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Abstract

Performance assessment of univariate control loops is carried out by comparing the

actual output variance with the minimum variance� The latter term is estimated by

simple time series analysis of routine closed�loop operating data� This thesis extends

these univariate performance assessment concepts to the multivariate case and develop

new multivariate performance assessment techniques�

A key to performance assessment of multivariate processes using minimum variance

control as a benchmark� is to estimate the benchmark performance from routine operating

data with a priori knowledge of time�delaysinteractor�matrices� An algorithm for

estimation of the interactor matrix from closed�loop data is developed in this thesis�

The expression for the feedback controller�invariant �minimum variance� term is then

derived by using the unitary� weighted unitary and generalized unitary interactor matrices�

It is shown that this term can be estimated from routine operating data� The same

idea is extended to performance assessment of systems with non�invertible zeros and to

performance assessment of multivariate feedback plus feedforward controllers� Although

these methods are originally developed for stochastic systems� it is shown that the same

methods can also be applied to deterministic systems by appropriate re�formulation of

the initial problem� Thus� a uni�ed approach for control loop performance assessment is

proposed� E�cient algorithms for performance assessment are developed and evaluated

by simulations as well as applications on real industrial processes�

Minimum variance characterizes the most fundamental performance limitation of

a system due to existence of time�delaysin�nite�zeros� Practically there are many

limitations on the achievable control loop performance� For example� a feedback controller



that indicates poor performance relative to minimum variance control is not necessarily

a poor controller� Further analysis of other performance limitations with more realistic

benchmarks is usually required� Performance assessment in a more practical context

such as a user�de�ned benchmark or control action constraints is therefore proposed

and evaluated by applications in this thesis� Practical performance assessment generally

requires complete knowledge of a plant model� An identi�cation e�ort is usually required�

As a complement to existing identi�cation methods� a two�step closed�loop identi�cation

method is proposed and tested by simulated and experimental data from a computer�

interfaced pilot�scale processes�
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Chapter �

Introduction

��� An overview of control loop performance assessment

with objectives for this thesis

The design of advanced control algorithms has largely preoccupied the control

practioners� e�orts� The rationale has been that systems which are di�cult to control need

advanced optimal� non�linear� adaptive or like control algorithms for better regulation�

Although there are a variety of control design techniques such as l�� H�� H�� etc� few

techniques exist for objective measures of control loop performance or conversely measures

of the level of di�culty in controlling a process variable from routine operating industrial

process data� The control literature is relatively sparse on studies concerned with such

proper or formal measures of control loop performance�

Astrom�	
���� Harris�	
�
�� and Stanfelj et al��	

�� have reported the use of

minimum variance control as a benchmark standard against which to assess control loop

performance� DeVries and Wu�	
��� have applied the analysis of dispersion and spectral

methods to multivariate performance assessment� The most notable work is that by Harris�

who in a 	
�
 study showed how simple time series analysis techniques can be used to �nd

a suitable expression for the feedback controller�invariant term from routine operating data

of the SISO process and the subsequent use of this as a benchmark to assess control loop

	



�

performance� This contribution of Harris was signi�cant in the sense that it marked a new

direction and framework for the control loop performance monitoring area� More recently

another related performance assessment statistic de�ned as the normalized performance

index has been proposed by Desborough and Harris�	

��� Kozub and Garcia�	

��

have also reported yet another� but similar� measure of performance which they de�ne as

closed loop potential �or CLP�� Lynch and Dumont�	

�� have applied a similar idea to

the monitoring of a pulp mill process� Tyler and Morari�	

�� have extended the same

idea to SISO processes with non�minimum phase andor unstable poles� Eriksson and

Isaksson�	

��� Rhinehart�	

��� Miao and Seborg�	

�� � and Tyler and Morari�	

��

have suggested alternative performance assessment and monitoring schemes for practical

consideration� Huang et al��	

�a�	

�a� and Harris et al��	

��	

�� have extended

Harris� performance assessment concepts to performance assessment of MIMO feedback

controllers�

The concept of a delay term is important in minimum variance control� This idea

obviously carries over to the MIMO minimum variance control case as well� What is

di�cult to handle in the MIMO case is the concept of a time�delay matrix �de�ned

elsewhere as the interactor matrix �Wolovich and Falb� 	
��" Goodwin and Sin� 	
��"

Shah et al�� 	
��" Tsiligiannis and Svoronos� 	
���� as an entity in itself� i�e�� one

that can be factored out to design a MIMO minimum variance controller� if that is the

objective� The interactor matrix� as originally proposed by Wolovich and Falb�	
���� had

a lower triangular form� With this form of the interactor matrix� the minimum variance

control law�Goodwin and Sin� 	
��" Dugard et al�� 	
��� and minimum ISE control

law�Tsiligiannis and Svoronos� 	
��� are not unique and furthermore are output�order

dependent� i�e� under minimum variance control� V ar#y��t�$ is minimized� V ar#y��t�$ is

minimized subject to the constraint that V ar#y��t�$ is minimized� and so on� Therefore the

importance of each output depends on the order it is stacked in the output vector� i�e� the

�rst output variable is the most important for the design of minimum variance control� the

last output variable is the least important� Re�arrangement of the output variables results

in di�erent optimal control law� Nevertheless� the lower triangular interactor matrix has

played an important role in classic multivariable control design� Readers are referred to
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Walgama �	
��� and Sripada �	
��� for interesting discussions on this issue� Shah et

al��	
��� pointed out that selection of the form of an interactor matrix is application�

dependent� i�e� it may take an upper triangular form or a full matrix form� and yet in

LRPC schemes for a speci�c choice of tuning parameters� this requirement can be avoided�

Rogozinski et al��	
��� proposed an algorithm for factorization of the nilpotent interactor

matrix which has the full�matrix form� Peng and Kinnaert�	

�� found the existence of

the unitary interactor matrix� which is a special form of the nilpotent interactor matrix�

Since the unitary interactor is an all�pass term� factorization of such unitary interactor

matrix does not change the spectral property of the underlying system� This property of

the unitary interactor matrix is desirable for minimum variance control or singular LQ

control and multivariate control loop performance assessment using minimum variance

control as the benchmark �Huang et al�� 	

�b" Harris et al�� 	

��� Here the term

�singular LQ control� denotes LQ design without penalty on control action� The minimum

variance control law as developed by Goodwin and Sin �	
��� requires a simple design

procedure� and is suitable for derivation of the feedback controller�invariant term which

is the benchmark of multivariate performance assessment� The downside of this control

law is that it is not unique and is input�output order dependent� By introducing the

unitary and the weighted unitary interactor matrix into this design procedure� it can be

shown that the minimum variance control law is unique� and is identical to the singular

LQ control law as developed by Harris and MacGregor �	
��� �

The algorithm for factoring the lower triangular interactor matrix as suggested by

Wolovich and Falb �	
��� and Goodwin and Sin �	
��� generally requires a complete

knowledge of the transfer function matrix� Shah et al� �	
��� and Mutoh and Ortega

�	

��� however� have suggested a solution of the interactor matrix by solving a set

of linear� algebraic equations of certain Markov parameter matrices �impulse response

coe�cient matrices�� This latter approach directly connects the Markov parameter

matrices to the interactor matrix without going through the transfer function and is

numerically convenient and attractive for estimation of the interactor matrix of a MIMO

process� For closed�loop control performance assessment� estimation of the interactor

matrix under closed�loop conditions is desired� In this thesis� an algorithm for estimation



�

of the unitary interactor matrix is proposed� Using the proposed method� the interactor

matrix can be estimated from closed�loop data without estimation of the open�loop transfer

function matrix� With complete knowledge of process dynamics� many possible limitations

on the achievable performance may be calculated via optimization procedures suggested

by Boyd and Barratt �	

	� and Dahleh and Diaz�Bobillo �	

�� �

However� having to know the complete model of a process is not a very attractive

approach to process performance monitoring� since a typical plant can have hundreds

and even thousands of control loops� and identi�cation of all loops is a very demanding

requirement� Performance monitoring should be carried out in such a way that the normal

production of a process is a�ected as less as possible� In addition� process dynamics and

disturbances may drift from time to time� and the initially identi�ed model may not

represent the true dynamics� Thus on�line performance monitoring is necessary�

Di�erent levels of constraints require di�erent level of process knowledge� Some

constraints require less a priori knowledge of processes than others� If one can break the

constraints into di�erent levels� then control loop performance may be assessed from the

easiest to the hardest� Only those loops which indicate poor performance at the previous

level need be examined at the next level performance assessment� Time�delays pose the

most fundamental limitations but typically are relatively easy to obtain or estimate�

Therefore� the performance limitation due to time�delays is assessed at the �rst level�

The second level of performance limitation would be due to non�invertible zeros� Thus

performance assessment of MIMO processes with non�invertible zeros is also discussed in

this thesis�

Minimum variance control is the best possible control in the sense that no other

controller can provide a lower output variance� However� its implementation is not

recommended in practice due to its poor robustness and excessive control action�

Nevertheless as a benchmark it does provide useful information� For example� if a process

indicates poor performance relative to minimum variance control� then alternate controller

tuning or redesigning of the control algorithm can be considered to improve control loop

performance� However� if a process indicates good performance and yet its variance is not
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within the desired limits� then alternate tuning or redesigning of the control algorithm will

not be useful� In this case alternate control strategies such as feedforward control may

be necessary in order to reduce the process variance� Desborough and Harris�	

�� have

discussed feedforward controller performance assessment of SISO processes� This idea is

extended to the MIMO processes in this thesis�

Eriksson and Isaksson �	

�� have shown that performance assessment using minimum

variance control as a benchmark gives an inadequate measure of the performance if the aim

is not stochastic control� but� for example� deterministic type step disturbance rejection

or setpoint tracking� Tyler and Morari�	

�� have a similar claim on this issue� These

issues are also considered in this thesis� It is shown that many practical problems such

as those posed by Eriksson and Isaksson and others can be readily solved under the same

framework as proposed by Harris �	
�
� via appropriate formulation of the initial problem�

