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Abstract

In this paper, we study bivariate dual
√

2-subdivision schemes using one-dimensional (1D) stencils and repro-
ducing bivariate polynomials of high orders. We show that such dual

√
2-subdivision schemes always possess the

quasi-interpolating property (i.e., they interpolate bivariate polynomials of high orders) and are intrinsically linked
to both 1D primal interpolating subdivision schemes and 1D masks having linear-phase moments. Using only 1D
stencils, such subdivision schemes can be straightforwardly implemented on any quadrilateral meshes and there is no
need to design special subdivision rules near extraordinary or boundary vertices. In this paper, we concentrate on a
particular quasi-interpolating dual

√
2-subdivision scheme using 4-point 1D stencils and interpolating all bivariate

cubic polynomials. This dual
√

2-subdivision scheme has C2 smoothness near any ordinary vertex guaranteed by
the smoothness of its underlying basis/refinable function, while it achieves C1 smoothness near an extraordinary
vertex by our numerical calculation using the known technique of analyzing characteristic maps. As an illustra-
tion, we apply the proposed dual

√
2-subdivision scheme to several arbitrary polyhedra meshes to demonstrate the

generated subdivision surfaces.

Keywords: surface modeling;
√

2-subdivision; quasi-interpolating property; dual scheme; linear-phase moments;
refinable function.

1 Introduction

Subdivision schemes have been one of the most popular tools for the free-form surface modeling in computer graphics.
For an initial control mesh of arbitrary topology, we will get a sequence of finer and finer meshes, and finally a limiting
surface. The faces of such surface mesh are usually regular polygons, such as quadrilaterals, triangles, or hexagons.
Numerous subdivision schemes have been studied and the schemes can be performed by either face split or vertex split.
The schemes using face split are called primal, and the schemes using vertex split are called dual. The Catmull-Clark
subdivision [1] is an example of primal, while the Doo-Sabin subdivision [4] is an example of dual.

Primal schemes can be interpolating or approximating. For primal schemes, vertices of the coarser mesh are
retained, and a new vertex is inserted on each edge and for each face. New faces are created for each old face, one
for each vertex adjacent to it. The vertices from the previous level are called even vertices, while the newly created
vertices are called odd vertices. If each even vertex has the same geometric position for different subdivision levels, the
scheme is interpolating, otherwise, it is approximating. Interpolation is an attractive feature for geometric modeling,
however, the quality of these surfaces is usually lower than the quality of surfaces produced by approximating schemes.

For dual schemes, new vertices are created for each old vertex, one for each face adjacent to it. A new face is
created for each vertex and each edge, while old faces are retained. Consequently, a dual scheme cannot possess the
interpolation property. For a quadrilateral mesh, if a dual scheme is performed, then the valence of each vertex is 4 in
the new mesh.

Various subdivision schemes are named according to the number of vertices from the current level to the next.
For example, a scheme is called a

√
2-subdivision [14, 20, 21, 18, 27] if the number of vertices is roughly doubled, so

as to
√

3-subdivision [17, 19, 23],
√

5-subdivision [16], and
√

7-subdivision [2]. In computer graphics, two consecutive
steps of a

√
2-subdivision scheme are equivalent to one 1-to-4 split subdivision. Accordingly, there are two families of√

2-subdivision schemes, being named the primal and the dual
√

2-subdivision schemes. Notice that
√

2-subdivision
will produce more resolution levels in order to achieve a smoother transition between different resolution levels for
level-of-detail modeling. This feature of

√
2-subdivision schemes is desired for some applications in computer aided

geometric design (CAGD).
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This paper is motivated by the work [15] on constructing quincunx tight wavelet frames having high vanishing
moments. Let M√2 be the following 2× 2 integer matrix

M√2 :=

[
1 1
1 −1

]
. (1.1)

Note that the two eigenvalues ±
√

2 of M√2 are larger than one in modulus. Moreover,

M√2Z
2 = {(k1, k2) ∈ Z2 : k1 + k2 is even},

which is often called the quincunx lattice in the literature. Consequently, the matrix M√2 in (1.1) is called the

quincunx dilation matrix in wavelet analysis and is often called the
√

2-dilation matrix in the literature of CAGD.
Thus, a subdivision scheme using the dilation matrix M√2 is called a

√
2-subdivision scheme and is naturally defined

on quadrilateral meshes.
We observe that the bivariate masks a2D

2n,2n with n ∈ N in [15, Theorem 2.1] have the following striking property:

all the nonzero elements a2D
2n,2n(k1, k2) for (k1, k2) ∈ Z2 only appear on two special straight lines {(k1, k1) : k1 ∈ Z}

and {(k1, 1− k1) : k1 ∈ Z}. For example, the mask a2D
4,4 (denoted by a here) in [15, Theorem 2.1] is given by

a =


− 1

32 0 0 − 1
32

0 9
32

9
32 0

0 9
32

9
32 0

− 1
32 0 0 − 1

32


[−1,2]2

, (1.2)

where the boxed number is at the origin and the notation [−1, 2]2 indicates the domain of a, i.e.,

a(0, 0) = a(1, 0) = a(0, 1) = a(1, 1) =
9

32

and

a(−1,−1) = a(−1, 2) = a(2, 2) = a(2,−1) = − 1

32
.

Hence, its associated two stencils {2a(k1, k2) : k1, k2 ∈ Z with even k1+k2} and {2a(k1, k2) : k1, k2 ∈ Z with odd k1+
k2} are essentially 1D stencils, which are the same due to the symmetry of the mask a and are given in Figure 1.

Figure 1: The even stencil {2a(k1, k2) : k1, k2 ∈ Z with even k1 + k2} and the odd stencil {2a(k1, k2) : k1, k2 ∈
Z with odd k1 + k2} are the same 1D stencils. It is the 4-point 1D stencil that can reproduce cubic polynomials.

Hence, the 2D stencil in Figure 1 is essentially a 1D stencil for the
√

2-subdivision scheme. Using 1D stencils
for bivariate

√
2-subdivision schemes offers certain advantages in CAGD. For example, the

√
2-subdivision scheme

using the 1D stencil in Figure 1 can be straightforwardly implemented for any quadrilateral meshes and there is no
need to design special subdivision rules near extraordinary or boundary vertices. Departing from the viewpoint of
quincunx tight wavelet frames in [15], in this paper we are motivated by the above discussions to study bivariate dual√

2-subdivision schemes using essentially 1D stencils and reproducing bivariate polynomials of high orders from the
perspective of CAGD. More precisely, for any given finitely supported 1D mask a1D = {a1D(k)}k∈Z, we shall study
the following special two-dimensional (2D) mask a2D:

a2D(k1, k2) :=

{
1
2a

1D(k1) if k2 = k1 or k2 = 1− k1,
0, otherwise,

for all k1, k2 ∈ Z. (1.3)

Because the smoothness of the underlying basis/refinable function is known to be closely linked to the polynomial
reproducing property, in Section 2, we shall investigate the connections between the polynomial reproducing property
of the special 2D mask a2D in (1.3) and the property of the 1D mask a1D.
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In this paper, we shall concentrate on the dual
√

2-subdivision scheme given by the mask a in (1.2), which can handle
arbitrary quadrilateral meshes and which enjoys the quasi-interpolating property (i.e., the interpolation property on
bivariate polynomials of certain degrees). The associated subdivision rule is easy to be implemented, and no particular
rules are needed to handle extraordinary vertices or irregular faces. The limit surface possess C2-continuity except for
some extraordinary points. Particularly, the proposed scheme can exactly reconstruct bivariate polynomial surfaces
of high orders. After two consecutive subdivisions, the proposed dual

√
2-subdivision usually yields a mesh with the

same topology structure as that generated by one step of the Doo-Sabin subdivision.
The rest of the paper is organized as follows. Section 2 gives some theoretical analysis of the proposed subdivision

scheme. Section 3 introduces the subdivision rules of the proposed
√

2-subdivision and discusses the smoothness near
extraordinary vertices. Section 4 shows the experimental results of the proposed scheme. Finally, Section 5 gives a
short conclusion.

