Novel Closed-loop Stiction Detection and Quantification M#&hod via
System ldentification

Kwan Ho Leé, Zhengyun Reh and Biao Huaniy

Abstract— In this paper, a novel detection and quantification ~ stiction model. A process model can be estimated by using
method of control valve stiction is discussed. A time delaysti-  system identification algorithms with MV and OP data. In
mation method is presented for processes under an oscillalj ;g haner, the problem of interest is to find the best unknown
state. A suitable model structure of valve stiction is chose o o
prior to conducting valve stiction detection and quantificaion. S“,C“‘?” qugl parameters satlsfylpg. a mean squared error
Given the stiction model structure, a bounded search space Criterion within a space of valve stiction model parameters
of a stiction model is defined and a constrained optimization The proposed strategy not only detects but also quantifies
problem is performed. The validity of the proposed method is valve stiction.
illustrated through industrial examples. The proposed method has many advantages from the
practical implementation point of view. First, it has no
requirement to filter original data and can be easily imple-

In a basic control-loop with a valve, SP, OP, MV, and PVimented. It can be implemented as an automatic detection tool
stand for the set point, the controller output, the manifgala because it uses only routine operating data. Also it can deal
variable, and the controlled variable, respectively. Nbtt  with open-loop data if OP moves in downward and upward
SP, OP, and PV are usually recorded on the distributatirections several times. The effectiveness of the prapose
control system in industry, so are readily available, whiletiction detection and quantification method is demonetrat
the manipulated variables such as flow rate are not alwapy industrial examples.
available.

Valve stiction often causes oscillation in control loopkeT Il. TIME DELAY ESTIMATION
presence of oscillation increases the variability of thecpss The time delay estimator (TDE) is to determine the delay
variables; thus decreases the quality of product and isegea D between two sensor signalsy = s, + 6, and y, =
energy consumption. It is known that the undesirable behay;_, + ¢, wheres; is a stationary bandlimited random
ior of control valves is the biggest single contributor t@po process andy, ¢ are additive Gaussian noise signals. The
control loop performance and the destabilization of precesiesire for high resolution delay estimation is particylarl
operations. evident in equalization and source localization in songmai

Several methods for detection and quantification of valvprocessing. There were many publications on the time delay
stiction have been presented in the literature [1]-[8]. Howestimation for this kind of systems. The most common and
ever, many of them have some practical limitations one wayopular method for TDE is a generalized cross-correlation
or other, which have to be considered for real applicationgchnique.

in industry. Quantification of control valve stiction islkt
challenging issue. A. A Proposed Method

In this paper, a novel stiction detection and quantification This method requires a process under an oscillating state.
strategy based on process model identification is propos®&His is the typical case in a loop that has oscillations such
using routine closed-loop operating data. Prior to doingp an extent that the root cause needs to be determined..
stiction detection and quantification, it is necessary wosle  The input and output data collected from the process with
a suitable model structure to describe control valve sticti oscillation can be used to obtain an estimate of a process
Several data-driven valve stiction model structures agdl-av time delay.
able in the literature [3], [7], [9]. In this paper, the one
proposed by He et al. [7] will be adopted. Given a valvd3. Main Procedure
stiction model structure, a search space of stiction model 1) Set; = 1 for the first-order plus time delay process and

parameters is determined by using controller output data, = 2 for the second-order plus time delay process.
which is also called OP. Note that, if a valve stiction model 2) Collectu(t) andy(t) from the process.

is exactly known, then a time series of manipulated variable 3) Get differenced/; (t) = u(t + 1) —u(t) and Yy (t) =
(MV) can be calculated from given OP data and the valve y(t+1)—y(t) fori=1,andUs(t) = Uy (t+1)=Ui(t
andY3(t) =Y1(t+1) — Yq(¢) for i = 2.

Calculate cross-correlation functiofi(7) given by

. INTRODUCTION

*Corresponding author Biao Huang. Tel. +1-780-492-901&. #32780- 4)
492-2881. E-mail: biao.huang@ualberta.ca
tDepartment of Chemical and Materials Engineering, Unitiersf
Alberta, Edmonton, Alberta T6G 2G6, Canada Ri(T) = Z Ui(t)yé(t + 7')- (1)
fDepartment of Automation, Donghua University, Shanghiin@h T



, can change the degree of stiction according to the direction
~ o s of the valve movement.

D. Choudhury et al. Valve Stiction Model
S / Choudhury et al. proposed a valve stiction model in [9],
. where the control signal is translated to the percentage of
i valve travel with the help of a linear look-up table. The mlode
consists of two parameters, namely, deadband plus stickban
S, which is specified in the input axis, and slip jufipwhich
s is specified in the output axis.