It is also shown that performance assessment of both stochastic and deterministic systems

can be uni�ed under the H� framework�

Minimum variance characterizes the most fundamental performance limitation of a

system due to existence of time�delays� Practically there are many limitations on the

achievable control loop performance� Minimum variance control performance requires

minimum e�ort to estimate �routine operating data plus a priori knowledge of time�

delays�� and therefore serves as the most convenient �rst�level performance assessment

benchmark� Only those loops that indicate poor �rst�level performance then need to be re�

evaluated by higher�level performance assessment� A higher�level performance test usually

requires more a priori knowledge than the knowledge of time�delays� This thesis also

considers other practical benchmarks which are considered for the higher�level performance

assessment�

However� all of the aforementioned methods are concerned with performance

assessment which does not explicitly take into account the control e�ort� In general�

tighter quality speci�cations result in smaller variation in the process output but typically

require more control e�ort� One may therefore be more interested in knowing how far

away is the control performance from the �best� achievable performance with the same
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control e�ort� For example� the problem may be cast as follows� Given E#u�t $ � 
� what

is minfE#y�t $g% The solution to this problem is discussed by investigating the LQG design

method and considering the classic LQG tradeo� curve�

A prerequisite for control loop performance assessment at a higher level is generally

a model of the process� Ideally this model should be estimated under closed�loop

conditions so that it does not upset normal process operation� A new two�step closed�

loop identi�cation algorithm is developed in this thesis� The estimated model is shown

to have asymptotically identical expressions for the bias and variance terms regardless

of how the identi�cation run is conducted� i�e� irrespective of open�loop or closed�loop

conditions� The estimated model can then be subsequently used for improving existing

controller design� or controller re�design or for control�loop performance assessment or

general analysis�

��� Contributions of this thesis

����� Contributions to the theory

The main theoretical contributions include�

	� Extension of the unitary interactor matrix to the weighted unitary interactor matrix

and the generalized unitary interactor matrix�

�� Proof of equivalence between the minimum variance control law �Goodwin and

Sin� 	
��� and the singular LQ control law �a special solution in Harris and

MacGregor�	
����� if a weighted unitary interactor matrix is used�

�� Factorization and estimation of the interactor matrix under both open and closed�

loop conditions� which is a necessary prerequisite step for control loop performance

assessment�

�� Proof of the feedback controller invariance of the output minimum variance

performance for MIMO systems by using the unitary� weighted unitary or generalized

unitary interactor matrices� This is the key to control loop performance assessment�
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�� Development of an e�cient algorithm for control loop performance assessment

involving �ltering and correlation analysis �the FCOR algorithm�� which simpli�es

the calculations and allows the new technique to be easily applied to industrial

processes�

�� Development of a performance assessment algorithm for MIMO processes with non�

invertible zeros�

�� Development of a performance assessment algorithm for feedforward plus feedback

control�

�� Proposal of a uni�ed approach for control performance assessment under both

stochastic and deterministic framework� and under regulatory and setpoint tracking

framework�


� Extension of performance assessment methodology to cover practical situations such

as performance assessment with user�de�ned benchmarks�

	�� Proposal of an LQG benchmark which can take control action constraints into

account for performance assessment�

		� Development of an algorithm for closed�loop identi�cation of SISO�MIMO systems�

This is a spin�o� from the work on control loop performance assessment and has

strong industrial appeal�

����� Contributions via industrial applications and evaluations

The methods and algorithms developed in this thesis have been applied and evaluated

at several industrial complexes in the Alberta area and internationally�

	� Multivariable control system validation for distillation columns at two Mitsubishi

Chemical Corporation locations� 	� Kurosaki Plant and �� Mizushima Plant� Japan�

�� Multivariable control system validation for a heat exchanger� a reactor and a

distillation column at Agrium Inc�s �Sherritt Inc�� Redwater Fertilizer complex in

Alberta�



�

�� Bene�t analysis for upgrading the existing headbox control of a paper machine at

Weyerhauser Canada�s Grande Prairie operations in Alberta�

��� Organization of the thesis

The thesis is organized as follows� In Chapter �� the performance assessment algorithm

is �rst introduced for SISO systems� The key to extend the SISO results to the MIMO

system is the understanding of the concept of the time delay matrix or the interactor

matrix� This concept in introduced in Chapter �� In Chapter �� the role of the unitary

interactor matrix in minimum variance or singular LQ control design is discussed� The

algorithm for estimation of the interactor matrix is established in Chapter �� The methods

for feedback controller performance assessment of MIMO systems are developed in

Chapters �� � and �� This treatment is in an ascending degree of di�culty from the simple

interactor� the diagonal interactor to the general interactor� When the feedback controller

indicates good performance relative to minimum variance control� further improvement

of performance may require a di�erent control strategy such as feedforward plus feedback

control� The benchmark of feedforward plus feedback control is therefore discussed in

Chapter 
� Existence of non�invertible zeros a�ects the achievable performance of the

feedback controller� This issue is addressed in Chapter 	�� In Chapter 		� the methodology

developed in the previous chapters is extended to performance assessment of deterministic

disturbance andor setpoint tracking� A practical performance assessment for a user�

de�ned benchmark is proposed in Chapter 	�� Performance assessment with control action

taken into account is a relatively unexplored research area and one possible solution to

this problem is discussed in Chapter 	�� Performance assessment with a benchmark other

than minimum variance control usually requires an identi�cation e�ort� A new approach

to closed�loop identi�cation is developed in Chapter 	��

This thesis has been written in a paper�format in accordance with the rules and

regulations of the Faculty of Graduate Studies and Research� University of Alberta�

Many of the chapters have appeared or are to appear in archival journals or conference

proceedings� In order to link the di�erent chapters� there is some overlap and redundancy






of material� This has been done to ensure completeness and cohesiveness of the thesis

material and help the reader understand the material easily�



Chapter �

Feedback Controller Performance

Assessment of SISO Processes

��� Introduction

A typical industrial process includes thousands of control loops� Instrumentation

technicians generally maintain and service these loops� but rather infrequently� It is

important for control engineers to have an e�cient tool to monitor and assess control

loop performance� Monitoring and assessment of control loop performance should not

disturb routine operation of the processes or at least should be carried out under closed�

loop conditions� As pointed by Eriksson and Isaksson �	

��� �in the short term� such

a tool probably has to be a stand�alone unit with its own software that hooks on to and

collects data straight from the input of the process computer� in the long term� such a

function will be an integral part of any commercial control system��

The control literature has been relatively sparse on studies concerned with such proper

or formal measures of control loop performance� Harris �	
�
� has developed an e�cient

technique for control loop performance assessment using only routine closed�loop operating

data� The control objective is to minimize process variance� and minimum variance

control is used as the benchmark standard against which to assess current control loop

performance� It has been shown �Harris� 	
�
� that for a system with time delay d� a

	�



		

portion of the output variance is feedback control invariant and can be estimated from

routine operating data� This is the minimum variance portion� To separate this invariant

term� one needs to model the closed�loop output data yt by a moving average process such

as

yt � f�at � f�at�� � � � �� fd��at��d���� �z �
et

�fdat�d � fd��at��d��� � � � �

where at is a white noise sequence� Then et is the portion of the minimum variance control

output� It is independent of feedback control �Harris� 	
�
�� This portion of minimum

variance can be estimated by time series analysis of routine closed�loop operating data�

and can be subsequently used as a benchmark measure of theoretically achievable absolute

lower bound of output variance to assess control loop performance� Using minimum

variance control as the benchmark does not mean that one has to implement such a

controller on the actual process� This benchmark control may or may not be achievable in

practice depending on process invertibility and other physical constraints of the processes�

However as a benchmark� it provides useful information such as how good the current

controller performance is compared to the minimum variance controller and how much

�potential� there is to further improve controller performance� If the controller indicates

good performance measure relative to minimum variance control� further tuning or re�

designing of the control algorithm is neither necessary nor helpful� In this case� if further

reduction of process variation is desired� implementation of feedforward control or re�

engineering of the process itself may be necessary� On the other hand� if the controller

indicates a poor performance measure� further analysis such as process identi�cation and

controller re�design may be necessary since the poor performance measure may be due to

constraints such as unstable or poorly damped zeros or control action limits�

As a general introduction to feedback control performance assessment of MIMO

processes in this thesis� performance assessment of SISO processes is discussed in this

chapter� This chapter is organized as follows� In Section ��� the feedback control

invariant term is re�derived� The FCOR �Filtering and CORrelation analysis� algorithm

for performance assessment of SISO processes is developed in Section ���� The proposed

algorithm is then evaluated by simulation and actual processes in Section ���� followed by



	�

concluding remarks in Section ����

��� Feedback controller�invariance of minimum variance

term and its separation from routine operating data

Consider a SISO process under regulatory control as shown in Figure ��	� where d is

the time�delay� �T is the delay�free plant transfer function� N is the disturbance transfer

function� at is a white noise sequence with zero mean� and Q is the controller transfer

function�

It follows from Figure ��	 that

yt �
N

	 � q�d �TQ
at ���	�

where using the Diophantine identity�

N � f� � f�q
�� � � � �� fd��q

�d��� �z �
F

�Rq�d

where fi �for i � 	� � � � � d � 	� are constant coe�cients� and R is the remaining rational�

proper transfer function� equation ��	 can be written as

yt �
F � q�dR

	 � q�d �TQ
at

� #F �
R� F �TQ

	 � q�d �TQ
q�d$at

� Fat � Lat�d �����

where L � R�F �TQ

��q�d �TQ
is a proper transfer function� Since Fat � f�at � � � � � fd��at�d���

the two terms on the left hand side of equation ����� are independent� and as a result�

V ar�yt� � V ar�Fat� � V ar�Lat�d�

Therefore

V ar�yt� � V ar�Fat�

The equality holds when L � �� i�e�

R� F �TQ � �
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This yields the minimum variance control law�

