # 0, (4.1)

then up to reordering of by, ba, by, we must have one of the following four cases:
(1) max(len(by),len(by)) < len(bs) = len(a) + len(©) with 2 — (5 + ne) € 2Z;

(2) len(by) < len(by) = len(bs) = len(a) + len(©) with % — (5 + ne) € 2Z for { = 2,3;
(3) len(by) = len(by) = len(bs) = len(a) + len(©) with & — (5 +ne) € 2Z for { = 1,2,3;
(4) len(by) = len(by) = len(bs) = len(a) + len(©) with $ — (5 + ne) € 2Z and % — (L2 + ne) € 2Z
fort=1,2.
For the case of symmetry, we always have €3 = —esgn(O(ne)) and for item (4) we additionally have
€162 = —1, where O(ng) is the leading coefficient of ©, and sgn(©O(ne)) = 1 if O(ne) > 0 and

sgn(©(ng)) = —1 if O(ne) < 0.

Proof. To prove the claim, we compare the leading terms in the prefect reconstruction conditions in

(1.5) and (1.6). Define
[c — ng, no| := fsupp(a), [cr — ng, ng] := fsupp(by), (=1,2,3.
For the case of complex symmetry, we define
Ao := €0(ne)(a(ng))?, Ao = eo(be(ng))?, ¢=1,23.
For the case of symmetry, noting that © must have real coefficients by S© = S© = 1, we define
Mo = €O(ne)la(ng)|?,  Ao:=elbe(ng)?,  €=1,2,3. (4.2)
Then the leading terms of each addent in (1.5) are

)\0227@+2n0707 )\122n1701 7 )\222n27027 )\3Z2n37037 @(n@>zn@
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and the leading terms of each addent in (1.6) are

(—1)”0_6)\022n6+2n0_c, (_1)n1—cl A122n1—cl’ (_1)n2—02 A222n2—cz’ (_1)n3—03 A322n3—03’

respectively. Note that ng < 2ng + 2n¢ — ¢ by len(a) + len(©) # 0. Now there must exist 1 < L < 3
such that len(b,) = len(a) + len(©) (that is, 2n, — ¢, = 2ne + 2ng — ¢) for all L < ¢ < 3, and
len(b,) < len(a) + len(®) for all 1 < ¢ < L. Therefore,

3 3
M+ Y A=0, gAY (—1)rreerten, = 0. (4.3)
=L =L

Without loss of generality, there exists L' > L such that (—1)™ "™~%*¢ =1 for all L’ < ¢ < 3 and
(—1)memo—ete = —1 for all L < ¢ < L'. Now it follows from (4.3) that

3 L'—1
M+ =0, D N=0. (4.4)
(=L

=L
Clearly, we must have L' < 3, otherwise, \y = 0, which is a contradiction. Since Ay, A1, A2, A3 are
nonzero numbers and L < L', we deduce from (4.4) that there are only four possible cases.

Case 1: L =3 and L' = 3. Then (4.4) becomes A\g + A3 = 0. For the case of symmetry, \g + A3 = 0
implies that A\gA3 < 0 and therefore, we must have €3 = —esgn(©(ng)). By the definition of L and
L', we have max(len(b;),len(by)) < len(bs) = len(a) + len(©) and n3 — ng — c3 + ¢ € 2Z. Noting that
2n3 — c3 = len(bs) and 2ny — ¢ = len(a), we see that this case leads to item (1) since

c3— (c+2ng) =c3 —c—len(0) = c5 — ¢ — (len(bs) — len(a)) = —2(ng —ng — c3 + ¢) € 4Z.

Case 2: L =2 and L' = 2. By the same argument as in Case 1, this case leads to item (2).
Case 3: L =1 and L' = 1. This case leads to item (3).
Case 4: L =1 and L' = 3. This case leads to item (4). O

Note that {a;bi,bs,b3}e is a tight framelet filter bank if and only if {a; A\1b1(- — 2n1), Aeba(- —
2n9), A3bs(- — 2n3) }e is a tight framelet filter bank, where [A1| = | Ao = |[A3] = 1 and ny,ng,n3 € Z. It is
also important to notice the trivial relation S(ib) = —Sb for any filter b with complex symmetry, that
is, for a complex-valued filter b, in a tight framelet filter bank {a; by, by, b3}e such that Sby(z) = €2
with €, € {—1,1} and ¢, € Z, the sign of ¢ can be easily flipped and therefore plays no significant role
in a complex-valued tight framelet filter bank {a; b, by, b3} with complex symmetry.

