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Abstract— In this paper, a novel detection and quantification
method of control valve stiction is discussed. A time delay esti-
mation method is presented for processes under an oscillating
state. A suitable model structure of valve stiction is chosen
prior to conducting valve stiction detection and quantification.
Given the stiction model structure, a bounded search space
of a stiction model is defined and a constrained optimization
problem is performed. The validity of the proposed method is
illustrated through industrial examples.

I. INTRODUCTION

In a basic control-loop with a valve, SP, OP, MV, and PV
stand for the set point, the controller output, the manipulated
variable, and the controlled variable, respectively. Notethat
SP, OP, and PV are usually recorded on the distributed
control system in industry, so are readily available, while
the manipulated variables such as flow rate are not always
available.

Valve stiction often causes oscillation in control loops. The
presence of oscillation increases the variability of the process
variables; thus decreases the quality of product and increases
energy consumption. It is known that the undesirable behav-
ior of control valves is the biggest single contributor to poor
control loop performance and the destabilization of process
operations.

Several methods for detection and quantification of valve
stiction have been presented in the literature [1]–[8]. How-
ever, many of them have some practical limitations one way
or other, which have to be considered for real applications
in industry. Quantification of control valve stiction is still a
challenging issue.

In this paper, a novel stiction detection and quantification
strategy based on process model identification is proposed
using routine closed-loop operating data. Prior to doing
stiction detection and quantification, it is necessary to choose
a suitable model structure to describe control valve stiction.
Several data-driven valve stiction model structures are avail-
able in the literature [3], [7], [9]. In this paper, the one
proposed by He et al. [7] will be adopted. Given a valve
stiction model structure, a search space of stiction model
parameters is determined by using controller output data,
which is also called OP. Note that, if a valve stiction model
is exactly known, then a time series of manipulated variable
(MV) can be calculated from given OP data and the valve
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stiction model. A process model can be estimated by using
system identification algorithms with MV and OP data. In
this paper, the problem of interest is to find the best unknown
stiction model parameters satisfying a mean squared error
criterion within a space of valve stiction model parameters.
The proposed strategy not only detects but also quantifies
valve stiction.

The proposed method has many advantages from the
practical implementation point of view. First, it has no
requirement to filter original data and can be easily imple-
mented. It can be implemented as an automatic detection tool
because it uses only routine operating data. Also it can deal
with open-loop data if OP moves in downward and upward
directions several times. The effectiveness of the proposed
stiction detection and quantification method is demonstrated
by industrial examples.

II. TIME DELAY ESTIMATION

The time delay estimator (TDE) is to determine the delay
D between two sensor signals:xk = sk + θk and yk =
sk−D + φk, where sk is a stationary bandlimited random
process andθk, φk are additive Gaussian noise signals. The
desire for high resolution delay estimation is particularly
evident in equalization and source localization in sonar signal
processing. There were many publications on the time delay
estimation for this kind of systems. The most common and
popular method for TDE is a generalized cross-correlation
technique.

A. A Proposed Method

This method requires a process under an oscillating state.
This is the typical case in a loop that has oscillations such
to an extent that the root cause needs to be determined..
The input and output data collected from the process with
oscillation can be used to obtain an estimate of a process
time delay.

B. Main Procedure

1) Seti = 1 for the first-order plus time delay process and
i = 2 for the second-order plus time delay process.

2) Collectu(t) andy(t) from the process.
3) Get differencesU1(t) = u(t + 1) − u(t) andY1(t) =

y(t+1)−y(t) for i = 1, andU2(t) = U1(t+1)−U1(t)
andY2(t) = Y1(t + 1) − Y1(t) for i = 2.

4) Calculate cross-correlation functionsRi(τ) given by

Ri(τ) =
∑

τ

Ui(t)Yi(t + τ). (1)



Fig. 1. Schematic operation diagram of a sticky valve.

5) Find the largest absolute valueRi(τ0) among all
Ri(τ), whereτ is a positive integer.

6) Thenτ0 is the process time delay.

In the time delay estimation, the first- or second-order plus
time delay system is considered.

III. STICTION MODEL OF CONTROL VALVE

A. General Conception

Fig. 1 shows the schematic operation diagram of a sticky
valve, wherefD denotes the kinetic friction band,J the stick
band, andfS the static friction band. Some of definitions of
stiction can be found in [9], [10].