Q �
R
�TF

Since F is independent of the controller transfer function Q� the term Fat� which is

the process output under minimum variance control� is feedback controller�invariant�

Therefore� if a stable process output yt is modelled by a in�nite moving�average model�

then its �rst d terms constitute an estimate of the minimum variance term Fat�

��� The FCOR algorithm for SISO processes

A stable closed�loop process can be written as an in�nite�order moving�average �MA�

process�

yt � �f� � f�q
�� � f�q

�� � � � �� fd��q
��d��� � fdq

�d � � � ��at �����

Multiplying equation ����� by at� at��� � � � � at�d�� respectively and then taking the

expectation of both sides of the equation yields

rya��� � E#ytat$ � f��
�
a

rya�	� � E#ytat��$ � f��
�
a

rya��� � E#ytat��$ � f��
�
a

��� �����

rya�d� 	� � E#ytat�d��$ � fd���
�
a

Therefore the minimum variance or the invariant portion of output variance is

��mv � �f�� � f�� � f�� � � � �� f�d����
�
a

� #�
rya���

��a
�� � �

rya�	�

��a
�� � �

rya���

��a
�� � � � �� �rya�d� 	�

��a
��$��a

� #r�ya��� � r�ya�	� � r�ya��� � � � � � r�ya�d� 	�$���a �����

Let the controller performance index be de�ned as

��d�
�
� ��mv��

�
y �����
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This has been referred to as the closed�loop potential�CLP� by Kozub and Garcia �	

���

and the inequality � � ��d� � 	 is held�

Substituting equation ����� into equation ����� yields

��d� � #r�ya��� � r�ya�	� � r�ya��� � � � �� r�ya�d� 	�$���y��a �����

� ��ya��� � ��ya�	� � ��ya��� � � � �� ��ya�d� 	� �����

�
� ZZT ���
�

where Z is the cross�correlation coe�cient vector between yt and at for lags � to d�	 and
is denoted as

Z
�
� #�ya���� �ya�	�� � � � � �ya�d� 	�$ ���	��

The corresponding sampled version of the performance index is therefore written as

���d� � ���ya��� � ��
�
ya�	� � ��

�
ya��� � � � �� ���ya�d� 	� � �Z �ZT ���		�

where

��ya�k� �
�
M

PM
t�� ytat�kq

�
M

PM
t�� y

�
t
�
M

PM
t�� a

�
t

���	��

Although at is unknown� it can be replaced by the estimated innovations sequence �at�

The estimate �at is obtained by pre�whitening the process output variable yt via time

series analysis�This pre�whitening procedure will be further discussed in Chapter �� This

algorithm is denoted as the FCOR algorithm for Filtering and CORrelation analysis� and

is schematically shown in Figure ����

��� Evaluation via simulation and industrial application

Example � In order to compare the FCOR algorithm with other available SISO

performance assessment algorithms� consider the following SISO process� as used by

Desborough and Harris������ with time delay d � ��

yt � ut�� �
	� ���q��
	� q��

at ���	��



	�

For a simple integral controller &ut � �Kyt� it can be shown that the closed�loop response

is given by

yt � at � ���at�� �
����	 �K���� �Kq���

	� q�� �Kq��
at�� ���	��

Note that the �rst two terms are independent of K and represent the process output under

minimum variance control�

The simulation results shown in Figure ��� show a comparison of the estimated control

performance versus the theoretical performance as a function of K� and comparison with

	� the general approach proposed by Harris�	
�
� �denoted as the ARMA approach here��

�� normalized performance index or R� approach �Desborough and Harris� 	

�� and

�� the FCOR algorithm� Desborough and Harris�	

�� have used the adjusted multiple

coe�cient of determination� R�� as the performance index� This value is converted to the

performance index used in this thesis via the relation� 	�R��

Example � The proposed performance assessment method was used to assess the

performance of an important cascade control loop on a nitric acid �HNO�� production

facility at a world�scale chemical plant in central Alberta� Canada�

The schematic of the process is shown in Figure ���� The feed stocks are anhydrous

ammonia �NH�� and air� The ammonia goes through a two�stage heating process before

entering the catalytic reaction which contains a �gauze type� platinum�rhodium catalyst�

Process air at over ���oF and 	�� psig enters the reactor� The ammonia�air mixture

reacts on the catalyst at over 	���oF and forms nitrogen dioxide with other by�products

�NOx�� In order to maximize the production of NO� and minimize the by�products which

are harmful to the environment� the gauze temperature is required to be kept as steady

as possible even in the presence of disturbances in the ambient temperature air quality�

ammonia feed temperature� and ammonia �ow rate� The present control con�guration is

that the gauze temperature controller �outer loop� adjusts the setpoint of the ammonia

�ow rate �inner loop�� In general� the inner loop is tightly tuned and is expected to have

a good performance� The time delay of the outer loop from a priori analysis is known to

be 	� seconds including the delay due to the zero�order�hold device� The sampling period



	�

is � seconds" so the time delay is � sampling periods� i�e�� d � �� The time delay of the

inner loop is considered to be only one sampling interval caused by the zero order hold�

A sample size of ����� points taken over a two�day period is considered� Both loops use

PID controllers� The available process data are the gauze temperature� y�� the outer�loop

controller output which is the setpoint of the inner loop� and the NH� �ow rate� y��

The performance measure of the inner loop by using the FCOR approach is shown

in Figure ���� On the left part of this Figure� each point on the left graph represents

the estimated minimum variance or the best achievable output variance based on the

calculation of a window of ���� data points� The right part of Figure ��� represents

the corresponding performance index estimated using the FCOR approach� The �� hour

periodic trend of the disturbance magnitude is clearly seen from Figure ���� Despite this

trend� the performance index is close to a constant value of ��
�� which is an indication of

excellent performance or loop tuning� and further improvement in this loop by adjusting

controller parameters may not be possible�

The estimated minimum variance of the outer loop is shown on the left part of

Figure ���� and the corresponding performance measure is shown on the right part of

this �gure� Contrary to what would be expected� the performance index for this loop

is not a constant� The trend of the index clearly shows a ���hour cycling of the loop

performance which is possibly due to the ambient temperature and air quality change

over a ���hour period� The average performance index of the outer loop is approximately

��	�� indicating relatively poor control� Clearly this loop performance may be improved

signi�cantly by re�tuning the existing controller or andor providing feedforward control

of ambient conditions�

��� Conclusions

A simple technique for evaluating univariate control loop performance has been

proposed� This technique is based on �ltering and correlation �FCOR� analysis of

routine closed�loop operating data� Use of the proposed method is demonstrated by a



	�

simulated and industrial application� and is shown to provide useful insight into control�

loop performance analysis of univariate processes�



	�
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Figure ��	� Schematic diagram of SISO process under feedback control�
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Figure ���� Schematic diagram of the industrial cascade reactor control loop
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Chapter �

Multivariate Processes�

Preliminaries

��� Introduction

Time�delays are the most fundamental limitation on the achievable performance of any

feedback controller� Performance assessment of SISO processes as introduced in Chapter �

re�ects this fundamental performance limitation in the stochastic framework� In the

following chapters� we explore performance assessment of multivariable processes� The

interactor matrix� a non�trivial extension of the SISO time�delay term� characterizes the

most fundamental limitation on the achievable performance of any multivariable feedback

controller�

��� Preliminaries of MIMO processes

For the sake of brevity and convenience� the backshift operator q�� will be omitted

throughout this thesis� unless circumstances necessitate its presence� For example� the

transfer function matrix T �q��� will be expressed simply as T � Unless otherwise illustrated�

a standard MIMO process model

Yt � TUt �Nat ���	�

�	



��

is used throughout the thesis� where TandN are proper �causal�� rational transfer function

matrices in the backshift operator q��" Yt� Ut� and at are output� input and noise vectors

of appropriate dimensions� For stochastic systems� at is further assumed to be white noise

with zero mean and V ar�at� �  a�

To solve the multivariable deadbeat and minimum variance control problems� Wolovich

and Falb�Wolovich and Falb� 	
���� Wolovich and Elliott �Wolovich and Elliott� 	
����

Goodwin and Sin �Goodwin and Sin� 	
��� introduced the interactor matrix D� which is

the generalization of the SISO time delay for the MIMO case�

Theorem � For every n � m proper� rational polynomial transfer function matrix T �

there is a unique� non�singular� n�n lower left triangular polynomial matrix D� such that

jDj � qr and

lim
q����

DT � lim
q����

�T � K

where K is a full rank �full column rank or full row rank� constant matrix� the integer r

is de�ned as the number of in�nite zeros of T � and �T is the delay�free transfer function

matrix of T which contains only �nite zeros� The matrix D is de�ned as the interactor

matrix and can be written as

D � D�q
d �D�q

d�� � � � � �Dd��q

where d is denoted as the order of the interactor matrix and is unique for a given

transfer function matrix �Shah et al�� ����� Mutoh and Ortega� ������ and Di �for

i � �� � � � � d� 	� are coe
cient matrices�

The interactor matrix D can be one of the three forms described in the sequel� If

D is of the form� D � qdI� then the transfer function matrix T is regarded as having a

simple interactor matrix� If D is a diagonal matrix� i�e�� D � diag�qd� � qd� � � � � � qdn�� then
T is regarded as having a diagonal interactor matrix� Otherwise T is considered to have

a general interactor matrix �one realization of which is a triangular interactor matrix��

However� the general interactor matrix also has forms other than the lower triangular

form� It can be a full matrix or an upper triangular matrix �Shah et al�� 	
��" Huang



��

et al�� 	

�c�� Rogozinski et al� �	
��� have introduced an algorithm for the calculation

of a nilpotent interactor matrix� Peng and Kinnaert �	

�� have introduced the unitary

interactor matrix�

De�nition � Instead of taking the lower triangular form� if an interactor matrix as per