2 Bivariate dual
√
2-subdivision schemes using 1D stencils

In this section, we shall study
√

2-subdivision schemes using 1D stencils through the special construction in (1.3). To
do so, we need to recall some necessary background and definitions.

2.1 Background and necessary definitions

The study on refinable functions in wavelet theory provides theoretical analysis at ordinary vertices for convergence
and smoothness of subdivision schemes, including existing classical schemes. Moreover, a subdivision scheme can be
considered as the discrete version of a cascade algorithm [13, 8]. Because we have to consider subdivision schemes and
refinable functions in both dimension one and two, let us recall several definitions in a general d dimension. A d × d
integer matrix M is called a dilation matrix if all the eigenvalues of M are greater than one in modulus. Later on, we
are particularly interested in the dilation factor M = 2 for d = 1, and the particular dilation matrix M = M√2 in (1.1)
for d = 2. For the convenience of the reader, we shall explicitly state several notions for the particular dilation matrix
M√2. By l0(Zd) we denote all finitely supported sequences u = {u(k)}k∈Zd : Zd → R. Let a = {a(k)}k∈Zd ∈ l0(Zd)
be a mask of a refinable function. For any sequence v = {v(k)}k∈Zd : Zd → R, the subdivision operator Sa,M is
defined to be (e.g., see [8, (7.1.1)])

[Sa,Mv](n) := |det(M)|
∑
k∈Zd

a(n−Mk)v(k), n ∈ Zd. (2.1)

A primal subdivision scheme puts the subdivided data [Sja,Mv](n) at the position M−jn. Different to a primal

subdivision scheme, a dual subdivision scheme puts the subdivision data [Sja,Mv](n) at the position M−j(n + ca),

where ca ∈ Rd is a compatible nonzero shift. For example, for a dual
√

2-subdivision scheme using the dilation matrix
M√2 in (1.1), the shift is ca = (1/2, 1/2). For a compactly supported function φ ∈ L2(Rd), if it satisfies the refinement
equation

φ = |det(M)|
∑
k∈Zd

a(k)φ(M · −k), (2.2)

then φ is said to be the refinable function associated with the mask a if φ is normalized with
∫
Rd φ(x)dx = 1. In

particular, if
∑
k∈Zd a(k) = 1, then its associated refinable/basis function φ is often determined through its Fourier

transform φ̂(ω) :=
∫
Rd φ(x)e−iω·xdx by

φ̂(ω) =

∞∏
j=1

â((MT )−jω)

for ω ∈ Rd, where â(ω) :=
∑
k∈Zd a(k)e−ik·ω is a 2πZd-periodic d-variate trigonometric polynomial.

It is well known that the smoothness of a refinable function is closely linked to the sum rules of its underlying
mask (i.e., [13, 8, 9]). Define N0 := N ∪ {0}. For µ = (µ1, . . . , µd)

T ∈ Nd0 and x = (x1, . . . , xd)
T ∈ Rd, we define

|µ| := µ1 + · · ·+ µd and xµ := xµ1

1 · · ·x
µd
d . A finitely supported mask a ∈ l0(Zd) has order m sum rules with respect

to M if∑
k∈Zd

a(γ +Mk)(γ +Mk)µ =
∑
k∈Zd

a(Mk)(Mk)µ, ∀ µ ∈ Nd0, |µ| < m, γ ∈ ΓM := [M [0, 1)d] ∩ Zd. (2.3)

We define sr(a,M) := m to be the largest such integer m. By Pm−1 we denote the set of all d-variate polynomials
of total degree less than m. It is well known ([9, Theorem 3.5]) that a mask a has order m sum rules with respect
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to the dilation matrix M if and only if Sa,MPm−1 ⊆ Pm−1, that is, the subdivision operator Sa,M can reproduce all
polynomials of degree less than m. For d = 1 and M = 2, we have Γ2 = {0, 1} and a mask a ∈ l0(Z) has order m sum
rules with respect to the dilation factor 2 if and only if∑

k∈Z
a(1 + 2k)(1 + 2k)j =

∑
k∈Z

a(2k)(2k)j , ∀ j = 0, . . . ,m− 1. (2.4)

A 1D mask a ∈ l0(Z) is called an interpolating mask with respect to the dilation factor 2 if a(2k) = 0 for all k ∈ Z\{0}.
For d = 2 and M = M√2 in (1.1), we have ΓM√

2
= {(0, 0)T , (1, 0)T } and hence, a mask a ∈ l0(Z2) has order m

sum rules with respect to the dilation matrix M√2 if and only if∑
k∈[(1,0)T+M√

2Z2]

a(k)kµ =
∑

k∈[M√
2Z2]

a(k)kµ, ∀ µ ∈ N2
0, |µ| < m. (2.5)

Note that M√2Z2 = {(k1, k2)T ∈ Z2 : k1 + k2 is even} and (1, 0)T + M√2Z2 = {(k1, k2)T ∈ Z2 : k1 + k2 is odd}.
As discussed in [15, 8], to construct tight wavelet frames with high vanishing moments from a mask a ∈ l0(Zd), it is
necessary that the mask a must have high orders of both sum rules and linear-phase moments. We say that a ∈ l0(Zd)
has order n linear-phase moments with phase c ∈ Rd if

â(ω) = e−ic·ω +O(‖ω‖n), ω → 0. (2.6)

The largest such integer n is defined by lpm(a) := n. It is straightforward to observe from the definition of â(ω) that

â(µ)(0) = (−i)|µ|
∑
k∈Zd

a(k)kµ

for all µ ∈ Nd0. Consequently, the condition in (2.6) for order n linear-phase moments with phase c ∈ Rd is just
equivalent to ∑

k∈Zd
a(k)kµ = cµ, for all µ ∈ N0, |µ| < n. (2.7)

In fact, it is well known in the literature of wavelet analysis ([9, Proposition 5.3]) that any tight wavelet frame derived
from a mask a ∈ l0(Zd), such that a is symmetric about a point, can have vanishing moments of order exactly
min(sr(a,M), 12 lpm(a)). This is the main reason that the masks constructed in [15, Theorem 2.1] must have high
orders of both sum rules and linear-phase moments in advance. For more discussions on importance of linear-phase
moments for orthogonal wavelets and tight wavelet frames with vanishing moments, see [9, 15, 10, 5]. However,
the notion of linear-phase moments is much less known in CAGD. In this section, we shall show that the notion of
linear-phase moments indeed plays a key role for constructing 2D masks a2D in (1.3) from 1D masks a1D.

2.2 Main result on bivariate dual
√
2-subdivision using 1D stencils

We are now ready to study the relation between a given 1D mask a1D ∈ l0(Z) and its derived 2D mask a2D defined
in (1.3). For improved readability, the proof of the following result will be given in Appendix.

Theorem 2.1. Let a1D = {a1D(k)}k∈Z ∈ l0(Z) be a finitely supported 1D mask such that
∑
k∈Z a

1D(k) = 1 (or

equivalently, â1D(0) = 1). Define a finitely supported bivariate mask a2D as in (1.3). Then the following statements
are equivalent to each other:

(1) The bivariate mask a2D has order m sum rules with respect to the dilation matrix M√2 in (1.1).

(2) The 1D mask a1D has order m linear-phase moments with phase 1/2, i.e.,
∑
k∈Z a

1D(k)kj = 2−j for all j =
0, . . . ,m− 1.

(3) The 1D interpolating mask aI has order m sum rules with respect to the dilation factor 2, where

aI(k) :=


1
2a

1D(k−12 ), if k is an odd integer,
1
2 , if k = 0,

0, otherwise,

k ∈ Z. (2.8)
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Moreover, any of the above items (1)–(3) implies that the bivariate mask a2D must have order m linear-phase moments
with phase (1/2, 1/2)T , i.e., ∑

k∈Z2

a2D(k)kµ = 2−|µ|, for all µ ∈ N2
0, |µ| < m. (2.9)

Before making some remarks about Theorem 2.1, we present one example here with m = 4 in Theorem 2.1. All
1D masks a1D ∈ l0(Z) with support [−2, 3], which are symmetric about the center 1/2 and have order 4 linear-phase
moments with phase 1/2, must be given by

a =
{

2t,− 1
16 − 6t, 9

16 + 4t , 9
16 + 4t,− 1

16 − 6t, 2t
}
[−2,3]

,

where t ∈ R is a free parameter and the boxed number is at the origin. Hence, the associated interpolating mask aI

in (2.8) is given by

aI =
{
t, 0,− 1

32 − 3t, 0, 9
32 + 2t, 1

2 ,
9
32 + 2t, 0,− 1

32 − 3t, 0, t
}
[−5,5]

.