Valve Position (VP)
N

! > E. He et al. Valve Stiction Model
Controller Output (OP)

In the valve stiction model of Kano et al., no matter how
small Au(t) is, as long as it is greater than zero, the valve
will always move and stop, which is not logically correct.
The Choudhury et al. stiction model has the same problem.
5) Find the largest absolute valuB;(r,) among all Anotherissue associated with the Kano et al. and Choudhury

R;(7), wherer is a positive integer. et al. models is that the saturation constraints are added to
6) Thenr is the process time delay. the controller output instead of an actuator (a valve). Base
In the time delay estimation, the first- or second-order plu@" the typical input-output behavior of a sticky valve, He
time delay system is considered. e.t al. proposed a new valve stlct|pn m(_)del [71, WhICh is

simpler and more straightforward in logic. If desired, the
I1l. STICTION MODEL OF CONTROL VALVE saturation constraint can be easily added.t¢t) after the

A. General Conception model calculation.

Fig. 1 shows the schematic operation diagram of a stickyy. EXISTING STICTION DETECTION METHODS
valve, wherefp denotes the kinetic friction band,the stick A. Open-Loop Methods

band, andfs the static friction band. Some of definitions of

Fig. 1. Schematic operation diagram of a sticky valve.

stiction can be found in [9], [10]. Stiction can easily be detected using invasive methods such
_ B as the valve travel or bump test. However, to apply such
B. Physical Model of Valve Sticion invasive methods across an entire plant site is neitheibfeas

Several physical friction models have been presented for cost-effective because of their manpower, cost and time
[11]-[13]. One of the commonly used friction models is théntensive nature. Several methods have been developed to
Karnopp model. It includes static and moving friction. Thedetect valve stiction in the last decade [14]-[16]. However
disadvantage when applying the friction model to a generi@ost methods require either detailed process knowledge
valve is the need to specify a large set of parameters. Irrordes user interaction, which is not desirable for automated
to overcome this disadvantage many researchers develogednitoring systems.
different kinds of empirical data-driven stiction modéelhe
data-driven models have parameters that can be direcFI;y Closed-Loop Methods
related to plant data and they produce the same behaviorHorch [1] presented an automatic detection method based
as the physical model. The data-driven models need only & the cross-correlation function (CCF) between the con-
input signal and the specification of deadband plus sticttbarroller output and the process output, which is applicable t
and slip jump. It overcomes the main disadvantages éfonintegrating processes. In a continuing work, Horch [10]

physical modeling of a control valve. proposed another method to address the valve stictionén int
o grating processes by considering the probability distidu
C. Kano et al. Valve Stiction Model of the second derivative of the controlled variable.

A valve stiction model was proposed by Kano et al. [3]. Singhal and Salsbury [2] presented a valve stiction de-
The input and output of this valve stiction model are théection method based on comparison of areas before and
controller output and the valve position, respectivelyeThafter the peak of an oscillating control error signal, i.e.,
controller output is transformed to the range correspandirthe difference between the set-point and the process Variab
to the valve position in advance. The first two branchekeing controlled.
in the model flow chart check if the upper and the lower Kano et al. [3] presented two valve stiction detection
bounds of the controller output are satisfied. This valvenethods: one requires knowing the valve position (VP) and
stiction model has several advantages: (i) It can cope withe other is based on the plot of OP and PV with the shape
the stochastic input as well as the deterministic inpuj. (iiof parallelogram.
us(t), which is the controller output at the moment the valve He and Pottmann [4] presented a valve stiction detection
state changes from moving to resting, can be updated t@chnique in which the OP is fitted piece-wisely to both
appropriate timings by introducing the valve state. (iti) | triangular and sinusoidal wave using the least square rdetho



A better fit to the triangle indicates valve stiction, while athe distinction between the shapes of the two probability
better fit to the sinusoid indicates non-stiction. Also ir th distributions [19].

work, a stiction index (SI) was first defined as the ratio of In Singhal and Salsbury [2], there are several practical
the mean squared error (MSE) of sinusoidal fitting and thémitations as mentioned by authors themselves: (i) The
sum of the MSE'’s of both sinusoidal and triangular fittingsmethod can not be applied to integrating processes. (ii) It
An SI close to zero would indicate non-stiction while an Skannot distinguish other nonlinearities from stictiofi) The
close to one would indicate stiction. error signal must be sampled many times per oscillation

In the meantime, Rossi and Scali [5] presented indepeperiod in order to get accurate peak location and areas
dently a very similar technique to [4]. In [5], the PV signalcalculation. (iv) The noise adds variation to the peak and
instead of OP is fitted using three different signal modelszero-crossing locations which could result in problematic
relay, triangular, and sinusoidal wave. diagnosis.