B. Physical Model of Valve Sticion

Several physical friction models have been presented in
[11]–[13]. One of the commonly used friction models is the
Karnopp model. It includes static and moving friction. The
disadvantage when applying the friction model to a generic
valve is the need to specify a large set of parameters. In order
to overcome this disadvantage many researchers developed
different kinds of empirical data-driven stiction models.The
data-driven models have parameters that can be directly
related to plant data and they produce the same behavior
as the physical model. The data-driven models need only an
input signal and the specification of deadband plus stickband
and slip jump. It overcomes the main disadvantages of
physical modeling of a control valve.

C. Kano et al. Valve Stiction Model

A valve stiction model was proposed by Kano et al. [3].
The input and output of this valve stiction model are the
controller output and the valve position, respectively. The
controller output is transformed to the range corresponding
to the valve position in advance. The first two branches
in the model flow chart check if the upper and the lower
bounds of the controller output are satisfied. This valve
stiction model has several advantages: (i) It can cope with
the stochastic input as well as the deterministic input. (ii)
us(t), which is the controller output at the moment the valve
state changes from moving to resting, can be updated at
appropriate timings by introducing the valve state. (iii) It

can change the degree of stiction according to the direction
of the valve movement.

D. Choudhury et al. Valve Stiction Model

Choudhury et al. proposed a valve stiction model in [9],
where the control signal is translated to the percentage of
valve travel with the help of a linear look-up table. The model
consists of two parameters, namely, deadband plus stickband
S, which is specified in the input axis, and slip jumpJ , which
is specified in the output axis.

E. He et al. Valve Stiction Model

In the valve stiction model of Kano et al., no matter how
small ∆u(t) is, as long as it is greater than zero, the valve
will always move and stop, which is not logically correct.
The Choudhury et al. stiction model has the same problem.
Another issue associated with the Kano et al. and Choudhury
et al. models is that the saturation constraints are added to
the controller output instead of an actuator (a valve). Based
on the typical input-output behavior of a sticky valve, He
et al. proposed a new valve stiction model [7], which is
simpler and more straightforward in logic. If desired, the
saturation constraint can be easily added touv(t) after the
model calculation.

IV. EXISTING STICTION DETECTION METHODS

A. Open-Loop Methods

Stiction can easily be detected using invasive methods such
as the valve travel or bump test. However, to apply such
invasive methods across an entire plant site is neither feasible
nor cost-effective because of their manpower, cost and time
intensive nature. Several methods have been developed to
detect valve stiction in the last decade [14]–[16]. However,
most methods require either detailed process knowledge
or user interaction, which is not desirable for automated
monitoring systems.

B. Closed-Loop Methods

Horch [1] presented an automatic detection method based
on the cross-correlation function (CCF) between the con-
troller output and the process output, which is applicable to
nonintegrating processes. In a continuing work, Horch [10]
proposed another method to address the valve stiction in inte-
grating processes by considering the probability distribution
of the second derivative of the controlled variable.

Singhal and Salsbury [2] presented a valve stiction de-
tection method based on comparison of areas before and
after the peak of an oscillating control error signal, i.e.,
the difference between the set-point and the process variable
being controlled.

Kano et al. [3] presented two valve stiction detection
methods: one requires knowing the valve position (VP) and
the other is based on the plot of OP and PV with the shape
of parallelogram.

He and Pottmann [4] presented a valve stiction detection
technique in which the OP is fitted piece-wisely to both
triangular and sinusoidal wave using the least square method.



A better fit to the triangle indicates valve stiction, while a
better fit to the sinusoid indicates non-stiction. Also in the
work, a stiction index (SI) was first defined as the ratio of
the mean squared error (MSE) of sinusoidal fitting and the
sum of the MSE’s of both sinusoidal and triangular fittings.
An SI close to zero would indicate non-stiction while an SI
close to one would indicate stiction.

In the meantime, Rossi and Scali [5] presented indepen-
dently a very similar technique to [4]. In [5], the PV signal
instead of OP is fitted using three different signal models:
relay, triangular, and sinusoidal wave.