By (1.3), the bivariate mask a2D in Theorem 2.1 is given by

a2D =



t 0 0 0 0 t
0 − 1

32 − 3t 0 0 − 1
32 − 3t 0

0 0 9
32 + 2t 9

32 + 2t 0 0

0 0 9
32 + 2t 9

32 + 2t 0 0

0 − 1
32 − 3t 0 0 − 1

32 − 3t 0
t 0 0 0 0 t


[−2,3]2

. (2.10)

For t 6= 3
512 , we have lpm(a1D) = lpm(aI) = lpm(a2D) = 4 and sr(a2D,M√2) = sr(aI , 2) = 4. For t = 3

512 , we have

lpm(a1D) = lpm(aI) = lpm(a2D) = 6 and sr(a2D,M√2) = sr(aI , 2) = 6. We shall analyze the smoothness of the

refinable functions associated with the masks a2D in (2.10) at the end of this section. Note that the mask in (1.2) is
a special case of the above mask a2D with t = 0.

2.3 Quasi-interpolating property, linear-phase moments and symmetry

We now make some remarks about Theorem 2.1. First of all, Theorem 2.1 tells us that sr(a2D,M√2) = lpm(a1D).

Hence, the order of linear-phase moments of the 1D mask a1D characterizes the order of sum rules of the 2D mask a2D

in (1.3) and therefore, characterizes the polynomial reproducing property of the
√

2-subdivision scheme using the mask
a2D, according to our previous discussions on the order of sum rules and the polynomial reproducing property of the
subdivision operator Sa2D,M√

2
. Second, we observe from the definition of aI in (2.8) that a1D(k) = 2aI(1−2k) for all

k ∈ Z, that is, a1D is simply the flipped odd stencil of the interpolatory mask aI in item (3) of Theorem 2.1. Therefore,
we can construct a special 2D mask a2D in (1.3) from any 1D interpolatory mask aI and sr(a2D,M√2) = sr(aI , 2).

If one takes aI to be any interpolating masks in Deslauriers and Dubuc [3], it turns out that the 2D mask a2D in
Theorem 2.1 agrees with the constructed mask in [15, Theorem 2.1] for constructing tight wavelet frames with high
vanishing moments. Hence, in this sense, Theorem 2.1 extends [15, Theorem 2.1] from the perspective of subdivision
schemes. Moreover, Theorem 2.1 shows that lpm(a1D) = lpm(a2D), that is, the special mask a2D in (1.3) having order
m sum rules with respect to M√2 automatically forces the mask a2D to have order m linear-phase moments, which

leads to the quasi-interpolating property. On one hand, for any mask a ∈ l0(Zd), by [9, Theorem 3.5], sr(a,M) = m if
and only if Sa,Mp ∈ Pm−1 for any polynomial p ∈ Pm−1. However, how the reproduced polynomial Sa,Mp is linked to
the original polynomial p is dominated by the moments ∂µâ(0) := (−i)µ

∑
k∈Zd a(k)kµ for |µ| < m. More precisely,

[9, (3.13) and Lemma 3.1] tells us that

Sa,Mp =
∑
µ∈Nd0

(−i)µ

µ!
∂µ[p(M−1·)]∂µâ(0), p ∈ Pm−1.

In particular, it is known in [9, Proposition 5.1] that a mask a ∈ l0(Zd) has order m sum rules with respect to M and
a has order m linear-phase moments with phase c ∈ Rd if and only if

[Sa,Mp](k) = p(M−1(k − c)), for all p ∈ Pm−1. (2.11)
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We call (2.11) the quasi-interpolating property. A mask a ∈ l0(Zd) is said to be interpolating with respect to M if
a(Mk) = 0 for all k ∈ Zd\{0}. It is straightforward to deduce that if an interpolating mask a has order m sum
rules with respect to M , then the quasi-interpolating property in (2.11) must hold true with c = 0. Therefore, the
quasi-interpolating property in (2.11) gives us a weaker notion of the interpolation property: the subdivision scheme
interpolates on every polynomial in Pm−1 though itself is not interpolating (in particular, any dual schemes cannot
possess the interpolating property).

For the mask a in (1.2) and more generally, the mask in (2.10), according to Theorem 2.1, sr(a,M√2) = lpm(a) = 4.

Therefore, the dual
√

2-subdivision scheme using the quasi-interpolating mask a in (1.2) or (2.10) interpolates all
bivariate polynomials of degree up to 3. More precisely,

[Sa,Mv](i, j) = v(M−1(i− 1/2, j − 1/2))

for all (i, j) ∈ Z2 and any polynomial sequence v of degree at most 3.
Generally, a surface or curve is modeled by a mesh through connecting neighboring points. However, a mesh

often has no natural coordinate system at Zd. To overcome this problem, the discrete points in Zd are connected. For
dimension one, the points in Z can be naturally connected by joining k with k+1 through a line segment for every k ∈ Z.
For dimension two, there are two basic standard meshes: the quadrilateral mesh Z2

Q by connecting neighboring points

through horizontal or vertical line segments, and the triangular mesh Z2 by connecting neighboring points horizontally,
vertically, or along with 45◦ degrees through line segments. Then any given initial control mesh in dimension three
can be locally interpreted as v = {v(k) = (v1(k), v2(k), v3(k))}k∈Z2

Q
. That is, the connectivity of Z2

Q induces the

connectivity of the mesh v, whose vertices are indexed by elements in Z2
Q. Now a subdivision scheme produces

a limiting surface through the recursively refined meshes {([Sja,Mv1](k), [Sja,Mv2](k), [Sja,Mv3](k))}k∈Z2
Q

as j → ∞.

More precisely, the limiting subdivision surface can be regarded as a parametric surface (T1(u, v), T2(u, v), T3(u, v))
for (u, v)T ∈ R2, where for ` = 1, 2, 3,

T`(u, v) := lim
j→∞

[Sja,Mv`](kj) under the condition lim
j→∞

M−j(kj − c) = (u, v)T ∈ R2.

Note that a primal subdivision scheme uses the shift c = (0, 0)T . If a bivariate mask a2D has order m sum rules
with respect to the dilation matrix M√2, then by Theorem 2.1, the bivariate mask a2D must have order m linear-

phase moments with phase c := (1/2, 1/2)T and consequently, by the above discussion, we conclude that the limiting
subdivision surface (T1(u, v), T2(u, v), T3(u, v)) for (u, v)T ∈ R2 must satisfy T1 = v1, T2 = v2, T3 = v3 if the initial
control mesh {(v1(k), v2(k), v3(k))}k∈Z2

Q
is given by choosing v1, v2, v3 ∈ Pm−1. That is, the subdivision scheme using

the mask a2D in Theorem 2.1 interpolates and preserves the initial control mesh (v1, v2, v3) for all v1, v2, v3 ∈ Pm−1.
Finally, we make a remark on the symmetry of the 2D mask a2D in Theorem 2.1. Let G be a finite set of d × d

integer matrices, such that |det(E)| = 1 for every E ∈ G and G forms a symmetry group on Zd under the matrix
multiplication. A subdivision triplet (a;M ;G) is introduced to apply a subdivision scheme in computer graphics for
generating smooth curves and surfaces ([8, 6]). In a subdivision triple (a;M ;G), the dilation matrix M must be
compatible with G (i.e., MEM−1 ∈ G for all E ∈ G) and the mask a must be G-symmetric with center c ∈ Rd:

a(E(k − c) + c) = a(k), for all k ∈ Zd. (2.12)

For a finitely supported mask a which is G-symmetric with center c ∈ Rd, let φ be its refinable function satisfying
(2.2) with the dilation matrix M . Then φ must be G-symmetric with the center cφ ∈ Rd (e.g., see [9, Theorem 5.4] or
[12, Theorem 2.2]):

φ(E(· − cφ) + cφ) = φ, for all E ∈ G with cφ := (M − Id)−1c.