He et al. [7], [17] extended the previous work in [4] to In Kano et al. [3], the first method can be used only when
cover both self-regulating and integrating processestase flow rate or valve position is measured. The second method
the following observations: In the case of control loop bsci is not always reliable even when flow rate or valve position
lation caused by poor controller tuning or external ostiilgp  is measured as shown in one of their flow control examples.
disturbance, OP and PV typically follow sinusoidal waves fo In He et al. [17], there are two issues: i) When the
both self-regulating and integrating processes. In the cfis controller has bad tuning, the fitting method is not effeztiv
stiction, for self-regulating processes, OP will move like ii) For processes with large time delay, the opposite result
triangular wave, while for integrating processes suchaal le could be obtained. Controllers with poorly tuned paranseter
control, PV will move like a triangular wave. The basic ideaand processes with large time delay often exist in industry,
of this detection method is to fit two different functions,which limits the use of the method.

i.e., triangle and sinusoid, to the measured oscillatiggai The method of Rossi and Scali [5] is very similar to that
where OP is for self-regulating processes and PV is fgsroposed by He et al. [17]. It is only applicable to self-
integrating processes. A better fit to the triangle indisateregulating processes.

valve stiction, while a better fit to the sinusoid indicatesin In Choudhury et al. [6], [18], the ellipse-fitting method
stiction. The SI metric is used as a criterion to evaluate thieas a limitation in the fact that the shape and size of the
existence of valve stiction. PV vs. OP plot is sensitive to several factors: The changes

Choudhury et al. [6] presented a method to detect amaf proportional or integral control gain, the process gé#ie,
guantify stiction using routine operating data. The nogdin ~ process time constant, the time delay of the process, phase
ity of the loop is tested using bicoherence. If the nonliitgar lags, etc. Hence, ‘apparent stiction’ that the ellipsénfitt
is detected, stiction is estimated as the maximum widthef thmethod estimates will differ from real stiction.
cycles of the PV vs. OP plot in the direction of OP. The PV In Jelali [8], a good initialization needs for the stiction
vs. OP plot is fitted to an ellipse and the amount of stictioestimation. The initial point of stiction parameters isaibed
is estimated to be the maximum length of the ellipse iy using the ellipse-fitting method and the optimum solution
OP direction, which is called the ellipse-fitting methodeTh is found near the given initial guess. As noted above, the
stiction estimated using the method of Choudhury et al. igllipse-fitting method may not be accurate and hence the
stated as ‘apparent stiction’ and it provides indicationh&f optimum solution found near the initial guess may not be
severity of the consequences of the stiction in an osciljato the solution that describes the behavior of the controlezalv
loop. A simple grid search method for estimating stictiorthe best. Also the strategy for time delay estimation of
parameters was presented in [18]. the process is not well addressed. The genetic algorithms

Recently, Jelali [8] independently presented a globaidopted requires a large number of functional evaluatiens p
optimization-based method for quantification of valve -sticiteration and storing a considerable amount of information
tion in control loops. It calculates an initial approximatein the computer memory.
guess of S and J, which are the dead-band plus stick
band and the slip jump, respectively, using the ellipsefjitt V. NOVEL CLOSED-LOOP STICTION DETECTION
method [6], and searches for the optimum point near the AND QUANTIFICATION

initial guess using genetic algorithms or pattern search. 5 pgasic Principle and Important Steps

The basic idea is to convert the stiction detection and
guantification problem into a low-order Hammerstein type

In Horch [1], one issue is the differentiation of noisysystem identification problem, followed by a global opti-
signals. A suitable filter and cut-off frequency have to benization search for the stiction parameters. This ideagesu
carefully chosen in order to filter noise. This can hardlyn finding a non-invasive method to determine if stiction
be done automatically since different processes haverdiffeexists in a control valve. It approximates process dynamics
ent system characteristics and different noise levelsa#t hby a low-order transfer function model while estimating
been observed that even after filtering, the calculation gfarameters for the static stiction model to account for the
derivatives amplified moderate amount of noise and blurreabnlinearity induced by the stiction. We consider that most

C. Discussion of the Existing Methods



industrial processes can be approximated as the first or®
second order plus time delay process. 1

It is required to choose a suitable stiction model structure? |\
before proceed. The basic steps to follow in the proposed |[; (>

method are: O ——
1) Given a stiction model structure and OP data, effec- 0 S fs
tively bound a search space of unknown stiction model @ ®
parameters.