Basically, Theorem 8 says that under the condition in (4.1) the symmetry center of a high-pass filter
by satisfying len(b,) = len(a) + len(©) is uniquely determined by the filters a and ©. Moreover, up to
an even integer shift and reordering, there must be a high-pass filter b3 having the symmetry pattern
—esgn(O(neg))z¢t2me. Using this observation and [7] on symmetric tight framelet filter banks with two
high-pass filters, we shall propose an algorithm to construct all symmetric tight framelet filter banks
with three high-pass filters. To do so, let us recall some notation from [7].

For a filter u = {u(k)}kez € lo(Z) and v € Z, the ~-coset of u is defined to be

ull (k) := u(y + 2k), k€7, orequivalently, ull(z)= Z u(y + 2k)2". (4.5)
keZ
We often write ) .
bi(z) = (1 —271)™by(2), ..., by(z)=(1—z1)"b(z).
Using the coset sequences in (4.5) and the relation b(z) = bl%(22) + zb[/(22), one can easily check that
the condition in (1.1) for a tight framelet filter bank {a;bq,...,bs}e can be equivalently rewritten as
bl() o b)) o) - )]
. . . . = N.oln 4.6
[b&”(z) ) el e Bl) e o

with
AR (z) + BO(z) 2 (Al(z) + Bm(Z))} (4.7)

1
Naoin, (2) 1= 5 {A[”(z) —Bl(z)  Al(z) —Bll(2)
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and
_ 8-

- _@(Zg)(la(_—j))nb : _i*ii)l)”"' (4.8)

For a filter u, if u(z) = (14 2)™v(z) for some Laurent polynomial v such that v(—1) # 0, then we define
sr(u) := m, called the order of sum rules of u. To guarantee that both A and B are well-defined Laurent
polynomials, it is natural to require that

0 < np < min(sr(a), 2 vin(©(2) — O(2%)a(z)a*(2))). (4.9)

We are now ready to present an algorithm to construct all symmetric tight framelet filter banks
{a; by, bg, bs}e with [complex| symmetry.

Algorithm 2. Let a,0 € lo(Z) be filters having [complex] symmetry (and real coefficients) such that
Sa(z) = €2 and S© = S© = 1, where € € {—1,1} and ¢ € Z (for complex symmetry, replace S by S).
Choose a nonnegative integer ny, such that (4.9) holds.

(S1) Select c3 € {c,c+ 2} and e3 € {—1,1}. For example, by Theorem 8 we can take c3 = ¢ + 2ng
and €3 = —esgn(©(ng)), where O(ng) is the leading coefficient of © (set €5 = 1 if O(ne) is a
complex number);

(S2) Parameterize a filter by having symmetry Sby(z) = (—1)™esz+" as follows:

c3tn ) ]
bs(2) . Zﬁ;é()\jzj + (—1)"ezAjz77), if c3 + nyp is even;
3(%) = ca+np—1 ] )
22 Smo(NE + (= 1)MesAiz i), ifes + my s odd,

(4.10)

where o, ..., A\e—1 € C (for the case of complex symmetry, replace the first \; in each row by )\_j
in (4.10); for the case of real coefficients, Ao,...,Ai—1 € R). To have short filter supports, we
often choose { € N such that len(bs) < len(a) + len(©) — ny;

(S3) Define a 2 x 2 matriz Ny opyn, bY

b (=)

by ()
and p(z) = det(Ngopsn, (2)). For the case of symmetry, apply [7, Theorem 2.9] to derive a
Laurent polynomial q, with symmetry from p. For the case of complex symmetry (and real
coefficients), apply [7, Theorem 2.8] to derive a Laurent polynomial q, with complex symmetry
from p. Let X denote the set of all equations by taking all the coefficients in p(z) — qp(2)q5(2)
to be zero. Use Grdobner basis method to solve the set X of equations to determine the unknowns
AOs -5 Ap1-