He et al. [7], [17] extended the previous work in [4] to
cover both self-regulating and integrating processes based on
the following observations: In the case of control loop oscil-
lation caused by poor controller tuning or external oscillating
disturbance, OP and PV typically follow sinusoidal waves for
both self-regulating and integrating processes. In the case of
stiction, for self-regulating processes, OP will move likea
triangular wave, while for integrating processes such as level
control, PV will move like a triangular wave. The basic idea
of this detection method is to fit two different functions,
i.e., triangle and sinusoid, to the measured oscillating signal,
where OP is for self-regulating processes and PV is for
integrating processes. A better fit to the triangle indicates
valve stiction, while a better fit to the sinusoid indicates non-
stiction. The SI metric is used as a criterion to evaluate the
existence of valve stiction.

Choudhury et al. [6] presented a method to detect and
quantify stiction using routine operating data. The nonlinear-
ity of the loop is tested using bicoherence. If the nonlinearity
is detected, stiction is estimated as the maximum width of the
cycles of the PV vs. OP plot in the direction of OP. The PV
vs. OP plot is fitted to an ellipse and the amount of stiction
is estimated to be the maximum length of the ellipse in
OP direction, which is called the ellipse-fitting method. The
stiction estimated using the method of Choudhury et al. is
stated as ‘apparent stiction’ and it provides indication ofthe
severity of the consequences of the stiction in an oscillatory
loop. A simple grid search method for estimating stiction
parameters was presented in [18].

Recently, Jelali [8] independently presented a global
optimization-based method for quantification of valve stic-
tion in control loops. It calculates an initial approximate
guess ofS and J , which are the dead-band plus stick
band and the slip jump, respectively, using the ellipse-fitting
method [6], and searches for the optimum point near the
initial guess using genetic algorithms or pattern search.

C. Discussion of the Existing Methods

In Horch [1], one issue is the differentiation of noisy
signals. A suitable filter and cut-off frequency have to be
carefully chosen in order to filter noise. This can hardly
be done automatically since different processes have differ-
ent system characteristics and different noise levels. It has
been observed that even after filtering, the calculation of
derivatives amplified moderate amount of noise and blurred

the distinction between the shapes of the two probability
distributions [19].

In Singhal and Salsbury [2], there are several practical
limitations as mentioned by authors themselves: (i) The
method can not be applied to integrating processes. (ii) It
cannot distinguish other nonlinearities from stiction. (iii) The
error signal must be sampled many times per oscillation
period in order to get accurate peak location and areas
calculation. (iv) The noise adds variation to the peak and
zero-crossing locations which could result in problematic
diagnosis.

In Kano et al. [3], the first method can be used only when
flow rate or valve position is measured. The second method
is not always reliable even when flow rate or valve position
is measured as shown in one of their flow control examples.

In He et al. [17], there are two issues: i) When the
controller has bad tuning, the fitting method is not effective.
ii) For processes with large time delay, the opposite result
could be obtained. Controllers with poorly tuned parameters
and processes with large time delay often exist in industry,
which limits the use of the method.

The method of Rossi and Scali [5] is very similar to that
proposed by He et al. [17]. It is only applicable to self-
regulating processes.

In Choudhury et al. [6], [18], the ellipse-fitting method
has a limitation in the fact that the shape and size of the
PV vs. OP plot is sensitive to several factors: The changes
of proportional or integral control gain, the process gain,the
process time constant, the time delay of the process, phase
lags, etc. Hence, ‘apparent stiction’ that the ellipse-fitting
method estimates will differ from real stiction.

In Jelali [8], a good initialization needs for the stiction
estimation. The initial point of stiction parameters is obtained
by using the ellipse-fitting method and the optimum solution
is found near the given initial guess. As noted above, the
ellipse-fitting method may not be accurate and hence the
optimum solution found near the initial guess may not be
the solution that describes the behavior of the control valve
the best. Also the strategy for time delay estimation of
the process is not well addressed. The genetic algorithms
adopted requires a large number of functional evaluations per
iteration and storing a considerable amount of information
in the computer memory.

V. NOVEL CLOSED-LOOP STICTION DETECTION
AND QUANTIFICATION

A. Basic Principle and Important Steps

The basic idea is to convert the stiction detection and
quantification problem into a low-order Hammerstein type
system identification problem, followed by a global opti-
mization search for the stiction parameters. This idea focuses
on finding a non-invasive method to determine if stiction
exists in a control valve. It approximates process dynamics
by a low-order transfer function model while estimating
parameters for the static stiction model to account for the
nonlinearity induced by the stiction. We consider that most



industrial processes can be approximated as the first or
second order plus time delay process.