In addition, for any d × d integer matrix N := EMF with E,F ∈ G, the matrix N must be a dilation matrix and
we must have sr(a, N) = sr(a,M) and φN = φ(· + (M − Id)−1c − (N − Id)−1c), where φN satisfies the refinement
equation in (2.2) but with M being replaced by N . See [9, Theorem 5.4] and [12, Theorem 2.2] for more details about
the relations between the symmetry of a mask a and the symmetry property of its refinable/basis function φ.

Masks a used in subdivision schemes must have symmetry, largely because there are no natural coordinates for
meshes in CAGD. One of the symmetry groups associated with the quadrilateral mesh Z2

Q is

D4 :=

{
±
[
1 0
0 1

]
, ±

[
1 0
0 −1

]
, ±

[
0 1
1 0

]
, ±

[
0 1
−1 0

]}
. (2.13)

It is easy to check that the matrix M√2 in (1.1) is compatible with the symmetry group D4 in (2.13). It is now easy

to observe that the 2D mask a2D in (2.10) is D4-symmetric with center (1/2, 1/2). Hence, (a2D;M√2;D4) forms a
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subdivision triple. It is obvious that general masks a2D in Theorem 2.1 are D4-symmetric with center (1/2, 1/2) if and
only if the 1D mask a1D is symmetric about the point 1/2 (or equivalently, the interpolating mask aI in Theorem 2.1
is symmetric about the origin). As we discussed before, due to the D4-symmetry of a bivariate mask a2D, if the
quincunx dilation matrix M√2 in (1.1) is replaced be any other dilation matrix N := EM√2F for E,F ∈ D4, then

their corresponding
√

2-subdivision schemes are essentially the same and their associated basis functions φ have the
identical properties. Moreover, the refinable function φ is D4-symmetric with the center cφ := (1/2,−1/2)T satisfying
φ(E(x− cφ) + cφ) = φ(x) for all x ∈ R2 and E ∈ D4.

2.4 Smoothness near ordinary vertices

(a) sm2(a2D,M√2) (b) sm2(a2D,M√2) > 0 (c) sm2(a2D,M√2) > 3

Figure 2: (a) is for the smoothness quantity sm2(a2D,M√2) in (2.10) in Theorem 2.1 with t ∈ [−0.5, 0.5]. (b)

is for the smoothness quantity sm2(a2D,M√2) > 0 with t ∈ [−0.0938, 0.0723]. (c) is for the smoothness quantity

sm2(a2D,M√2) > 3 with t ∈ [0, 0.0137] and their refinable functions φ ∈ C2(R2). The red ∗ indicates the smoothness

quantity sm2(a2D,M√2) ≈ 3.03654 at t = 0; The green ∗ indicates the smoothness quantity sm2(a2D,M√2) ≈ 3.54575

at t = 3
512 ; The blue ∗ indicates the smoothness quantity sm2(a2D,M√2) ≈ 3.73908 at t = 1

128 .

To estimate the smoothness of the refinable function with respect to the dilation matrix defined in (1.1) and the
masks defined in (1.2) or (2.10), we briefly recall the computation of the smoothness exponent defined in [13] (also see
[8, Chapter 7]). More details on the smoothness exponent can be found in [13, 8, 15, 7] and many references therein.
For u ∈ l0(Zd) and µ = (µ1, . . . , µd) ∈ Nd0, we define

∇ku := u− u(· − k), k ∈ Zd and ∇µ = ∇µ1
e1 · · · ∇

µd
ed
,

where ej ∈ Rd has only one nonzero entry which is one at the position jth coordinate. The Dirac sequence is
denoted by δ such that δ(0) = 1 and δ(k) = 0 for all k ∈ Zd\{0}. For a finitely supported mask a ∈ l0(Zd) with
â(0) :=

∑
k∈Zd a(k) = 1, the smoothness exponent smp(a,M) is defined (i.e., see [13, 7] and [8, (7.2.2)]) to be

smp(a,M) := d
p − logρ(M) ρ(a,M)p, 1 ≤ p ≤ ∞,

where M is a d× d dilation matrix, ρ(M) is the spectral radius of M , and

ρ(a,M)p := sup
{

lim
n→∞

‖∇µSna,Mδ‖
1/n

lp(Zd) : µ ∈ Nd0, |µ| = sr(a,M)
}
.

It is well known that sm∞(a,M) ≥ sm2(a,M)− d/2. Taking the advantage of the symmetry property of masks and
applying [7, Algorithm 2.1] to the mask a in (2.10) and the quincunx dilation matrix M√2 in (1.1), we calculate

the quantity sm2(a2D,M√2) which is presented in Figure 2 for the parameter t ∈ [− 1
2 ,

1
2 ]. From Figure 2, we notice

that the largest possible sm2(a2D,M√2) ≈ 3.73908 achieved at t = 1
128 and hence sm∞(a2D,M√2) ≥ 2.73908. For

t = 3
512 , we have sr(a2D,M√2) = 6 = lpm(a2D) and sm2(a2D,M√2) ≈ 3.54575; Hence sm∞(a2D,M√2) ≥ 2.54575.

For t = 0 (i.e., the mask a in (1.2)), we have sm2(a2D,M√2) ≈ 3.03654 and hence sm∞(a,M√2) ≥ 2.03654. It follows

from [8, Theorem 7.2.4] that φ ∈ C2(R2). We conclude that the subdivision scheme (2.1) using the mask in (1.2)
generates C2-continuous limiting surfaces except at those extraordinary vertices. Hence, away from extraordinary
vertices, the proposed subdivision scheme guarantees the continuity of the curvature of the generated surface. See
Figures 3, 4, and 5 for the graphs of the refinable/basis functions and their partial derivatives associated with the
masks a2D in (2.10) with the parameters t = 0, 3

512 and 1
128 . Our numerical illustration in Figure 5 seems to suggest

that the refinable function φ associated the mask a2D with t = 1
128 probably belongs to C3(R2). However, beyond

the estimate sm∞(a2D,M√2) ≥ sm2(a2D,M√2) − 1 ≈ 2.73908, it is often a difficult task to accurately estimate the

quantity sm∞(a2D,M√2) for the Hölder smoothness exponent. We leave this as a future research topic.
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(a) φ (b) φx (c) φxx (d) φxy

(e) supp(φ) (f) supp(φx) (g) supp(φxx) (h) supp(φxy)

Figure 3: (a)–(d) in the first row are respectively the refinable function φ (with the mask a2D in (2.10) for t = 0), its

first order partial derivative ∂φ
∂x , and its second order partial derivatives ∂2φ

∂x2 and ∂2φ
∂x∂y . (e)–(h) in the second row are

their corresponding contours. Note that sr(a2D,M√2) = lpm(a2D) = 4, sm2(a2D,M√2) ≈ 3.03654 for mask a2D with

t = 0, and φ ∈ C2(R2) is D4-symmetric satisfying φ(E(· − cφ) + cφ) = φ for all E ∈ D4 with cφ := (1/2,−1/2)T .