If items (i) and (1) of [7, Theorem 4.2] are satisfied with Ny oy, being replaced by Ny e.pyin,» then apply

7, Algorithms 2 and 3] with Ny e, being replaced by Ny e.p,n, to construct high-pass filters 131, 132 with

[complex] symmetry (and real coefficients) such that

69(2) bP()] [z) BP(x)]
[B[ll}(z) 6[21](2) B[ll](z) 5[21}<Z) - Na,@;bg\nb (Z) (412)

Then {a; by, by, bs}e is a tight framelet filter bank with [complex] symmetry (and real coefficients), where
the high-pass filters by, by, by are defined by

bi(2) := (1 — 271)™by(2), ba(2) := (1 — 27 1)™by(2), bs(2) := (1 — 2 1)"bs(2). (4.13)

Proof. To apply [7, Algorithms 2 and 3] with A, g|,, being replaced by N, e.4,/n,, We need to check that
all the entries in the matrix N, g4y, defined in (4.7) have the same [complex| symmetry as these in
Naojn,- By the definition of by, we have Sbs(z) = €32%. Since ¢ — ¢3 € 27, we have

S(a(=2)a"(2)) = Sa(—2)(Sa(2))" = (=1)° = (=1)® = S(bs(—2)b3(2)).
We now can directly check that the symmetry pattern of N in the proof of [7, Theorem 4.2] obtained
with ./\fa79|nb being replaced by Na7@;b3|nb is the same as before. ]

N oibalny (2) :=Na,e|nb<z>—[ (b5 (2))" (B (2))"] (4.11)
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By Proposition 1, we must have c¢3 — ¢ € 27Z and therefore, all tight framelet filter banks {a; by, bs, b3}e
with [complex] symmetry (and real coefficients) can be theoretically constructed by Algorithm 2. How-
ever, solving a system of nonlinear quadratic algebraic equations is computationally expensive. Hence,
we often choose a small integer ¢ in (S2) of Algorithm 2 to handle type II symmetric tight framelet filter
banks {a; by, by, b3}e. Further investigation is needed in order to reduce the computational complexity
of Algorithm 2. In the following, we show that both methods in [1, 11] are special cases of Algorithm 2.
Take the moment correcting filter © = 8. Let n;, := 0 and bs(z) := za*(—=z). By ez¢ = Sa(z), we have

€32° = Shy(z) = e(—1)°227¢. Therefore, c3 = 2 — ¢ and c3 — ¢ € 2Z. Moreover, by bgo}(z) = —(alll(2))*
and bll(2) = (al’(2))*, we have
Nionolz) = = [P 0 with  p(s2) = 1 — a(2)a"(2) — a(—2)a*(—2)
a,0;b3|0 9 0 p(z) . )
where we used the identity p(z) = 2—al%(2)(al%(2))*—alt(z)(al¥(2))*. Since u is obtained by Fejér-Riesz

lemma such that u(z)u*(z) = p(z), we can trivially take

C [0 u(z C (1 u*(z C [0 u(z ° (1 u*(z
pl(z) =2 ply =@ gl —u@ pl) — vl

20 2 2 2

so that (4.12) is satisfied. When u has real coefficients, we have u*(z) = u(z~'). Now it is straightforward
to see that the three high-pass filters constructed in Algorithm 2 are simply given in (1.8).