Theorem � satis�es

DT �q���D�q� � I

then this interactor matrix is denoted as the unitary interactor matrix�

Existence of the unitary interactor matrix has been established by Peng and

Kinnaert�	

�� �

To illustrate the point� take a �� � transfer function matrix as an example�

T �

�
��

q��

��q��
��	q��

���q��

��	q��

���q��
q��

��
q��

�
��

Since

lim
q����

qT �

�
�� 	 ���

��� 	

�
��

is a full rank matrix� T has a simple interactor matrix with D � qI�

However� if T is changed to

T �

�
��

q��

��q��
��	q��

���q��

��	q��

���q��
q��

��
q��

�
��

then

lim
q����

�
�� q� �

� q

�
��T �

�
�� 	 �

��� 	

�
��

is clearly full rank� Thus the interactor matrix

D �

�
�� q� �

� q

�
��

is a diagonal matrix�



��

Furthermore� if T is changed to

T �

�
��

q��

��q��
q��

���q��

q��

���q��
q��

��
q��

�
��

then it has a general interactor matrix� Goodwin and Sin�	
��� have shown the lower

triangular interactor matrix of this last transfer function matrix T as

D �

�
�� q �

�q� � �q� q�

�
��

This can be easily checked by taking the limq����DT � K and testing that K is full

rank�

Now using the algorithm due to Rogozinski et al��	
��� � a unitary interactor matrix

can be factored out as

D �

�
�� ���q � ���q� ���q � ���q�

���q� � ���q� ���q� � ���q�

�
��

This matrix has the property� DT �q���D�q� � I�

A clear explanation of the interactor matrix has been given by Shah et al��	
��� �

For a SISO transfer function T � B
Aq

�d� the time delay� q�d� introduces d in�nite zeros

in the transfer function� The transfer function T is not invertible in the sense that the

inversion of T � T�� � A
B q

d� is not proper� However� if we multiply the transfer function

by the interactor matrix �it is a scalar in the SISO case�� D � qd� then the delay�free

transfer function �T � DT � B
A is invertible in the sense that the inversion is casual

or proper� In the MIMO case� the interactor matrix D plays the same role as in the

SISO case� Multiplication of the transfer function by the interactor matrix D removes

the in�nite zeros from the original transfer function matrix T and yields the delay�free

transfer function matrix �T � i�e�� �T � DT �

The introduction of the interactor matrix is important not only because it solves the

multivariable minimum variance control problem but it also provides a basic tool to seek

the benchmark performance measure of the multivariable process as we will see in the

following sections�



��

��� Conclusions

Wolovich and Falb�s lower�triangular interactor matrix and its extension to the unitary

interactor matrix has been introduced in this chapter� Examples have been given to

illustrate the concept� The unitary interactor matrix will play a fundamental role in the

following chapters�



Chapter �

Unitary Interactor Matrices and

Minimum Variance Control

��� Introduction

There are many limitations to achievable control loop performance� for example time

delays� existence of poorly damped or non�invertible zeros� constraints on control action�

desired robustness characteristics� etc� Amongst all these constraints� the time delay is the

most fundamental constraint that has attracted tremendous interest in the development

and theory of process control� Wolovich and Falb�	
��� have shown that the analog of the

time�delay term for a SISO system� which is feedback control�invariant� is the interactor

matrix for a MIMO system� which is also feedback control�invariant� Subsequently

Wolovich and Elliott�	
��� and Goodwin and Sin�	
��� extended the concept of the

interactor matrix to discrete systems� The interactor matrix characterizes the most

fundamental performance limitation of a linear multivariable system�

The interactor matrix� as originally proposed by Wolovich and Falb�	
���� had a

lower triangular form� With this form of the interactor matrix� the minimum variance

control law�Goodwin and Sin� 	
��" Dugard et al�� 	
��� and minimum ISE control

�A version of this chapter has been submitted to Automatica as a short paper�

��
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law�Tsiligiannis and Svoronos� 	
��� are output�order dependent� i�e� under minimum

variance control� V ar#y��t�$ is minimized� V ar#y��t�$ is minimized subject to the constraint

that V ar#y��t�$ is minimized� and so on� Therefore the importance of each output depends

on the order it is stacked in the output vector� i�e� the �rst output variable is the most

important for the design of minimum variance control� the last output variable is the

least important� Re�arrangement of the output variables results in a di�erent optimal

control law� Shah et al��	
��� pointed out that selection of the form of an interactor

matrix is application�dependent� i�e� it may take an upper triangular form or a full

matrix form� and yet in LRPC schemes for a speci�c choice of tuning parameters� the

controller is independent of the interactor matrix� Rogozinski et al��	
��� proposed an

algorithm for factorization of the nilpotent interactor matrix which has the full�matrix

form� Peng and Kinnaert�	

�� found the existence of the unitary interactor matrix�

which is a special form of the nilpotent interactor matrix� Since the unitary interactor

is an all�pass term� factorization of such a unitary interactor matrix does not change the

spectral property of the underlying system� This property of the unitary interactor matrix

is desirable for minimum variance control or singular LQ control and multivariate control

loop performance assessment using minimum variance control as the benchmark� Here

the term �singular LQ control� denotes LQ design without penalty on the control action�

The main contributions in this chapter are 	� extension of the unitary interactor matrix

into the weighted unitary interactor matrix" �� an alternative derivation of the optimal

singular LQ or minimumvariance control law with respect to the minimumvariance control

law �Goodwin and Sin� 	
��� and the singular LQ control law �Harris and MacGregor�

	
���" �� proof of equivalence of minimum variance control law �Goodwin and Sin� 	
���

and the singular LQ control law �Harris and MacGregor� 	
���� if a weighted unitary

interactor matrix is used� This chapter is organized as follows� Section ��� introduces

the unitary interactor matrix� In section ��� the unitary interactor matrix is applied to

the explicit solution of the minimum variance control law� The unitary interactor matrix

is then extended to the weighted unitary interactor matrix� and identity between the

minimum variance control law and the singular LQ control law is established in section ����

This is followed by concluding remarks in section ���� Extension to the generalized unitary
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interactor matrix� which factors out both unstable and in�nite zeros and may be regarded

as an alternative solution to the inner�outer factorization �Chu� 	
���� is discussed in

Chapter 	�� For the sake of presentation� only the square transfer function matrix is

considered in this chapter�

��� Unitary interactor matrices

The unitary interactor matrix has been de�ned in Chapter �� Existence of the unitary

interactor matrix is established in Peng and Kinnaert�	

�� �

Lemma � For a full rank �in the �eld of q��� rational� proper transfer function matrix T �

there exists a non�unique unitary interactor matrix� However� any two unitary interactor

matrices� D�q� and !D�q�� satisfy�

!D�q� � 'D�q�

where ' is an n� n unitary real matrix� i�e� 'T' � I�

Proof� See Peng and Kinnaert�	

�� for the proof�

Readers are also referred to Peng and Kinnaert�	

�� and Rogozinski et al��	
��� for

the algorithm to factor the unitary interactor matrix from a transfer function matrix�

For reader�s convenience� the algorithm is summarized in Appendix A� In Chapter ��

this algorithm will be simpli�ed by using QR decomposition of only the �rst few Markov

parameter matrices or impulse response matrices� A priori knowledge of the interactor

matrix is tantamount to knowing the entire transfer function matrix� which is often a

demanding requirement� One alternative is to simply compute the interactor matrix by

estimating the �rst few Markov parameters of the closed�loop process via dither signal

excitation�

The non�uniqueness of the interactor matrix can also be due to di�erent ordering of

the output variables� i�e� the way to stack each output variable into the output vector�

The relationship between di�erently�ordered unitary interactor matrices is established in

the following lemma�



�


Lemma � If D�q� is the unitary interactor matrix of T � and !D�q� is the unitary interactor

matrix of the output�reordered transfer function matrix !T �q��� � V T �q���� where V is

row�exchanging operator �an orthogonal matrix�� then

!D�q� � 'D�q�V T

where ' is an n� n unitary real matrix�

Proof� From the de�nition of the unitary interactor matrix� we have

lim
q����

D�q�T �q��� � K� ���	�

lim
q����

!D�q� !T �q��� � lim
q����

!D�q�V T �q��� � K� �����

and �D�q���� � DT �q���� � !D�q���� � !DT �q���� V �� � V T �

From equation ���	� and ������ one can obtain

lim
q����

D�q�V T !DT �q��� � K�K
��
�

�
� '�� �����

lim
q����

!D�q�V DT �q��� � K�K
��
� � ' �����

It is obvious from equations ����� and ����� that '�� � 'T � Since D�q�V T !DT �q��� is a

�nite�order matrix polynomial� i�e�

D�q�V T !DT �q���
�
� E�q� q��� � q�d��E�d���� � ��q��E���q��E���E��qE��q

�E��� � ��qd��Ed��

equation ����� implies that D�q�V T !DT �q��� has no positive power of q� One may therefore

write it as D�q�V T !DT �q��� � E�q���� On the other hand� equation ����� also implies that

!D�q�V DT �q��� � ET �q� has no positive power of q or equivalently E�q��� has no negative

power of q� Thus the matrix polynomial E�q� q��� is neither a function of q nor q��� It

follows then from ����� and ����� that

D�q�V T !DT �q��� � 'T

!D�q�V DT �q��� � '

which yields

!D�q� � 'D�q�V T
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Bittanti et al��	

�� have also de�ned a spectral interactor matrix� which has the same

property as the right unitary interactor matrix de�ned by Panlinski and Rogozinski�	

�� �

The unitary interactor matrix is an all�pass factor� as a delay�term should be� and retains

the spectral property of the underlying system after in�nite zeros are removed and is

an ideal factorization of time�delays for the design of minimum variance or singular LQ

control� The advantage of factorizing a unitary interactor matrix as an all�pass factor

is its computational simplicity compared to the spectral interactor factorization or the

inner�outer factorization�

��� Unitary interactor matrices and the explicit solution

of minimum variance control law

Goodwin and Sin�	
��� have extended the deadbeat deterministic control strategy to

minimum variance control of systems with stable zeros� Consider a multivariable system