(a) φ (b) φx (c) φxx (d) φxy

(e) supp(φ) (f) supp(φx) (g) supp(φxx) (h) supp(φxy)

Figure 4: (a)–(d) in the first row are respectively the refinable function φ (with the mask a2D in (2.10) for t = 3
512 ), its

first order partial derivative ∂φ
∂x , and its second order partial derivatives ∂2φ

∂x2 and ∂2φ
∂y∂x . (e)–(h) in the second row are

their corresponding contours. Note that sr(a2D,M√2) = lpm(a2D) = 6, sm2(a2D,M√2) ≈ 3.54575 for mask a2D with

t = 3
512 , and φ ∈ C2(R2) is D4-symmetric satisfying φ(E(· − cφ) + cφ) = φ for all E ∈ D4 with cφ := (1/2,−1/2)T .
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(a) φ (b) φx (c) φxx (d) φxy

(e) supp(φ) (f) supp(φx) (g) supp(φxx) (h) supp(φxy)

(i) φxxx (j) φxxy (k) supp(φxxx) (l) supp(φxxy)

Figure 5: (a)–(d) in the first row are respectively the refinable function φ (with the mask a2D in (2.10) for t = 1
128 ),

its first order partial derivative ∂φ
∂x , and its second order partial derivatives ∂2φ

∂x2 and ∂2φ
∂y∂x . (e)–(h) in the second row

are their corresponding contours. (i)–(l) in the third row are respectively its third order partial derivatives ∂3φ
∂x3 , ∂3φ

∂y∂x2

and their contours. Note that sr(a2D,M√2) = lpm(a2D) = 4, sm2(a2D,M√2) ≈ 3.73908 for mask a2D with t = 1
128 ,

and φ ∈ C2(R2) is D4-symmetric satisfying φ(E(· − cφ) + cφ) = φ for all E ∈ D4 with cφ := (1/2,−1/2)T .

Remark 2.1. It is known that, if the initial mesh consists of vertices specified by a sequence v, and with constant
valence 4 at all vertices, then the limiting surface of the subdivision scheme (2.1) is a linear combination of integer
shifts of the refinable function φ with coefficients v. By doing so, the limiting surface is C2 smooth except at a finite
number of isolated extraordinary vertices.

3 Subdivision scheme

In this section, we give a demonstration of the implementation of the proposed subdivision scheme using the bivariate
mask a2D in (2.10) for the case t = 0, which is usually much easier to be implemented. Besides, we discuss the
smoothness at extraordinary vertices. Notably, other cases when t 6= 0 can be analyzed similarly.

3.1 Split and connection rules

It is more convenient to use stencils for subdivision schemes in computer graphics than a filter/mask a. Due to the
fact that |det(M√2)| = 2, the number of vertices of a mesh of quadrilaterals, to be called quads for short, is roughly

doubled after each level subdivision of a
√

2-subdivision scheme.
The targets of

√
2-subdivision schemes are polyhedra or solid objects with the surface constructed in the quadri-

lateral mesh. For triangular meshes, other schemes such as the
√

3-subdivision schemes may be used. However, any
surface in the triangular or mixed mesh can be easily converted into a surface in the quadrilateral-only mesh by using
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the common trick: inserting the centroid or average of all the vertices of each polygonal face as a new vertex and
connecting the centroid to the middle point of each side of the polygonal face. From this point of view,

√
2-subdivision

schemes can also be applied to subdivide triangular surfaces. Moreover, such a trick is not necessary for our method
since the new vertices are only inserted on each edge, details are presented in this section.

(a) (b)

Figure 6: Illustration of the proposed dual
√

2-subdivision. (a) the black circles are vertices of the previous mesh pki,j ,

blue squares are subdivided vertices pk+1
2i,j and red diamonds are pk+1

2i+1,j , illustrating the subdivision process in (3.1)

with α = − 1
16 and β = 9

16 . (b) extraordinary vertices should be considered only for an initial mesh. Note that the

valances of all vertices are 4 after applying the dual
√

2-subdivision once.

To facilitate our presentation, we first illustrate our subdivision scheme for regular quadrilateral meshes, that is,
the valence of each vertex is 4. Notably, the subdivision stencils for the dual subdivision triplet (a;M√2;D4) are

shown in Figure 1. The proposed
√

2-subdivision completes a subdivision step by inserting a new vertex of each edge
into the mesh. Those new vertices are generated from the old ones. Let pki,j , i = 0, . . . ,m, j = 0, . . . , n, be vertices of

a level k mesh. Then a vertex pk+1
i,j of the level k + 1 mesh can be computed by

pk+1
2i,j = αpki,j−1 + βpki,j + βpki,j+1 + αpki,j+2,

pk+1
2i+1,j = αpki−1,j + βpki,j + βpki+1,j + αpki+2,j ,

(3.1)

where α, β ∈ R and 2(α+ β) = 1. In this paper, we focus on the case α = − 1
16 and β = 9

16 as shown in Figure 1. The
reason is that such a scheme will possess high polynomial preserving/interpolating property. It is natural that the
mid-edge subdivision [25] is a special case of our method if we set α = 0 and β = 1

2 . Note that the stencil in Figure 1
behaves essentially like a 1D stencil, which allows our proposed subdivision scheme to handle arbitrary polyhedra
meshes easily. We shall discuss this issue in details later.

Notably, the new vertex pk+1
2i,j is on the edge connecting vertices pki,j and pki,j+1, and the new vertex pk+1

2i+1,j is on

the edge connecting vertices pki,j and pki+1,j . New edges are inserted by connecting two new vertices “diagonally”, thus
we get new faces for each old face and each old vertex. Old vertices, edges, and faces are all removed from the new
mesh, as shown in Figure 1. In other words, the scheme makes the mesh size grow at a factor of 2.

Such a subdivision scheme is a vertex split scheme, thus it can be performed on arbitrary polygonal meshes.
However, for a general polyhedra mesh, there may be some vertices whose valence is not 4, which is usually called an
extraordinary vertex. In this case, the above subdivision rules may cause some ambiguities. However, this would only
happen for an initial mesh. Here we give a method to handle these vertices. Suppose the valence of a vertex p0i,j+1 is

6, as shown in Figure 6(b), thus we may suppose p0i,j+2 = p0i,j+1 when we try to compute p12i,j . Because the proposed
method is a dual subdivision scheme, valences of all vertices become 4 for the new mesh after one round of subdivision,
as shown in Figure 7. In other words, the particular rule is only necessary for the initial control mesh.

Notably, two steps of our subdivision scheme will lead to a mesh with the same topological connectivity as that
of one step of the Doo-Sabin subdivision. In Figure 8 we show the stencils of two consecutive steps of the proposed
subdivision scheme, as well as two consecutive steps of the mid-edge scheme and one step of Doo-Sabin scheme.
Moreover, for the boundaries, we use a simple way to replicate boundary edges, i.e., we create a quadrilateral with
two coinciding pairs of vertices.
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(a) (b)

Figure 7: A vertex of valence 6 of an initial mesh (a) becomes a hexagon (b) after one step of subdivision, and valences
of all vertices are 4. A special subdivision rule for extraordinary vertices is required only for an initial mesh.

(a) Proposed
√

2-subdivision (b) Mid-edge subdivision (c) Doo-Sabin subdivision

Figure 8: Comparison of our
√

2-subdivision with mid-edge and Doo-Sabin subdivision. A new vertex is marked as
a diamond, and old vertices for computing it are marked as circles. (a) The coefficients of old vertices for computing
a new vertex after two proposed

√
2-subdivisions. (b) The coefficients of old vertices for computing a new vertex

after two mid-edge subdivisions. (c) The coefficients of old vertices for computing a new vertex after one Doo-Sabin
subdivision.

3.2 Subdivision matrix

An m neighborhood refers to m layers of vertices around a central n-gon, where the n-gon is counted as the first layer.
Such an m neighborhood is said to be invariant if the level k+1 control points can be computed knowing only the level
k control points in this neighborhood. It is known that there is a minimal invariant neighborhood for any subdivision
scheme with finitely supported masks.