2) Choose stiction model parameters from the boundé"gp- Zj) ?tl?)agis of Stictio? parameters. (a)E(Tg; Sfpicté(_;)svﬁiptkiram?tem
.. . - i/ D> . e space o stiction paramet Bp, fs). (l leek stiction.
stiction model space, and a series of manipulated VafE\i) Dead-bend behavior. (iii) Stick and slip behavior.)(Bead-bend plus

able (MV) data is calculated from OP data accordingitick and slip behavior.
to the given valve stiction model.

3) With MV’ and PV data, the process model is identified
such that a mean squared error is minimized. Varyinthat describes the characteristics of the control valvebieh
stiction model parameters, different process models athe best. The model with a minimum error implies the most
obtained. possible and realistic stiction model parameters found.

4) Find the stiction model that describes the character-

istics of the control valve behavior the best. Find~: S€arch Space of Stiction Model Parameters
the minimum model error and get the corresponding The control valve is a physical link with movement in

process model and stiction model parameters. control loop and the characteristic of its behavior is diésct
The key to success of this procedure lies in the efficiery its physical specification. A space of stiction paranmseter
optimal global search of stiction parameters. for search can be defined and be specified by using the OP
o _ data and the relationship of stiction parameters. Note that
B. Stiction Detection Procedure fo + fs < So, where fp > 0, f¢ > 0, and the upper

1) Data Selection:Tests of the proposed method on sim-bound .Sy is approximately given by the span of OP. Due
ulated data showed that it is necessary to select appreprié the relationfs = fp + J, it holds that2fp + J < Sp.
low and high limits on the sampling time. Our experiencd-ig. 2 (a) illustrates the constrained search space ofastict
also shows that it is necessary to select the sampling time twodel parameter§fp, J). Fig. 2 (b) shows an equivalent
make sure there are more than 50 data points in an oscillatingarch space of stiction parameters in terms £, fs).
period. Note that the upper boun§, plays an role in constraining
2) Data PreprocessingFiltering is not necessary in the the stiction parameter domain. A tight upper bousidcan
proposed method, but detrending the input and output ddbe obtained by estimating the lengthon the op-pv plot
is important. Detrending is the process of removing the zem@gardless whether stiction is present or not. As an example
order trend (the mean) from the original data and needs ntite ellipse-fitting method in [6] can be used.
only for input and output data (OP and PV), but also for the i L ,
generated MV data. D. Constrained Optimization Techniques for Parameter
3) Stiction Model Structure:We found that the valve Search
stiction model structure of He et al. [7] is not only simple There are two principal goals leading to the design of
in logic but also closer to real stiction behavior. If weglobal optimization methods: (i) Global reliability to ane
search expected parameters of the mentioned stiction modleht the domain is searched sufficiently to provide a rediabl
according to the data, the model with optimal parameters hastimate of a global solution and (i) local refinement to
been shown very close to the real stiction characteristics. produce a fine solution. Most global optimization algorigim
4) Search Space of Stiction Model A search region have been developed to achieve these two goals by combin-
of stiction model parameters is defined for constrainethg a global strategy and a local strategy [20].
optimization. The region of stiction model parameters is 1) Multistart Adaptive Random SearctiRandom search
determined using OP data and the given stiction modelgorithms allow in principle to find a global minimum
structure. and the solution does not depend on the starting point.
5) Process Model IdentificationUnder the assumption Adaptive random search is known as an efficient random
that the process is a first- or second-order plus time delagarch algorithm with systematic reduction of the size ef th
process, the ordinary least square method is suitable feearch region. Note that combining the basic adaptive ran-
identification. The time delay of the process may eithedom search method with a multistart approach improves the
be searched in the optimization or effectively identifiecability to reach the global minimum. The basic procedure of
by applying the time delay estimation method proposed imultistart adaptive random search is as follows: (i) Geteera
Section II. a set of random starting points and iterate an adaptive rando
6) Quantification of Valve StictionA cost-effective con- search algorithm with rough accuracy on each starting point
strained optimization technique is adopted for comprekiens which obtains a set of approximate local minimum points.
stiction model parameter search. It finds the stiction modéii) Apply an efficient local search algorithm for the optimu
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1500 data points. Using the proposed method, the
average computation time is less than half a minute.

iv) Closed-loop method using routine operating data. This
method not only detects stiction but also quantifies it.

iv) It can be proved theoretically that the comprehensive
search as we did in the proposed algorithm is necessary
for consistency of the estimation. Due to space limit,
the proof is not included here.

ontour shows clear Tocals
or looks similar2.