It is required to choose a suitable stiction model structure
before proceed. The basic steps to follow in the proposed
method are:

1) Given a stiction model structure and OP data, effec-
tively bound a search space of unknown stiction model
parameters.

2) Choose stiction model parameters from the bounded
stiction model space, and a series of manipulated vari-
able (MV′) data is calculated from OP data according
to the given valve stiction model.

3) With MV′ and PV data, the process model is identified
such that a mean squared error is minimized. Varying
stiction model parameters, different process models are
obtained.

4) Find the stiction model that describes the character-
istics of the control valve behavior the best. Find
the minimum model error and get the corresponding
process model and stiction model parameters.

The key to success of this procedure lies in the efficient
optimal global search of stiction parameters.

B. Stiction Detection Procedure

1) Data Selection:Tests of the proposed method on sim-
ulated data showed that it is necessary to select appropriate
low and high limits on the sampling time. Our experience
also shows that it is necessary to select the sampling time to
make sure there are more than 50 data points in an oscillating
period.

2) Data Preprocessing:Filtering is not necessary in the
proposed method, but detrending the input and output data
is important. Detrending is the process of removing the zero
order trend (the mean) from the original data and needs not
only for input and output data (OP and PV), but also for the
generated MV′ data.

3) Stiction Model Structure:We found that the valve
stiction model structure of He et al. [7] is not only simple
in logic but also closer to real stiction behavior. If we
search expected parameters of the mentioned stiction model
according to the data, the model with optimal parameters has
been shown very close to the real stiction characteristics.

4) Search Space of Stiction Model :A search region
of stiction model parameters is defined for constrained
optimization. The region of stiction model parameters is
determined using OP data and the given stiction model
structure.

5) Process Model Identification:Under the assumption
that the process is a first- or second-order plus time delay
process, the ordinary least square method is suitable for
identification. The time delay of the process may either
be searched in the optimization or effectively identified
by applying the time delay estimation method proposed in
Section II.

6) Quantification of Valve Stiction:A cost-effective con-
strained optimization technique is adopted for comprehensive
stiction model parameter search. It finds the stiction model
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Fig. 2. Spaces of stiction parameters. (a) The space of stiction parameters
(fD , J). (b) The space of stiction parameters(fD , fS). (i) Week stiction.
(ii) Dead-bend behavior. (iii) Stick and slip behavior. (iv) Dead-bend plus
stick and slip behavior.

that describes the characteristics of the control valve behavior
the best. The model with a minimum error implies the most
possible and realistic stiction model parameters found.

C. Search Space of Stiction Model Parameters

The control valve is a physical link with movement in
control loop and the characteristic of its behavior is described
by its physical specification. A space of stiction parameters
for search can be defined and be specified by using the OP
data and the relationship of stiction parameters. Note that
fD + fS ≤ S0, where fD ≥ 0, fS ≥ 0, and the upper
boundS0 is approximately given by the span of OP. Due
to the relationfS = fD + J , it holds that2fD + J ≤ S0.
Fig. 2 (a) illustrates the constrained search space of stiction
model parameters(fD, J). Fig. 2 (b) shows an equivalent
search space of stiction parameters in terms of(fD, fS).
Note that the upper boundS0 plays an role in constraining
the stiction parameter domain. A tight upper boundS0 can
be obtained by estimating the lengthS on the op-pv plot
regardless whether stiction is present or not. As an example,
the ellipse-fitting method in [6] can be used.

D. Constrained Optimization Techniques for Parameter
Search

There are two principal goals leading to the design of
global optimization methods: (i) Global reliability to ensure
that the domain is searched sufficiently to provide a reliable
estimate of a global solution and (ii) local refinement to
produce a fine solution. Most global optimization algorithms
have been developed to achieve these two goals by combin-
ing a global strategy and a local strategy [20].