For the proposed
√

2 subdivision scheme, we can recognize that the smallest invariant neighbor is comprised
of n blocks with each block containing 13 vertices. In order to perform smoothness analysis near extraordinary
vertices [25, 26, 28], we have to consider an invariant stencil generated by adding a layer of vertices to the smallest
invariant stencil, i.e., there are 22 vertices. Fig 9(a) shows a sector of such a stencil in which a numbering fashion is
given, Fig 9(b) gives a finer block with two adjacent coarser blocks for one step of the proposed subdivision process. On
the other hand, the proposed subdivision scheme is a dual method, so we have to consider double steps of subdivision

1 2 5 10 17

4 3 6 11 18

9 8 7 12 19

16 15 14 13

22 21 20

(a) (b)

Figure 9: Parts of an invariant stencil for smoothness analysis. (a) One block of the invariant stencil for continuity
analysis and the label of vertices. (b) Two adjacent coarser blocks (bold) are connected by thin lines. One finer block
is shown by dashed lines.
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in order to in line with symmetric subdivision schemes [25].
For an invariant stencil, a subdivision matrix maps the vector of level k control points to the vector of level k + 1

control points. Such a subdivision matrix plays an important role in the convergence and smoothness analysis of
subdivision schemes [25, 26, 28]. In other words, the subdivision matrix A is a 22n× 22n matrix at a vertex of valence
n, which can be obtained by applying the subdivision operator (2.1) to the invariant stencil.

It is known that the eigenstructure of A can be investigated by considering the diagonal form of the matrix after
a discrete Fourier transformation [25, 26]. Let

Âk[:, 1 : 5] =



2α2z2k + 2(αβ + β2)zk + 2β2 2αβzk + αβ 0 2αβzk + αβ α2zk

αβz2k + (2αβ + β2)zk + 2β2 α2z2k + αβzk + αβ + β2 αβ 2α2zk + αβ αβ
2αβzk + 2β2 αβzk + αβ + β2 2α2zk + 2α2 αβzk + αβ + β2 αβ

αβz2k + (2αβ + β2)zk + 2β2 2α2zk + αβ αβ α2z2k + αβzk + αβ + β2 0
2α2zk + αβzk + αβ + β2 2β2 αβzk + αβ (αβ + β2)zk + αβ αβ

2αβzk + αβ + β2 α2zk + 2β2 αβ + β2 αβzk + 2α2 αβ
2α2 αβzk + αβ + β2 2β2 αβzk + αβ + β2 αβ

2αβzk + αβ + β2 αβzk + 2α2 αβ + β2 α2zk + 2β2 0
(2α2 + αβ)zk + αβ + β2 (αβ + β2)zk + αβ αβzk + αβ 2β2 α2 + αβzk

α2z2k + αβzk + αβ 2β2 αβzk + αβ (αβ + β2)zk αβ + β2

αβ α2zk + 2β2 αβ + β2 αβzk + αβ αβ + β2

α2zk + αβ αβ + β2 2β2 αβzk + αβ 2α2

0 αβ 2β2 αβ α2zk + αβ
α2zk + αβ αβzk + αβ 2β2 αβ + β2 0

αβ αβzk + αβ αβ + β2 α2zk + 2β2 αβzk

α2z2k + αβzk + αβ (αβ + β2)zk αβzk + αβ 2β2 2α2zk

αβ αβ + β2 αβ 2α2zk 2β2

αβ αβ + β2 α2zk + 2α2 αβzk 2β2

0 2α2 αβ + β2 αβ αβ + β2

0 αβ αβ + β2 2α2 αβzk

αβ αβzk α2zk + 2α2 αβ + β2 αβzk

αβ 2α2zk αβ αβ + β2 (αβ + β2)zk



,

Âk[:, 6 : 22] =



0 0 0 α2zk 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 α2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 αβ 0 0 0 0 0 0 0 0 0 0 0 0 0
α2 0 0 αβ 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 α2 + αβzk 0 0 0 0 0 0 α2zk 0 0 0 0 0 0
αβ 0 αβ 0 0 α2 0 0 0 0 0 0 0 0 0 0 0
αβ 0 αβ αβ α2 0 0 0 0 0 α2 0 0 0 0 0 0
αβ 0 αβ αβ 0 0 0 0 0 α2 0 0 0 0 0 0 0
0 0 0 αβ α2zk 0 0 0 0 0 0 0 0 0 0 0 0
αβ α2 0 2α2zk αβ 0 0 0 0 0 0 0 0 0 0 0 0
2α2 0 α2zk + αβ αβzk αβ 0 0 0 0 0 0 0 0 0 0 0 0

αβ + β2 αβ αβ 0 0 αβ 0 0 α2 0 0 0 0 0 0 0 0
αβ + β2 2α2 αβ + β2 α2zk + αβ 0 αβ 0 0 0 αβ 0 0 0 0 0 0 0
αβ αβ αβ + β2 2α2 0 0 α2 0 0 αβ 0 0 0 0 0 0 0

α2zk + αβ 0 2α2 αβ + β2 0 0 0 0 0 0 αβ 0 0 0 0 0 0
0 α2 αβ αβ + β2 0 0 0 0 0 0 αβ 0 0 0 0 0 0
αβ 0 α2 + αβzk (αβ + β2)zk αβ 0 0 0 0 0 αβzk 0 0 0 0 0 α2zk

αβ + β2 αβ 0 αβzk αβ αβ 0 0 0 0 0 0 α2 0 0 0 0
2β2 αβ αβ αβzk αβ αβ 0 0 0 α2 0 α2 0 0 0 0 0
αβ αβ 2β2 αβ + β2 0 α2 0 0 0 αβ αβ 0 0 0 0 0 α2

0 αβ αβ + β2 2β2 0 0 0 0 0 αβ αβ 0 0 0 0 α2 0
α2 + αβzk 0 αβ 2β2 αβzk 0 0 0 0 0 αβ α2zk 0 0 0 0 0



,

where k = 0, 1, . . . , n− 1, z = ei
2π
n . Then, A is similar to diag{Â0, Â1, . . . , Ân−1}. Hence all eigenvalues of A can be

obtained by calculating the eigenvalues of Âk.

3.3 Smoothness analysis at extraordinary vertices

Following the proposed subdivision rules, a vertex of valence n will produce an n-gon on the limit surface, which is
usually called an extraordinary vertex if n 6= 4. According to the theory of continuity analysis near extraordinary
vertices [26], C1 continuity proof can be achieved by showing that the four leading eigenvalues of A meet the condition
below, i.e.,

λ0 = 1 > λ1 = λ2 > |λ3|,

and that the characteristic map defined by the pair of eigenvectors of the two subdominant eigenvalues λ1 and λ2 is
regular and injective.
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Figure 10: (a) is the magnitude curves of subdominant and subsubdominant eigenvalues |λ1| and |λ3|, (b) is the

magnitude curve of |λ1|2
|λ3| in terms of valence n from 3 to 30.

(a) n = 3 (b) n = 5 (c) n = 6 (d) n = 7 (e) n = 8 (f) n = 9

Figure 11: Top row gives control meshes of characteristic maps for the proposed subdivision scheme at extraordinary
vertices with valences n = 3, 5, 6, 7, 8, 9, the control mesh after two subdivision steps are shown with thin lines. Bottom
row gives the control mesh for rings of the characteristic maps (the limit patches are shown in gray).

In most cases, it is difficult to perform theoretical analysis for the regularity and injectivity for all subdivision
schemes [25, 26]. Thus, numerical evidence has to be provided to verify the regularity and injectivity of the charac-
teristic map.

For numerical analysis, the surface generated by subdividing an initial mesh topologically identical to the invariant
neighborhood is defined as the characteristic map. If the subdominant eigenvalues λ1 = λ2 of A are real, then
coordinates of control points come from the two corresponding eigenvectors, respectively. The regularity of the map
can be examined by its behavior on a ring around an extraordinary vertex [26, 28, 24].

In our implementation, we give numerical results for the smooth analysis at extraordinary vertices. Because the
proposed subdivision scheme is a

√
2-subdivision, we perform the spectrum analysis for double steps [25]. Thus we

have two real subdominant eigenvalues. Figure 10 demonstrates the curves of |λ1|, |λ3|, and |λ1|2
|λ3| in terms of valence

n ranging from 3 to 30. Figure 11 gives some examples for the control mesh of characteristic maps at extraordinary
vertices with valences n = 3, 5, 6, 7, 8, 9. We further compute the Fourier indices of the subdominant eigenvalues which
are located at 1 and n − 1 [24]. It is sufficient that the proposed subdivision scheme satisfies the C1 continuity near
extraordinary vertices.