Take a moment correcting filter © asin (1.11). Let n, := 0 and bs(z) := za*(—2)0*(z) in Algorithm 2.
By the assumption 6*(—2)0(z) = 60*(2)0(—=z), we see that the symmetry center of € is an integer.
Therefore, it is easy to check that we indeed have ¢3 — ¢ € 27Z. Using the assumption 6*(2)0(—z) =
0*(2)0(—z), by calculation we have

200

Noan(2) = 60(2) 202 (89D G
where 0y(2%) = 6*(2)0(—z) — ©(z?). Since v(2)v*(z) = 6y(z), we can trivially take
by () = a%(2)[v(z) +v¥(2)]/2, bil(2) = all(2)[v(2) + v*(2)]/2,
by (2) = al(2)[v(z) — v*(2)]/2, bY(z) = all(2)[v(z) — v*(2)]/2

so that (4.12) is satisfied. When v has real coefficients, we have v*(z) = v(z71). Now it is straightforward
to see that the three high-pass filters constructed in Algorithm 2 are simply given in (1.12). In other
words, the methods in [1, 11] are special cases of Algorithm 2 with a particular choice of a moment
correcting filter ©.

We now provide some examples using Algorithm 2. All the following presented examples are type II
and cannot be obtained by Algorithm 1, since the condition in (2.2) fails.

Example 6. Let a = af(-—2) = 116, }L, %, %, 116 0,4 be the centered B-spline filter of order 4 and © = 4.

Then ez¢ := Sa(z) = 1. Set ny = 1, ¢ = 0, e3 = —1, and bs(z) = Ao(1 + 2) in Algorithm 2. Then

Ao = % 3 — /7 and qp(2) = ¥ :132—8ﬁ + Giz/;\(f z+ Y i’%\[zz satisfies qp(z )q (2) = det(No,0msn, (2))-
Then

o

z

1(2) = V21— 273+ (14 + 4VT)z +32%) = {23305, -4, BT 1 290)
ba(2) = (1 — 27 )21+ 271+ 2+ VT)z + 2%) = M{~1, -2 = V7,0,2+ V7, 1} 2,
bs(2) = Xo(1 — 27" (14 2) = Ao{—1,0,1}_1 1.
Then Sb;(2) = 1,Sbs(2) = —1,Sb§(z) = —1 (type II) and vim(b;) = 2,Vm(b2) = vin(bs) = 1
If we take 3 = 2,e3 = —1 and by(2) = (1+ 2) (A1 + Aoz + A1 22) with Ay = ¥ and A, = &, we obtain

the first example in Example 1. See Figure 4.1 for graphs of the associated reﬁnable function ¢® and
framelet functions 1®, ®%2 and ®%.
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4 =

(a) ¢° (b) yotr (c) g2 (d) ppte (c) [@l, 511, [bal, B3]

FIGURE 4.1. The tight framelet filter bank {a; by, b, b3} with symmetry is constructed
by Algorithm 2 in Example 6 with a = aZ(- — 2). (a), (b), (c), (d) are the graphs of
the refinable function ¢® and the framelet functions ¢, @2 @b respectively. (e)

is the magnitudes of @ (in solid line), by (in dashed line), b (in dotted line), and b3 (in
dashed-dotted line) on the interval [—m,7].

Example 7. Let a = af(- — 2) = {55, 3, %, 2, 2, 35 }-2,3 be the shifted B-spline filter of order 5 and

© =46. Then ez :=Sa(z) = z. Setny =1,¢c3 =1, €3 = —1, and E)g(Z) = A\ 4+ Xz + A 22 in Algorithm 2.
Then Ay = 215+ 5v3 and A\, = £3/15+5v3. qp(2) = 2(z — 1)(z7" + 18 — 4v/3 + z) satisfies
qp(2)ap(2) = det(Naopgln, (2)). Then

by(z) = Y2 85\6(,2 (32724 3271 4+ 18 + 10v/3 + 32 + 322),

by(z) = YOBWEVE (4 | o1y )220~ 6 — 4y/3 4 2),

by(z) = YIS (0 1)(3271 4+ 2v/3 + 32).

That is,
— VOWEL 30, —15 — 10v/3, 15+ 10v/3, 3},
— VOOSOVIGVE) () 7 44/3,6 + 4v/3,6 + 4v/3, =T — 4v/3, 1},

192

— VISVSL 33 94/3,—3+2v/3,3} 19

Then Sby(z) = —Z,SbQ(Z) = 2,Sb3(z) = —z (type II) and vm(b;) = 1,vm(by) = 2,vm(bs) = 1. See
Figure 4.2 for graphs of the associated refinable function ¢® and framelet functions ¥*%, %% and 3.