Yt � TUt �Nat

where T is the system transfer function matrix and N is the disturbance transfer function

matrix� The minimum variance control law can be designed to make the variance of the

interactor��ltered output DYt or equivalently �Yt � q�dDYt minimum� where the positive

integer d is the order of the interactor matrix or the minimum integer which makes q�dD

proper� This yields a simple multivariable control design strategy�

Theorem � For a multivariable process

Yt � TUt �Nat �����

with the linear quadratic objective function �singular LQ objective function� de�ned by

J � E� �Y T
t
�Yt� �����



�	

where �Yt � q�dDYt� an explicit optimal control law is given by

Ut � � �T��RM��
F DYt � � �T��RF���q�dD�Yt �����

where �T � DT � MF � qdF � F and R satisfy the identity�

q�dDN � F� � � � �� Fd��q
�d��� �z �

F

�q�dR �����

and R is a rational proper transfer function matrix�

Proof� Consider the process with a general interactor matrix�

Yt � TUt �Nat � D�� �TUt �Nat ���
�

Multiplying both sides of ���
� by q�dD yields

q�dDYt � q�d �TUt � q�dDNat

� q�d �TUt � �Nat ���	��

where �N is a proper transfer function matrix� By de�ning �Yt � q�dDYt� equation ���	��

has been transformed to a process with a simple interactor matrix i�e�

�Yt � q�d �TUt � �Nat ���		�

Substituting equation ����� into ���		� yields

�Yt � �TUt�d �Rat�d � Fat ���	��

The last term in this equation cannot be a�ected by the control action� i�e�

V ar� �Yt� � E� �Yt �Y
T
t � � V ar�Fat�

Therefore

E� �Y T
t
�Yt� � tr�V ar�Fat��

The minimum variance control is achieved when the sum of the �rst two terms on the

right hand side of equation ���	�� is set to zero� i�e�

�TUt�d �Rat�d � �



��

This yields

Ut � � �T��Rat ���	��

Substituting equation ���	�� into ���	�� yields

�Yt � Fat ���	��

Therefore

at � F�� �Yt ���	��

Substituting equation ���	�� into ���	�� gives the minimum variance control law

Ut � � �T��RF�� �Yt � � �T��RF���q�dD�Yt ���	��

By de�ning MF � qdF � Equation ���	�� can be written as

Ut � � �T��RM��
F DYt

where F and R are de�ned by

q�dDN � F� � � � �� Fd��q
�d��� �z �

F

�q�dR

or

DN �MF �R

However this minimum variance control law is only able to minimize variance of the

interactor��ltered variable �Yt� If D is a lower triangular interactor matrix as used by

Goodwin and Sin�	
���� then the minimumvariance control law of �Yt has the property that

V ar#y��t�$ is minimized� V ar#y��t�$ is minimized subject to the constraint that V ar#y��t�$

is minimized� and so on� Therefore the control law is output�order dependent �Dugard

et al�� 	
���� On the other hand� if D is a unitary interactor matrix� we have the following

result�

Lemma � If D is a unitary interactor matrix� then a proper optimal control law which

minimizes the LQ objective function of the interactor��ltered output �Yt

J� � E� �Y T
t
�Yt� ���	��



��

also minimizes the LQ objective function of the original output Yt

J� � E�Y T
t Yt� ���	��

and J� � J�� Thus the singular LQ control law of the original variable Yt can be obtained

via the singular LQ control law of the unitary interactor��ltered variable �Yt�

Proof� Since at is random white noise with zero mean� we have

E� �Y T
t
�Yt� � tr#V ar� �Yt�$

Using Parseval�s theorem and noticing the property of the unitary interactor matrix� i�e�

DT �q���D�q� � I or DT �e�j��D�ej�� � I �for all ��

we have

tr#V ar� �Yt�$ �
	

��

Z �

��
tr#D�ej��Y ���D

T �e�j��$d�

�
	

��

Z �

��
tr#DT �e�j��D�ej��Y ���$

�
	

��

Z �

��
tr#Y ���$

� tr#V ar�Yt�$ � E�Yt�
T �Yt�

where Y ��� is the power spectrum density of Yt� and the notation of the power spectrum

density is given by �Ljung� 	
���� Y ��� �
P�

����RY ���e
�j�� and RY ��� � E�YtY

T
t�� ��

Therefore J� � J�� and minimization of J� is equivalent to minimization of J��

Another important property of the unitary interactor matrix for minimum variance control

is that the control law is output�order independent�

Lemma � If D is a unitary interactor matrix� then the minimum variance control law as

solved by Theorem  is output�order invariant�

Proof� It follows from Theorem � that for the original system

Yt � TUt �Nat
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the minimum variance control law is

Ut � � �T��RM��
F D

and for the output re�ordered system

!Yt � V Yt � V TUt � V Nat � !TUt � !Nat

the minimum variance control law is

!Ut � ��!T�� !R !MF
�� !D !Yt ���	
�

where !D !N � !MF � !R and �!T � !D !T � From Lemma �� we have

!D � 'DV T

Therefore

�!T � !D !T � 'DV TV T � 'DT � ' �T

and

!MF � !R � !D !N � 'DV TV N � 'DN � '�MF �R�

Thus !MF � 'MF and !R � 'R� Substituting �!T � !R� !MF � !D and !Yt � V Yt into

equation ���	
� yields

!Ut � � �T��'T'RM��
F 'T'DV TV Yt � � �T��RM��

F DYt � Ut

Lemma 	 The minimum variance control law as given in Theorem  is scaling

independent� i�e� if a interactor matrix D is pre�multiplied by an invertible constant matrix

P � !D � PD�� then using !D as the interactor matrix results in the same control law as

using D as the interactor matrix�

Proof� For two interactor matrices� D and !D� with

!D � PD ������
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we have

�!T � !DT � !DD�� �T � PDD�� �T � P �T ����	�

and

!MF � !R � !DN � PDN � P �MF �R� � PMF � PR

Therefore

!MF � PMF ������

!R � PR ������

The minimum variance controller�with !D as its interactor matrix� is

!Ut � ��!T�� !R !MF
�� !DYt ������

Substituting equations ������� ����	�� ������ and ������ into ������ yields

!Ut � � �T��P��PRM��
F P��PDYt � � �T��RM��

F DYt � Ut

Theorem � If D is a unitary interactor matrix� the minimum variance control law as

given in Theorem  is unique�

Proof� Non�uniqueness of the unitary interactor matrix is due to 	� output ordering

andor �� scaling� i�e� !D � 'D� It has been shown in Lemma � that the minimum

variance control law is output order invariant� From Lemma �� it follows that the unitary

scaling matrix ' does not a�ect the control law� Therefore the minimum variance control

law with the unitary interactor matrix is unique�

��� Weighted unitary interactor matrices and singular LQ

control

De�nition � Instead of taking the lower triangular form or unitary interactor matrix

form� if an interactor matrix as per Theorem � satis�es

DT
w�q

���Dw�q� �W ������



��

where W � � is a symmetric weighting matrix� then this interactor matrix is regarded as

the weighted unitary interactor matrix�

The weighted unitary interactor matrix has similar properties as the unitary interactor

matrix� Existence of the weighted unitary interactor matrix is established in the following

theorem�

Theorem � For a full rank �in the �eld of q��� rational� proper transfer function matrix

T � there exists a non�unique weighted unitary interactor matrix� However� any two

weighted unitary interactor matrices� Dw�q� and !Dw�q�� satisfy

!Dw�q� � 'Dw�q�

where ' is a n� n unitary real matrix� i�e� 'T' � I�

Proof� From the de�nition of the weighted unitary interactor matrix� we have

lim
q����

Dw�q�T �q
��� � K� ������

lim
q����

!Dw�q�T �q
��� � K� ������

From equation ������ and ������� one can obtain

lim
q����

Dw�q�� !Dw�q��
�� � K�K

��
� � '�� ������

lim
q����

!Dw�q��Dw�q��
�� � K�K

��
� � ' ����
�

From the de�nition �equation �������� the following equations follow�

�Dw�q��
�� � W��DT

w�q
��� ������

� !Dw�q��
�� � W�� !DT

w�q
��� ����	�

Substituting ����	� and ������ into ������ and ����
� respectively yields

lim
q����

Dw�q�W
�� !DT

w�q
��� � K�K

��
� � '�� ������

lim
q����

!Dw�q�W
��DT

w�q
��� � K�K

��
� � ' ������
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It follows from equations ������ and ������ that ' is a unitary real matrix� i�e� '�� � 'T �

Equations ������ and ������ imply that Dw�q�W
�� !DT

w�q
��� and !Dw�q�W

��DT
w�q

��� have

neither a positive nor negative power of q� Therefore

Dw�q�W
�� !DT

w�q
��� � 'T

!Dw�q�W
��DT

w�q
��� � '

It follows that

!Dw�q� � 'D
�T
w �q���W ������

Substituting ������ into ������ yields

!Dw�q� � 'Dw�q�

Existence of the weighted unitary interactor matrix is given by Corollary 	�

Corollary � One of the solutions for the weighted unitary interactor matrix is given by