4 Experimental results

In this section, we provide several numerical examples to demonstrate the performance of our method. We show that
resultant surfaces have almost the same shape produced by the dual

√
2-subdivision using masks a2D in (2.10) with
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three different choices of the parameter t ∈ {0, 3
512 ,

1
128}. This is not surprising because Figures 3, 4 and 5 show that

all their associated basis/refinable functions look very similar to each other.

(a) s1(u, v),−10 ≤ u, v ≤ 10

(b) s1(u, v),−1 ≤ u, v ≤ 1

(c) Uniform (d) Non-uniform (e) Random

(f) Uniform, level-18 (g) Non-uniform, level-18 (h) Random, level-18

(i) Uniform sub-patch (j) Non-uniform sub-patch (k) Random sub-patch

Figure 12: A parametric surface (a) and a smaller one (b) are given by s1(u, v) = (1
3u

3−u−uv2,−u2v−v+ 1
3v

3, u2−v2)
with the parameter domains (u, v) ∈ [−10, 10]2 and (u, v) ∈ [−1, 1]2, respectively. (c)-(e) are the input initial meshes
with 11×11 vertices by uniformly, non-uniformly, and randomly sampling (a) within (u, v) ∈ [−10, 10]2. (f)- (h) are the
level-18 subdivided surfaces in red (using t = 0) together with the original parametric surface s1(u, v), (u, v) ∈ [−10, 10]2

in blue. Removing boundary affected vertices, (i)-(k) show sub-patches of the smaller subdivided surfaces in red
together with their corresponding smaller parametric surface s1(u, v), (u, v) ∈ [−1, 1]2 in blue. (i) shows that our
quasi-interpolating dual subdivision scheme agrees well with the cubic polynomial parametric surface if the initial
control mesh is obtained through uniformly sampling and if the vertices affected by boundaries are removed.

Before applying our quasi-interpolating dual
√

2-subdivision schemes to some general polyhedra initial meshes, we
perform two experiments to demonstrate the quasi-interpolation property of our proposed subdivision schemes. In
the first experiment, we generate three types of initial meshes by sampling a cubic polynomial parametric surface
uniformly, non-uniformly or randomly; then we apply our quasi-interpolating dual

√
2-subdivision scheme with the

particular choice t = 0 to all such initial meshes. Figure 12 shows that the generated subdivision surface agrees well with
the given parametric surface if the input initial mesh is obtained through the uniform sampling of a cubic polynomial
parametric surface, while non-uniform and random samplings yield visible deviations. In the second experiment, we
generate an initial mesh by uniformly sampling a parametric surface of polynomials of degree 5; then we apply our
quasi-interpolating dual

√
2-subdivision schemes with the three choices t = 0, 3

512 and 1
128 . Figure 13 shows that

the generated subdivision surface with the choice t = 3
512 agrees well with the given parametric surface (because the

subdivision scheme with t = 3
512 can interpolate all polynomials of degree up to 5), while the subdivision surfaces with

the choices t = 0, 1
128 yield large deviations (because they only interpolates polynomials of degree up to 3).

• Example 1. We consider in Figure 12 a cubic polynomial parametric surface below:

s1(u, v) = (T1(u, v), T2(u, v), T3(u, v)) =

(
u3

3
− u− uv2,−u2v − v +

v3

3
, u2 − v2

)
.

Figure 12 plots the parametric surface s1(u, v) with the parameter domain (u, v) ∈ [−10, 10]2. The three
different input meshes in Figures 12(c)-12(e) are obtained by uniformly, non-uniformly, and randomly sampling
this parametric surface within the parameter domain (u, v) ∈ [−10, 10]2. In particular, the non-uniform sampled
parameter values for the vertices of Figure 12(d) are

u[0 : 10] = {−10,−8.1,−5.9,−4.2,−2.1, 0, 1.9, 4.1, 6.2, 8.1, 10},
v[0 : 10] = {−10,−7.9,−6.1,−3.9,−2.1, 0, 2.1, 3.9, 5.9, 7.9, 10}.
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(a) s2(u, v),−10 ≤ u, v ≤ 10

(b) s2(u, v),−1 ≤ u, v ≤ 1

(c) Input mesh (d) t = 0 (e) t = 3
512

(f) t = 1
128

(g) t = 0 (h) t = 3
512

(i) t = 1
128

Figure 13: A parametric surface (a) and a smaller one (b) are given by s2(u, v) = (1
5u

5 − 2u3v2 + uv4 − u, u4v −
2u2v3 + v + 1

5v
5, 23u

3 − 2uv2) with the parameter domains (u, v) ∈ [−10, 10]2 and (u, v) ∈ [−1, 1]2, respectively. (c)
is the input initial mesh with 11 × 11 vertices by uniformly sampling the parametric surface in (a). (d)-(f) give the
level-18 subdivided results for the three choices t = 0, 3

512 ,
1

128 , respectively, where we plot the subdivided surfaces in
red together with the parametric surface in blue. Removing boundary affected vertices, (g)-(i) show the comparison
of the sub-patches (i.e., portions of the smaller subdivision surfaces in (d)-(f)) with their corresponding portions in
(a). Figure 13(h) shows that the generated subdivision surface with the choice t = 3

512 agrees well with the parametric
surface, while the subdivision surfaces in 13(g) and 13(i) with the choices t = 0, 1

128 yield large deviations, because
any choice t 6= 3

512 only interpolates polynomials of degree up to 3.

To preserve the boundary for the given input meshes, we add 5 layers of their boundary vertices and perform 18
steps of the proposed subdivision with the choice t = 0. Figures 12(f)-12(h) show the subdivision results, where
the subdivided surface is plotted in the red color together with the parametric surface in the blue color. Because
we plot two surfaces together using different colors (red and blue) for the purpose of comparison, it may not be
obviously easy to visualize both two surfaces well and to tell apart their differences. Nevertheless, from these
figures in Figures 12(f)-12(h) we may observe some deviations close to boundaries due to lack of information
beyond the boundaries.

To better demonstrate the quasi-interpolating property of the proposed subdivision scheme, we obtain small sub-
patches of the subdivided surfaces by removing all vertices affected by boundary vertices through the subdivision
process. Figures 12(i)-12(k) draw the resulting sub-patch of smaller subdivision surface in red together with its
corresponding smaller parametric surface s1(u, v) in blue within the smaller parameter domain (u, v) ∈ [−1, 1]2.
We see clearly from Figure 12(i) that our proposed quasi-interpolating dual subdivision scheme with the choice
t = 0 recovers well the parametric surface if the initial control mesh is obtained by uniformly sampling a cubic
polynomial parametric surface and if the vertices affected by boundaries are removed.

• Example 2. Now we consider the second experiment in order to explain the differences of our proposed subdivision
schemes using the 2D mask (2.10) with three different choices t = 0, 3

512 and 1
128 . According to our previous

discussion, the scheme can reproduce polynomials of degree up to 5 only with the choice t = 3
512 . We consider a

quintic polynomial parametric surface below:

s2(u, v) =

(
1

5
u5 − 2u3v2 + uv4 − u, u4v − 2u2v3 + v +

1

5
v5,

2

3
u3 − 2uv2

)
.

Figure 13(a) and its sub-patch in Figure 13(b) plot the quintic polynomial parametric surfaces within the pa-
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rameter domains [−10, 10]2 and [−1, 1]2, respectively. The 11 × 11 vertices of the input mesh are uniformly
sampled from the parametric surface within [−10, 10]2, as shown in Figure 13(c). The proposed subdivision
schemes are performed on the input mesh with three different choices t = 0, 3

512 and 1
128 . Figures 13(d)-13(f)

give the level-18 subdivided surfaces, where the subdivided surfaces are shown in red together with the para-
metric surface s2(u, v), (u, v) ∈ [−10, 10]2 in blue. Although the different choices of t yield visually the same
surfaces in Figures 13(d)-13(f), they are indeed different in Figures 13(g)-13(i) if we remove vertices affected by
boundaries through the subdivision process. In particular, Figure 13(h) shows that the subdivision surface with
the choice t = 3

512 agrees well with the quintic polynomial parametric surface because this choice t = 3
512 can

interpolate all polynomials of degree up to 5, while the subdivision surfaces in Figures 13(g) and 13(i) with the
choices t = 0, 1

128 yield large deviations, because they only interpolate polynomials of degree up to 3.