(a) ¢° (b) o (c) b2 (d) yobs (e) [al,[b1], b2l |bs]

FIGURE 4.2. The tight framelet filter bank {a;b;,bs, b3} with symmetry is constructed
by Algorithm 2 in Example 7 with a = aZ(- — 2). (a), (b), (c), (d) are the graphs of
the refinable function ¢* and the framelet functions y* T R respectively. (e)
is the magnitudes of @ (in solid line), b; (in dashed line), 6; (in dotted line), and b3 (in
dashed-dotted line) on the interval [—, 7].

Example 8. Let a = aP(- —2) = 16, }1, g, %, 116 0,4) be the centered B-spline filter of order 4 and

©={—3,2,—3}-11) Then ez® :=Sa(z) =1 and SO(z) = 1. Set n, =2, ¢3 =0, €3 = 1, and bs(2) = Ao
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in Algorithm 2. Then Ay = =522 and q,(z) = %222 (2 — 1) satisfies qp(2)q}(2) = 1025 — m33(2 ' +2) =
det(No,o:40n, (2)). Then

bi(2) = Yz — 27N (2 = 1)?(> 7 + 6+ 2) = Y{—1,-4,11,0, -11,4,1}_o g,

by(2) = =323 (2 — 1)%(23272 + 13821 + 174 + 1382 + 2322) = 223{ 23, -92,79,72,79, 92, —23} s,

ba(z) = (1= 271)" = {12, ~ L2

Then Sby(z) = —22,Sby(2) = 2%,Sb3(z) = 272 (type II) and vi(b;) = 3,vm(by) = vm(b3) = 2. Note
that max(len(by),len(by),len(bs)) = 6 = len(a) + len(0O). See Figure 4.3 for graphs of the associated
refinable function ¢® and framelet functions 1®, %2 and 1)@,

220

oo
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4

T8 -1 05 0 05 1 15

(a) ¢° (b) b1 (c) b (d) pobe (e) [al, [Ba], Bal, 55|

FIGURE 4.3. The tight framelet filter bank {a; by, be, b3}e with symmetry is constructed
by Algorithm 2 in Example 8 with a = af(- —2) and © = {—3,2, —3}_1,1- (a), (b),
(c), (d) are the graphs of the refinable function ¢* and the framelet functions 1% wa b2
¥®% | respectively. (e) is the magnitudes of @ (in solid line), by (in dashed line), b (in
dotted line), and by (in dashed-dotted line) on the interval [—m, 7].

We complete the paper by positively answering the second question Q2 in Section 1 for symmetric
tight framelet filter banks derived from the interpolatory filter af.

+,0, 2,2 2.0, —5}_33 and © = §. Then ez° := Sa(z) = 1. Set ny = 2,

320V 32027 32
c3=0,e3=—1,and b3( ) = Xo(1 =271 (1+2)? in Algorithm 2. Then )y = —\l/—g and q,(2) = \G/ff(l—l—z)
satisfies q,(2)q ( ) = det(Nge050n, (2)). Then

bi(z) = —¥2:71(1 —2)2 = ¥2L 1.2 1}y,

ba(2) = LT(1 — 2)2[7(273 + 2) + 14(272 + 1) + 6271 = 21{7,0, 15,16, 15,0, 7} _s.],

bS(Z) = \1/_6§<2_1 - 2)3 = \1/_65{1’07 -3,0,3,0, _1}[73,3]-

Then Sb;(z) = Sby(z) = 1,Sbs(z) = —1 (type II) and vm(by) = vin(by) = 2, vin(bs) = 3. See Figure 4.4
for graphs of the associated refinable function ¢® and framelet functions 1)*%, %2 and ¢*%. Note that
all the high-pass filters by, b, b3 have the interesting interpolation property: by (2k) = by(2k) = b3(2k) =0
for all k € Z\{0}. Consequently, )% (k) = @02 (k) = p*b3(k) = 0 for all k € Z\{0}.

Acknowledgment: The author would like to thank the editor and the anonymous referees for valuable
suggestions that improved the presentation of this paper.

Example 9. Let a = af = {—
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