Dw�q� � D�q�W ���

where D�q� is a unitary interactor matrix of the weighted transfer matrix W ���T �q���� In

general� any weighted unitary interactor matrix Dw�q� can be written as

Dw�q� � 'D�q�W
���

Proof� Since D�q� is the unitary interactor matrix of W ���T �q���� Dw�q� �

D�q�W ��� must be an interactor matrix of T �q���� Furthermore� from DT
w�q

���Dw�q� �

W ���DT �q���D�q�W ��� � W � one can conclude that Dw�q� is a weighted unitary

interactor matrix� From Theorem �� the general solution of the weighted unitary interactor

matrix can be written as Dw�q� � 'D�q�W
����

Corollary � If the interactor matrix is a weighted unitary interactor matrix Dw� the

result obtained in Theorem  is equivalent to the solution of the weighted singular LQ

control problem�

J � E�Y T
t WYt�

where W is the weighting matrix�



��

Proof� It follows from the same procedure as the proof of Lemma �� Thus minimization

of the variance of the interactor��ltered variable �Yt by a proper optimal control law is

equivalent to minimization of the weighted variance of the original variable Yt�

The unitary interactor matrix or weighted unitary interact matrix can be used for the

design of singular LQ output feedback control law�

Theorem 	 If a weighted unitary interactor is used for a process without non�invertible

zeros� then its minimum variance control law as solved in Corollary  via Theorem  is the

same as the singular LQ output feedback control law solved via spectral factorization�Harris

and MacGregor� ����� Harris et al�� ������

Proof� For a MIMO process

Yt � TUt �Nat

where N can be represented by an ARIMA model as N � ()��� Harris and

MacGregor�	
��� and Harris et al��	

�� have shown that the singular LQ control law

�when input penalty matrix Q� � �� is solved as

Ut � �H��Yt � L*��Ut� � �H�Nat � �H�()
��at ������

where L*�� � T is a matrix fraction representation of the transfer matrix T � H� is a �lter

transfer matrix with

H� � �T��F� ������

where �T�� � *'�� is the optimal inverse of T �a proper inverse�� ' is solved from spectral

factorization

'H' � LHWL ������

where W is the output weighting matrix �� F� is solved via

F� � �(�� ������

where � is solved from the Diophantine equation

LHW( � 'H� � qP �q�) ����
�

�In Harris and MacGregor ������� W is denoted as Q��



�


Notice that here we use the notation 'H�q��� � 'T �q� and LH�q��� � LT �q��

Left�multiplying both sides of ������ by *�H and right�multiplying by *��� and using

the fact that �T � '*�� and T � L*��� we have

�TH �T � THWT ������

If a weighted unitary interactor is used as a factorization of time delays� then �T � DwT

does not contain any in�nite zeros�time�delays�� and equation ������ or ������ is also

satis�ed� i�e� �T � �T � DwT � is the proper optimal inverse of T � Now left�multiplying

����
� by *�H yields

THW( � �TH� �*�H #qP �q�$) ����	�

Right�multiplying both sides of ����	� by )�� yields

THWN � �TH�)�� �*�H #qP �q�$ ������

From the de�nition of the weighted unitary interactor� we have

TH � �D��
w
�T �H � �THD�H

w � �THDwW
��

Substituting this into ������ yields

�THDwN � �TH�)�� �*�H #qP �q�$ ������

Multiplying ������ by �T�H results in

DwN � �)�� � �T�H*�H #qP �q�$ � �)�� � '�H #qP �q�$ � R�MF ������

The �rst term R � �)�� is simply a proper matrix and involves only negative power

terms of q��� The second term MF � '
�H #qP �q�$ � '�T �q�#qP �q�$ involves only positive

power terms of q� This has the same representation as in Theorem �� and therefore MF

must be a �nite order matrix polynomial�

Combining ������� ������� ������ and ������ yields

Ut � � �T���)��at � � �T��Rat ������



��

Under this control law� the closed�loop response can be written as

Yt � TUt �Nat

� �D��
w
�T �T��Rat �D��

w DwNat

� �D��
w Rat �D��

w #MF �R$at

� D��
w MFat ������

Therefore

at �M��
F DwYt

Substituting this into ������ yields

Ut � � �T��RM��
F DwYt ������

This yields the same control law as Theorem � with the weighted unitary interactor matrix�

Dw�

��� Numerical Example

Consider a �� � multivariable process� with the open�loop transfer function matrix T
and disturbance transfer function matrix N given by

T �

�
��

q��

����
q��
K��q��

�����q��

���q��

�����q��
q��

�����q��

�
��

N �

�
��

�
����	q��

����
����	q��

��	
����	q��

���
����	q��

�
��

Suppose that the LQ objective function is given by

J � E#Y T
t Yt$

Then� a unitary interactor matrix is required for the design of the optimal control law�

Following the procedure in Appendix A� a unitary interactor matrix D can be factored as�

D �

�
�� ���
���q �������q
�������q� ��
���q�

�
��



�	

and the order of the interactor matrix d � �� Thus� DN can be calculated as

DN �

�
��

������
q
�����	q���

����
q
�����	q���

������q�

�����	q���
������q�

�����	q���

�
��

From q�dDN � F � q�dR� one can calculate F and R as

F �

�
�� �	�	�	�q�� ������q��

��	
	� � ���
��q�� 	�	��� � �����	q��

�
��

R �

�
��

���		�
����	q��

���
�
����	q��

���
�
����	q��

������
����	q��

�
��

The optimal �minimum variance� control law can then be calculated from equation ������

The interactor��lter output � �Yt � q�dDYt� under optimal control is given by

equation ���	���

�Ytjmv � Fat �

�
�� �	�	�	�q�� ������q��

��	
	� � ���
��q�� 	�	��� � �����	q��

�
�� at

Now consider a weighted LQ objective

J � E#Y T
t WYt$

Suppose the weighting matrix is given by

W �

�
�� 	 �

� �

�
��

It follows from Corollary 	 that the weighted interactor matrix is given by

Dw � DW ���

where D is a unitary interactor matrix of the weighted transfer function matrix W ���T �

Following the procedure in Appendix A� the unitary interactor matrix D is calculated as

D �

�
�� �������q ����	��q
���	��q� �������q�

�
�� ������



��

Thus� the weighted unitary interactor matrix is

Dw �

�
�� �������q �	���
q
���	��q� �	��	�q�

�
��

The matrices F and R can be calculated from q�dDwN � F � q�dR as

F �

�
�� �	�����q�� ����	��q��

������� � ��	�	�q�� ������� � 	��	��q��

�
��

R �

�
��

�������
����	q��

����	�
����	q��

�����	�
����	q��

���	���
����	q��

�
��

The optimal �minimum variance� control law can then be calculated from equation �����

with the interactor matrix D substituted by the weighted unitary interactor matrix Dw�

i�e�

Ut � � �T��RM��
F DwYt � ��DwT �

��RF���q�dDw�Yt

The interactor��ltered output � �Yt � q�dDwYt� under optimal control is given by

equation ���	�� as

�Ytjmv � Fat �

�
�� �	�����q�� ����	��q��

������� � ��	�	�q�� ������� � 	��	��q��

�
�� at

��� Conclusions

This chapter has shown that the unitaryweighted�unitary interactor matrix is an

�ideal� factorization of the time�delays of multivariable systems for the design of minimum

variance control or singular LQ control� Using the unitaryweighted�unitary interactor

matrix� the simple multivariable minimum variance control strategy as proposed by

Goodwin and Sin�	
��� gives a unique solution which is identical to the singular LQ

output feedback control law �Harris and MacGregor� 	
���� This result is particularly

useful for multivariable control loop performance assessment and for the design of singular

LQ control of a minimum phase MIMO process�



Chapter �

Estimation of the Unitary

Interactor Matrices

��� Introduction

The notion of an interactor matrix�Wolovich and Falb� 	
��� for a multivariate system

can be best understood by relating it to the meaning of the time delay for a univariate

process� In the case of a univariate process� the time delay in terms of the sampling time is

equal to the number of zero or almost�zero impulse response coe�cients� and corresponds

to the time that elapses between the moment a change in the input occurs to the moment

it takes for this input to have an e�ect on the output" or it is the result of the �rst

nonsingular or non�zero impulse response coe�cient having an e�ect on the output� From

a systems theoretic viewpoint the delay corresponds to the number of in�nite zeros of a

discrete�time process�

This idea is easily generalized to the multivariate case also in terms of the impulse

response coe�cient or the Markov parameter matrices� In the multivariate case� the notion

of a delay corresponds to the fewest number of impulse response or Markov parameter

matrices whose linear combination is nonsingular� This means that a set of inputs acting

�A version of this chapter is to appear in the Journal of Process Control �in press�� and a shorter version

is also in the Proceedings of ���� IFAC World Congress�

��



��

via this speci�c linear combination of Markov parameter matrices can have a desired e�ect

on the output� This linear combination of impulse response matrices can be expressed in

a polynomial matrix form� The determinant of this polynomial matrix has as its roots

the number of in�nite zeros of the discrete time multivariate system� Simple examples

to illustrate these concepts are considered in Shah et al��	
���� The knowledge of the

interactor matrix is an important prerequisite to high performance control strategies such

as minimum variance control� However� until recently a knowledge of the delay or the

interactor matrix was tantamount to the knowledge of the entire process transfer function

matrix� As per the above de�nition� it should appear that relatively simple tests can

be performed to determine if a linear combination of the �rst few Markov or impulse

response matrices is singular or not� This is precisely the purpose of this chapter in which

we propose the use of a SVD�based procedure to determine if a linear combination of a set

of matrices has full rank� The proposed procedure allows us to compute the time delay

matrix with minimum e�ort using routine closed or open�loop data with dither excitation

and its subsequent use in multivariate control loop performance assessment or control law

design�

The algorithm for factoring the lower triangular interactor matrix as suggested by

Wolovich and Falb �	
��� and Goodwin and Sin �	
��� generally requires a complete

knowledge of the transfer function matrix� Shah et al� �	
��� and Mutoh and Ortega

�	

��� however� have suggested a solution of the interactor matrix by solving a set

of linear� algebraic equations of certain Markov parameter matrices �impulse response

coe�cient matrices�� This latter approach directly connects the Markov parameter

matrices to the interactor matrix without going through the transfer function and is

numerically convenient and attractive for estimation of the interactor matrix of a MIMO

process� The lower triangular interactor matrix has played an important role in classic

multivariable control� Readers are referred to Walgama �	
��� and Sripada �	
��� for

interesting discussions on this issue� Shah et al� �	
��� and Rogozinski et al� �	
��� have

also pointed out that the interactor matrix need not necessarily take the lower�triangular

form in application� For example� an interactor matrix with a unit�DC gain or other

useful features may be more important in practice� and therefore the interactor matrix