1) Multistart Adaptive Random Search:Random search
algorithms allow in principle to find a global minimum
and the solution does not depend on the starting point.
Adaptive random search is known as an efficient random
search algorithm with systematic reduction of the size of the
search region. Note that combining the basic adaptive ran-
dom search method with a multistart approach improves the
ability to reach the global minimum. The basic procedure of
multistart adaptive random search is as follows: (i) Generate
a set of random starting points and iterate an adaptive random
search algorithm with rough accuracy on each starting point,
which obtains a set of approximate local minimum points.
(ii) Apply an efficient local search algorithm for the optimum
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Fig. 3. A simple flow chart for model structure and solution determination.

search in the vicinity of the minimum points found in the
step (i). The step (i) attempts to find promising starting
points that are more likely to reach the location of a global
optimum. The step (ii) is a fine global optimization within
a reduced search domain near the approximate local points
given in (i). It is suitable to the problems of a large number of
local optima and finds a global solution best for complicated
models. In realty, it is observed that many local minima are
present in the space of stiction model parameters. Various
advanced modifications of the above basic algorithm can be
found in the literature [21], [22]. Note that in the cases when
the model structure of the process is knowna priori, the
multistart adaptive search technique can be applied to the
constrained optimization problem to seek a stiction model
within the bounded space of stiction model parameters.

2) Contour Map: If the process model structure is un-
known, the flow chart in Fig. 3 can help determine a suitable
model structure and solution of stiction model parameters.It
is noted that the process model structure can affect the local
solution structure in the contour map. The basic procedure is
as follows: (i) Uniform grid search with1% to 2% resolution.
(ii) Followed by the local search. In the step (ii), the lowest
value of the objective function is taken as a starting point
for the fine local search.

E. Advantages

i) Simple method and easy implementation. No need to
filter the original data. The identification process is to
find the most suitable parameters of the valve model
and it is effective even under large noises in the output
of the process.

ii) Simple process model structure. A dozen of examples,
including first order plus time delay process, second
order plus time delay process and integrating plus
time delay process, are simulated. In these cases, if
no stiction exists, the stiction parameters of the valve
can be identified as zeros undoubtedly by the proposed
method. If stiction exists, the stiction parameters of the
valve can be identified with satisfactory performance.

iii) Low computational cost. We directly program a least
square algorithm with an analytical structure, and do
not use the Matlab system identification toolbox to
identify the process. This has shorten the run time
greatly. Using the original Matlab function, the run
time is more than 5 minutes for a control loop with

1500 data points. Using the proposed method, the
average computation time is less than half a minute.

iv) Closed-loop method using routine operating data. This
method not only detects stiction but also quantifies it.

iv) It can be proved theoretically that the comprehensive
search as we did in the proposed algorithm is necessary
for consistency of the estimation. Due to space limit,
the proof is not included here.

VI. INDUSTRIAL CASE STUDIES

To demonstrate the validity of the proposed method,
industrial control loop data shown in Fig. 4 are considered.
Fig. 4 shows time series plots of OP and PV and Fig. 5 shows
OP vs. PV plots of the control loop data. It is noted that
Loop 1-2 are open-loop data and others are closed-loop data.
A computer system with Intel Pentium(R) CPU 3.2GHz and
2GB of RAM was used for computation and the search space
of stiction model parameters was bounded by the span of OP.
From the case studies, it is seen that Loop 1, 4-5 show mostly
stick and slip behavior, Loop 2, 6 show dead-band plus stick
and slip behavior, and Loop 3 shows mostly no stiction. It
is noted that, for Loop 3-4, 6, the results obtained by the
proposed method are in agreement with the result of [6],
while for oscillating Loop 2, 5, the proposed results are not
in agreement with those of [6]. Stiction quantification results
of [8] would also appear to be similar to the results of [6].
Both [6] and [8] rely on the OP vs PV plot method to some
extent, and thus show similar results. The proposed method,
however, does not depend on an initial guess given by the
OP vs. PV plot but is based on a constrained optimization
with a bounded space of a stiction model. ‘Apparent stiction’
obtained from the ellipse-fitting method is different from real
stiction and thus may not be reliable as an initial guess.
It is also noted that the constrained optimization algorithm
adopted in the proposed method is efficient in computation.
It takes 19.8 sec. and 33 sec. on average for the1st order
and2nd order plus time delay model, respectively.

VII. CONCLUDING REMARKS

A novel closed-loop stiction detection and quantification
strategy using routine closed-loop operating data is presented
based on a model identification approach. A time delay
estimation method for processes under an oscillating state
is presented. A bounded search region of stiction model
parameters to be determined is defined and a constrained
optimization problem for valve stiction model estimation is
addressed. A cost-effective constrained optimization tech-
nique is adopted to find the best valve stiction models
representing a more realistic valve behavior in the oscillating
loop. Industrial case studies demonstrate the effectiveness of
the proposed method.
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