• Example 3. Figure 14(a) gives an example of a 4-cube seat-shape polyhedron with 20 vertices and 18 quads. We
perform the proposed subdivision scheme for 10 steps with different choices t = 0, 3

512 ,
1

128 . Figures 14(b)-14(d)
show that the resultant subdivided surfaces are visually almost the same, where each subdivided surface contains
18432 vertices and 36860 quads.

• Example 4. Figure 15(a) gives a chess king with 314 vertices and 312 quads. After 10 steps of the proposed
dual

√
2-subdivision, we get three meshes (see Figures 15(b)-15(d)) with 319488 vertices and 638972 quads with

different choices t = 0, 3
512 , and 1

128 , respectively. We can see that the subdivided surfaces have almost the same
shape.

(a) Input mesh (b) t = 0 (c) t = 3
512

(d) t = 1
128

Figure 14: Results of applying the proposed
√

2-subdivision scheme to 4-cube seat-shape polyhedron with t =
0, 3

512 ,
1

128 , respectively.

(a) Input mesh (b) t = 0 (c) t = 3
512

(d) t = 1
128

Figure 15: Results of applying the proposed
√

2-subdivision scheme to a chess king mesh with t = 0, 3
512 ,

1
128 , respec-

tively.

5 Conclusion

Inspired by the linear-phase moments and polynomial reproduction of 1D masks, we introduce a novel dual
√

2-
subdivision scheme using essentially the 1D 4-point stencil in this paper. There are several advantages for such a
subdivision scheme. First, it is quite easy to be implemented since 1D stencils are used to perform the subdivision.
Besides, no additional rules are required for extraordinary and boundary vertices. Second, theoretical analysis shows
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the proposed scheme can reproduce bivariate polynomials of high orders, and we further verify the results by performing
several numerical examples. We believe the quasi-interpolating property could be interesting in the setting of CAGD.
Finally, we claim that the smoothness at ordinary vertices and extraordinary vertices are C2 and C1, respectively.
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Appendix: Proof of Theorem 2.1

Proof of Theorem 2.1. By the definition of the 2D mask a2D in (1.3), we observe that for j1, j2 ∈ N0,∑
k1+k2 is even,k1,k2∈Z

a2D(k1, k2)kj11 k
j2
2 =

1

2

∑
k∈Z

a1D(k)kj1+j2 ,

∑
k1+k2 is odd,k1,k2∈Z

a2D(k1, k2)kj11 k
j2
2 =

1

2

∑
k∈Z

a1D(k)kj1(1− k)j2 .

(5.1)

By (5.1) and (2.5), the 2D mask a2D has order m sum rules with respect to the dilation matrix M√2 if and only if∑
k∈Z

a1D(k)kj1+j2 =
∑
k∈Z

a1D(k)kj1(1− k)j2 , ∀ j1, j2 ∈ N0, j1 + j2 < m. (5.2)

• (1)⇒(2). Suppose that the mask a2D has order m sum rules with respect to the dilation matrix M√2. Then
(5.2) holds true. For 1 ≤ j < m, the above identities in (5.2) with j1 = j − 1 and j2 = 1 imply

Sj :=
∑
k∈Z

a1D(k)kj =
∑
k∈Z

a1D(k)kj−1(1− k) = Sj−1 − Sj ,

from which we must have Sj = 2−1Sj−1 for all j = 1, . . . ,m− 1. By our assumption, we have

S0 =
∑
k∈Z

a1D(k) = 1.

Consequently, we must have Sj = 2−j for all j = 0, . . . ,m− 1. This proves (1)⇒(2).

• (2)⇒(1). By item (2), we have Sj :=
∑
k∈Z a

1D(k)kj = 2−j for all j = 0, . . . ,m− 1. Then

∑
k∈Z

a1D(k)kj1(1− k)j2 =

j2∑
`=0

∑
k∈Z

j2!

`!(j2 − `)!
(−1)`k`a1D(k)kj1+` =

j2∑
`=0

j2!

`!(j2 − `)!
(−1)`Sj1+`

=

j2∑
`=0

j2!

`!(j2 − `)!
(−1)`2−j1−` = 2−j1

j2∑
`=0

j2!

`!(j2 − `)!
(−2−1)`

= 2−j1(1− 2−1)j1 = 2−j1−j2 = Sj1+j2 =
∑
k∈Z

a1D(k)kj1+j2
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for all j1, j2 ∈ N with j1 + j2 < m. This proves (5.2). Consequently, the 2D mask a2D must have order m sum
rules with respect to the dilation matrix M√2. This proves (2)⇒(1).

Obviously, the mask aI defined in (2.8) is interpolating because aI(2k) = 0 for all k ∈ Z\{0}. Moreover, by (2.8), we
have∑

k∈Z
aI(1 + 2k)(1 + 2k)j =

1

2

∑
k∈Z

a1D(−k)(1 + 2k)j =
1

2

∑
k∈Z

a1D(k)(1− 2k)j and
∑
k∈Z

aI(2k)(2k)j =
1

2
δ(j),

where δ(0) := 1 and δ(k) = 0 for all k ∈ Z\{0}. Note that

∑
k∈Z

a1D(k)(1− 2k)j =

j∑
`=0

∑
k∈Z

j!

`!(j − `)!
a1D(k)(−2k)` =

j∑
`=0

j!

`!(j − `)!
(−2)`S`.

Consequently, by (2.4), the interpolating mask aI has order m sum rules with respect to the dilation factor 2 if and
only if

j∑
`=0

j!

`!(j − `)!
(−2)`S` = δ(j), for all j = 0, . . . ,m− 1. (5.3)

• (2)⇒(3). If item (2) holds true, then Sj = 2−j for all j = 0, . . . ,m− 1 and we deduce that for j = 1, . . . ,m− 1,

j∑
`=0

j!

`!(j − `)!
(−2)`S` =

1

2

j∑
`=0

j!

`!(j − `)!
(−1)` =

1

2
(1− 1)j = 0

and for j = 0, we obviously have
∑j
`=0

j!
`!(j−`)! (−2)`S` = S0 = 1. Therefore, the interpolating mask aI has order

m sum rules with respect to the dilation factor 2. This proves (2)⇒(3).

• (3)⇒(2). Since item (3) holds true, (5.3) must hold. Using j = 0 in (5.3), we can easily obtain S0 = 1. If
S` = 2−` for ` = 0, . . . , j − 1 with 1 ≤ j < m− 1, then we deduce from (5.3) that

(−2)jSj = δ(j)−
j−1∑
`=0

j!

`!(j − `)!
(−2)`S` = −

j−1∑
`=0

j!

`!(j − `)!
(−1)` = (−1)j ,

from which we must have Sj = 2−j . This proves item (2) and we proves (3)⇒(2).

Finally, we prove (2.9). For µ = (j1, j2)T ∈ N2
0 with |µ| = j1 + j2 < m, using (5.1) and item (2), we have∑

k∈Z2

a(k)kµ =
∑

k1+k2 is even,k1,k2∈Z

a2D(k1, k2)kj11 k
j2
2 +

∑
k1+k2 is odd,k1,k2∈Z

a2D(k1, k2)kj11 k
j2
2

=
1

2

∑
k∈Z

a1D(k)kj1+j2 +
1

2

∑
k∈Z

a1D(k)kj1(1− k)j2 =
1

2
Sj1+j2 +

1

2

j2∑
`=0

j2!

`!(j2 − `)!
(−1)`Sj1+`

= 2−1−j1−j2 + 2−1−j1
j2∑
`=0

j2!

`!(j2 − `)!
(−1)`2−` = 2−1−j1−j2 + 2−1−j1(1− 2−1)j2 = 2−j1−j2 = 2−|µ|.

This proves (2.9).
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