��

�as proposed by Wolovich and Falb� is not necessarily unique in the sense that it can have

forms other than the lower triangular form� However� the �optimal� form of the interactor

matrix is application dependent� For a deterministic system� optimal control design

based on the lower triangular interactor matrix yields a conditional minimum�time or

minimum�ISE control in the sense that the optimization is input�output pairing or ordering

dependent �Tsiligiannis and Svoronos� 	
���� For a stochastic system� optimal control

design based on the lower triangular interactor matrix yields a conditional minimum

variance control �Dugard et al�� 	
���� Peng and Kinnaert �	

�� and Bittanti et al�

�	

�� have introduced the unitary or spectrum interactor matrix for the design of singular

LQ state feedback control and optimal �lter� Design of multivariable �singular� LQ

control for processes with time delays usually involves spectral factorization �Harris and

MacGregor� 	
���� The unitary interactor matrix simpli�es such a procedure� It gives an

alternative derivation �with respect to Harris and MacGregor�	
���� of the LQ controller

for processes without �nite unstable zeros and with output penalty matrix Q� � I and

control weighting Q� � �� i�e� J � E#Y TY $� The unitary interactor matrix can be

easily extended to weighted unitary interactor� This weighted unitary interactor matrix

can then be used for the design of the weighted singular LQ controller� i�e� a controller

which minimizes J � E#Y TQ�Y $� The unitary interactor matrix is in fact a special case

of the nilpotent interactor matrix as de�ned by Rogozinski and co�workers �	
���	

���

and plays an important role in multivariate control loop performance assessment theory�

For closed�loop control performance assessment� estimation of the interactor matrix

under closed�loop conditions is desired� In this chapter� an algorithm for estimation of

the unitary interactor matrix is proposed� Using the proposed method� the interactor

matrix can be estimated from closed�loop data without estimation of the open�loop transfer

function matrix�

The main contributions of this chapter are� 	� development of a new method

for determination of the order of the interactor matrix by using the singular value

decomposition technique" �� extension of the results in Rogozinski et al� �	
��� and

Peng and Kinnaert �	

�� for factorization of the unitary interactor by using the �rst

few Markov parameters of a transfer function matrix" �� use of closed�loop data for the



��

estimation of the Markov parameters of the transfer function matrix" and �� experimental

evaluation and industrial application of the proposed algorithm� Unlike other interactor

factorization methods which generally require complete knowledge of the entire transfer

function matrix� this algorithm only requires the �rst few Markov parameter matrices�

This chapter is organized as follows� The method for determination of the order of

the interactor matrix is developed in Section ���� The algorithm for the calculation of the

unitary interactor matrix is then introduced in Section ���� The estimation of the unitary

interactor matrix under closed�loop conditions is given a detailed treatment in Section ����

The determination of a numerical rank is discussed in Section ���� The chapter ends with

illustration on a simulated example and a pilot�scale experiment in Section ���� and an

industrial application in Section ����

��� Determination of the order of interactor matrices

The interactor matrix has been given in Theorem 	� Wolovich and Falb �	
���� and

Goodwin and Sin �	
��� have suggested factoring a lower triangular interactor matrix

from the transfer function matrix� To do this� a priori knowledge of the entire transfer

matrix is generally required� This is a fairly strong requirement� Shah et al� �	
��� have

suggested factoring the interactor matrix directly from Markov parameters of the process�

This idea is further explored for the determination of the order of the interactor matrix�

The Markov parameter representation of a transfer function matrix can be written as

T �
�X
i��

Giq
�i�� ���	�

and the interactor matrix is written as

D � D�q
d �D�q

d�� � � � � �Dd��q �����

From Theorem 	�

lim
q����

DT � lim
q����

#D�q
d �D�q

d�� � � � ��Dd��q$#G�q
�� �G�q

�� � � � �$ � K



��

where K is a full rank matrix �i�e� rank�K��min�n�m��� we have

D�G� � �

D�G� �D�G� � �

���

Dd��G� � � � ��D�Gd�� �D�Gd�� � K

Solving the above algebraic equations yields the general solution of the interactor matrix�

The above algebraic equations can be further written in a matrix form as

#Dd��� � � � � D�$

�
������������

G� � � � � � �

G� G� � � � � �
���

���
� � �

� � �
���

Gd�� Gd�� � � � � � � �

Gd�� Gd�� � � � � � � G�

�
������������
� #K� �� � � � � �$ �����

or for simplicity

D G � K �����

where G is a block�Toeplitz matrix� D denotes the algebraic matrix form of the interactor�

while D is the matrix polynomial form of the interactor� If G� is not full rank� then

in addition to the in�nite zeros due to the zero�order�hold� at least one more in�nite

zero exists in the transfer function matrix� Direct inversion for solving equation ����� is

impossible due to G being rank defective� Existence of the solution for equation ����� also

depends on the order of the interactor matrix d� i�e�� the �size� of G such that there is

at least an exact solution of D� For determining the order of the interactor matrix� the

singular value decomposition technique can be used�

Consider the singular value decomposition� of the block�Toeplitz matrix as�

G � U V T � #U�� U�$

�
��  r �

� �

�
��
�
�� V T

�

V T
�

�
�� �����

�Note here that the linear matrix equation is in the form of XA 	 B� instead of AX 	 B� where X

is the unknown vector or matrix� The de
nitions of the null space and the image space of A for the two

equations are consequently di�erent�
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where #U�� U�$ and #V�� V�$
T are orthogonal matrices� the columns of U� span the null space

of G �in the sense that UT
� G � ���  r is a full rank diagonal matrix� and the rows of V

T
�

span the row space of G�

Existence of the exact solution for equation ����� requires that 	� rank�G� �
rank�K��rank�K��min�n�m�� and �� each row of K must be within the row space spanned

by V T
� or orthogonal to the row space spanned by V T

� � i�e��

KV� � � �����

This can be simpli�ed by writing

KV� � #K� �� � � � � �$

�
��������

V��

V��
���

V�d

�
��������
� KV�� �����

where V�� is the upper partition of V� with its row dimension same as the column dimension

of T � Thus� the condition expressed by equation ����� is equivalent to

KV�� � � �����

If K �or T � is a square matrix or is an n�m non�square matrix with n � m� equation �����

is further simpli�ed to

V�� � � ���
�

If� however� these conditions are not satis�ed� the block�Toeplitz matrix must be

expanded by adding more Markov parameters until they are satis�ed� Thus� the order of

the interactor matrix d can be determined from Equation ����� or ���
��

If T is a square transfer function matrix� then the nullity increasing property of the

block�Toeplitz matrix �see Remark 	� can also be conveniently used to determine the order

of the interactor matrix�

Remark � Mutoh and Ortega ������ have suggested using the nullity increasing property

of Markov parameters for determination of the order of the interactor matrix� d� of a square



�


transfer function matrix� According to the nullity increasing property� the dimension of

null space of G increases with expansion of G until all d Markov parameters are included

in Matrix G�

In summary� the result presented in this section is not only useful for factorization of

the interactor matrix as discussed in the following sections� but also useful in the design of

multivariate adaptive control without a complete knowledge of the interactor matrix �Shah

et al�� 	
����

��� Factorization of unitary interactor matrices

The solution of equation ����� is not unique� The �optimal� solution depends on the

application� The unitary interactor matrix discussed in this section is one of several such

�optimal� solutions for the application in minimum variance control and multivariable

control loop performance assessment� Rogozinski et al��	
��� have introduced the nilpotent

interactor matrix� For a class of interactor matrices which are more suitable for LQ

design� Peng and Kinnaert �	

�� have further considered the unitary interactor matrix

which is a special case of the nilpotent interactor matrix� Bittanti et al��	

�� have

also de�ned a spectral interactor matrix� which has essentially the same property as the

right unitary interactor matrix discussed in a separate paper by Panlinski and Rogozinski

�	

��� In Chapter �� the unitary interactor matrix has been shown to be a suitable

factorization of the time delay for minimum variance or singular LQ control� It maintains

the spectral property of underlying system unchanged after in�nite zeros of the transfer

matrix are removed� The �Inner�Outer� factorization as introduced in �Chu� 	
��� factors

out an �all�pass� transfer matrix which also maintains the spectral property� However�

it requires the solution of an algebraic Riccati equation� Signi�cant additional e�ort and

process information are then required to factor out the in�nite zeros from the Inner�Outer

factorization�

The algorithm for the calculation of the unitary interactor matrix proposed by

Rogozinski et al� requires right matrix fraction �RMF� of the transfer matrix� This is



��

tantamount to knowing the entire transfer function matrix� In the present chapter� if the

Markov parameter representation is used� the algorithm can be simpli�ed�

Assumption � � T is of a full rank n�m rational polynomial transfer function matrix�

i�e�� rank#T �q���$ � min�n�m�

Assumption � � T is proper� i�e�� limq���� T �q
��� ���

A block matrix of the �rst d Markov parameters is expressed in a block matrix form

as

* � #GT
� � G

T
� � � � �GT

d $
T

Once this block matrix * is formed� the unitary interactor matrixD�q� can be factored out

from this block matrix following the procedure in Rogozinski et al� �	
��� and Peng and

Kinnaert �	

��� However� the numerator matrix coe�cients of the right matrix fraction

�RMF� of T would be replaced by the �rst d Markov parameter matrices� Note that even

without the knowledge of the order of the interactor matrix d� the algorithm can also

factor the unitary interactor matrix but must include enough Markov parameter matrices

into * by� e�g� trial and error�

Example � A numerical example is given to illustrate the proposed algorithm

Consider a �� � transfer function matrix�

T �

�
��

q��

�����q��
q��

�����q��

�q��

�����q��
�q��

����
q��

�
�� ���	��

To determine the order of the interactor matrix� using the SVD method �skipping the �rst

step G � G� which is obviously rank defective� gives

G �

�
�� G� �

G� G�

�
�� �

�
��������

	 	 � �

� � � �

��	 ��	 	 	

��� ��� � �

�
��������

���		�
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Using the SVD decomposition �G � U V T � and Equation ����� gives