Yes
Determined by 2 order

Fig. 3. A simple flow chart for model structure and solutiotedeination. VI. INDUSTRIAL CASE STUDIES

Not determined

To demonstrate the validity of the proposed method,
search in the vicinity of the minimum points found in theindustrial control loop data shown in Fig. 4 are considered.

step (i). The step (i) attempts to find promising startim{)’g' 4 shows time series plots of OP and PV an_d Fig. 5 shows
points that are more likely to reach the location of a globa P vs. PV plots of the control loop data. It is noted that
optimum. The step (i) is a fine global optimization within Loop 1-2 are open-qup data and o.thers are closed-loop data.
a reduced search domain near the approximate local pointCOMPuter system with Intel Pentium(R) CPU 3.2GHz and
givenin (i). It is suitable to the problems of a large numbfer oZGB_ Of RAM was used for computation and the search space
local optima and finds a global solution best for complicate' Stiction model parameters was bounded by the span of OP.
models. In realty, it is observed that many local minima argr.om the case StUd'?S’ itis seen that Loop 1, 4-5 show mo_stly
present in the space of stiction model parameters. VarioﬁECk a.nd slip bghawor, Loop 2, 6 show dead-band F_"“,S stick
advanced modifications of the above basic algorithm can k?@d slip behavior, and Loop 3 shows mostly no stiction. It
found in the literature [21], [22]. Note that in the cases whe'S N0ted that, for Loop 3-4, 6, the results obtained by the
the model structure of the process is knowrpriori, the ~Proposed method are in agreement with the resuit of [6],
multistart adaptive search technique can be applied to tH@"e for oscillating Loop 2, 5, the proposed results are not

constrained optimization problem to seek a stiction moddf agreement with those of [6]. St_'Ct_'on quantification desu
within the bounded space of stiction model parameters. of [8] would also appear to be similar to the results of [6].

2) Contour Map: If the process model structure is un-BOth [6] and [8] rely on the OP vs PV plot method to some

known, the flow chart in Fig. 3 can help determine a suitabIEXtent’ and thus show similar results. The proposed method,

model structure and solution of stiction model parametérs. owever, does not depend on an initial guess given by the

is noted that the process model structure can affect thé |0C%P vs. PV plot but is based on a constrained optimization

solution structure in the contour map. The basic procedureivgtgiigg?rgﬁ?th;ﬁes;_ztfitr']ct'g]r; t'::gg?sl' d’?‘f?;zﬁr}?sgg'on
as follows: (i) Uniform grid search with% to 2% resolution. e P g me o
- - stiction and thus may not be reliable as an initial guess.
(ii) Followed by the local search. In the step (ii), the lowves' . ) T .
N o . . I{ is also noted that the constrained optimization algonith
value of the objective function is taken as a starting poin . : CL .
for the fine local search adopted in the proposed method is efficient in computation.
' It takes 19.8 sec. and 33 sec. on average forifherder
and 2" order plus time delay model, respectively.
E. Advantages P y P y
i) Simple method and easy implementation. No need to VIl. CONCLUDING REMARKS
filter the original data. The identification process is to A novel closed-loop stiction detection and quantification
find the most suitable parameters of the valve modaitrategy using routine closed-loop operating data is pitese
and it is effective even under large noises in the outpudtased on a model identification approach. A time delay
of the process. estimation method for processes under an oscillating state

i) Simple process model structure. A dozen of exampless presented. A bounded search region of stiction model
including first order plus time delay process, secongarameters to be determined is defined and a constrained
order plus time delay process and integrating plusptimization problem for valve stiction model estimatian i
time delay process, are simulated. In these cases,dtidressed. A cost-effective constrained optimizatiorh-tec
no stiction exists, the stiction parameters of the valveique is adopted to find the best valve stiction models
can be identified as zeros undoubtedly by the proposedpresenting a more realistic valve behavior in the odiitia
method. If stiction exists, the stiction parameters of théoop. Industrial case studies demonstrate the effectaené
valve can be identified with satisfactory performancethe proposed method.

iii) Low computational cost. We directly program a least
square algorithm with an analytical structure, and do
not use the Matlab system identification toolbox to [1] A.Horch, “A simple method for detection of stiction in ol valves,”
identify the process. This has shorten the run time__ Control Engineering Practicevol. 7, pp. 12211231, 1999.

. .. . [2] A. Singhal and T. I. Salsbury, “A simple method for detegt valve
greatly. Using the original Matlab function, the run

J 5 : - stiction in oscillating control loops,"Journal of Process Contrpl
time is more than 5 minutes for a control loop with vol. 15, no. 4, pp. 371-382, 2005.
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