U� �

�
��������

���
��

�������
�

�

�
��������

V� �

�
��������

�

�

������	
�����	

�
��������

 r �

�
�����
����	� � �

� ������ �

� � �����


�
�����

The column dimension of T is �� thus the upper partition of V� can be written as

V�� �

�
�� �

�

�
��

and rank�G� � rank�K� � min�n�m� � �� The conditions for existence of the interactor

matrix are therefore satis�ed� and consequently the order of the interactor matrix d � �

is selected� The block matrix of the �rst two Markov parameters can be formed as

* �

�
�� 	 � ��	 ���

	 � ��	 ���

�
��
T

Following the algorithm in Rogozinski et al� �	
��� �see also Appendix A�� a unitary

interactor matrix can be factored as

D �

�
�� �������q ����
��q
����
��q� ������q�

�
�� ���	��

It can be easily veri�ed that DT �q���D�q� � I�

��� Estimation of the interactor matrix under closed�loop

conditions

The proposed factorization algorithm requires only the �rst d Markov parameter

matrices �or impulse response coe�cient matrices�� i�e�� the �rst several steps of the initial

responses of a system� Since the �rst few Markov parameter matrices contribute to the

initial transient response of the process� these parameters characterize the high frequency

dynamics of the process� Thus the interactor matrix� which consists of a linear combination



��

of the �rst few Markov parameters� typically represents the high�frequency gain �Shah

et al�� 	
��� of a system� An identi�cation strategy which can yield good estimates in the

high frequency range is more desired� A relatively high�frequency dither signal may be used

for such purpose� Computationally a correlation analysis generally provides a relatively

good estimate of these �rst few Markov parameters� since V ar� �Gk� � 	��N � k��Box

and Jenkins� 	
���� where �Gk is the estimated Markov parameters via cross correlation

analysis� and N is total number of data points used for the estimation� Alternatively� an

FIR or a parametric model can also be �tted from input�output data� which can also yield

Markov parameters� By utilizing the following lemma� correlation analysis or parametric

model �tting can be performed directly from closed�loop data�

Lemma � For a multivariable process as shown in Figure ���� the interactor matrix �Dcl�

of the closed�loop transfer function matrix from Wt to Yt �Tcl � �I�TQ�
��T � is the same

as the interactor matrix �D� of the open�loop transfer function matrix �T �

Proof� It follows from the matrix inversion lemma �Soderstrom and Stoica� 	
�
� that

Tcl � �I � TQ���T

� #I � T �QT � I���Q$T

� T �I �QT ���

Thus� if D is the interactor matrix of T � then limq����DT � K and

lim
q����

DTcl � lim
q����

DT �I �QT ���

N

t

tt

t
ttY U Y

W

wG

TQ
++++

-

1 a2a

sp

Figure ��	� A simpli�ed process control loop diagram
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� lim
q����

DT �I � ���� �due to the zero�order�hold�

� K

On the other hand� if Dcl is the interactor matrix of Tcl� then limq����DclTcl � Kcl� or

lim
q����

DclT �I �QT ��� � Kcl

Thus

lim
q����

DclT � Kcl

and therefore Dcl is also the interactor matrix of the open�loop transfer function matrix

T �

If the dither signal is inserted from the setpoint� the same conclusion holds for the closed�

loop transfer function matrix from Y sp
t to Yt following the same procedure of the proof�

provided that the controller transfer function matrix does not introduce new in�nite zeros

to the process�

Remark � This lemma provides a well�known fact that the delay structure or the

interactor matrix is �feedback invariant��Wolovich and Falb� 	
���� i�e� the Markov

parameters of the open and closed�loop transfer function matrix are di�erent but their

linear combination yields the same interactor matrix� With this result� the interactor

matrix of an open�loop transfer function can be estimated directly from the closed�loop

data�

Whenever the dither signal is �white� or can be whitened by time series analysis� simple

correlation analysis can be performed� For actual plants� a random dither signal may not

be allowed� For such case simple step changes of the setpoint may be conducted instead�

However� such simple setpoint signals may not be su�ciently modelled by a time series

model� and therefore a correlation analysis is not appropriate� In this case� a parametric

model �including FIR� should be considered� As mentioned earlier� one must keep in mind

that a low�frequency dither signal may yield a poorer estimate of the interactor matrix

than a relatively high�frequency dither signal�



��

Our purpose is to identify the interactor matrix from closed�loop data via the dither

signal or the setpoint to the output� A MISO identi�cation procedure can be used if

the dither signals or setpoint changes of all loops are conducted simultaneously� If�

however� the dither signal or setpoint change of each loop is conducted separately� a

SISO identi�cation procedure can be used�

Remark � A typical industrial process could be very high order and subject to non�

linearity� A process under regulatory control usually operates around a nominal point�

Identi�cation of the interactor matrix under closed�loop conditions therefore provides a

more realistic estimate than under open�loop conditions in the sense that it gives the

interactor matrix of the process around the current operating point� This property

is particularly useful for adaptive control and control loop performance monitoring�

Similarly� a good estimate of the �rst few Markov parameters or initial transient responses

is more important than a �good� estimate of the overall transfer function matrix which

often compromises a �t over a wider frequency range� Computationally� a direct

identi�cation of the �rst few Markov parameters is also more desirable than identi�cation

of the full transfer function matrix �rst and then transferring it to Markov parameters�

Therefore� factorization of the interactor matrix from the �rst few Markov parameters is

preferred to factorization of the interactor matrix from the transfer function matrix�

��� Numerical rank

The estimated Markov parameter matrices are not exact due to disturbances� and

this makes numerical determination of the rank of the block�Toeplitz matrix G somewhat

arbitrary� To cope with the di�culty� a result from Aoki �	
��� �see also Paige �	
�	�� is

used�

Let H be a theoretical matrix with its theoretically exact singular value decomposition�

U V T � Suppose that a numerically constructed approximation to H is available as

�H � H �&H� where it is known that jjH � �Hjj � ajj �H jj� Here the constant a represents
a measure of data accuracy� If the computer round�o� error is omitted� then in terms of



��

the singular values of H and �H� this inequality can be stated as

j�i � ��ij � a���

where �i� ��i denote the i
th theoretical singular and calculated singular values respectively�

If ��r is greater than a ���� but ��r�� is less than this number then clearly �r is positive�

Hence the rank of the matrix is at least r� The next singular value� �r�� may be possibly

zero� Such an r may then be chosen as the numerical rank of the true but unknown matrix

H�

Golub and van Loan�	
�
� have another useful result that the di�erence of the singular

value of H�E and H is bounded by the largest singular value of E� where E is considered

as a perturbation matrix� We will regard this largest singular value as the threshold value�

The above results can be applied to �nd the rank of Gi and G� The Aoki approach

requires a priori knowledge of a� To �nd the value a� we may use an empirical value or a

statistical value� As an example� Tiao and Box �	
�	� use ��
p
M �where M is the sample

size� as the relative error� a�

The threshold value approach is also useful if some pre�knowledge of perturbation is

available� The correlation analysis or FIR model �tting often provides such knowledge�

In addition to the Markov parameter matrices expressed by equation ���	�� the Markov

parameter matrix corresponding to the zero order of q� written as G�� in accordance with

equation ���	�� is also obtained simultaneously in the correlation analysis� Due to the zero�

order�hold� G�� is theoretically zero� and therefore it does not appear in equation ���	��

However its estimation is not zero due to disturbance� Thus� the estimated value of G��

provides an approximation of the perturbation matrix� E� and can be used to determine

the rank of the estimated Markov parameters� Once the order of the interactor matrix is

determined� the column block matrix of the Markov parameters can be formed� and the

factorization of the unitary interactor matrix can proceed�
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��� Simulation and experimental evaluation on a pilot

scale process

Example � A closed�loop multivariable process� represented by the block diagram shown

in Figure ���� is simulated� The interactor factorization algorithm based on correlation

analysis is used to �nd the closed�loop interactor matrix� and the results are compared

to the open�loop interactor matrix� To keep routine operation of process and to show the

asymptotic property of correlation analysis� the magnitude of the dither signal is chosen

such that it has a very weak e�ect on the process output relative to the existing process

disturbances�

For the sake of comparison� we use the same open�loop transfer function T as that of

example �� The remaining transfer function matrices of Figure ��	 take the following

values�

Q �

�
�� ��� �

� ���

�
�� N �

�
�� 	 �

� �

�
�� Gw �

�
�� 	 �

� 	

�
��

The setpoint is assumed to be zero� a�t and a�t are white noise random processes with

 a� � �����I and  a� � ��	�I� In this simulation� the existing variance of the output

without the dither signal has a magnitude of

 Y �

�
�� ������ ���
��

���
�� ������

�
�� ���	��

With injection of the dither signal� variance of the process output becomes

 Y �

�
�� �����	 ������

������ ���
��

�
��

Thus the dither signal has a negligible e�ect on the process� Since the dither signal is

weak� a relatively large sample size of ���� points is used�� Applying the cross�correlation

analysis� the �rst three Markov parameter matrices �including G��� are calculated as

�G�� �

�
�� ������� ���	��

������� ����	��

�
�� �G� �

�
�� 	��	�	 ��
���

������ 	�
���

�
�� �G� �

�
�� ���
��	 �������
�	���
� �	�	���

�
��

�The sample size can certainly be reduced if the magnitude of the dither signal is increased�
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The SVD decomposition of �G�� yields the largest singular value as ������� Thus� the

value of ������ can be taken as the threshold to decide if a singular value is signi�cantly

di�erent from zero� We can also use the relative error a � ��
p
N � ��

p
���� � ������ to

test the rank�

Form the matrix G as G � �G�� The SVD decomposition of G yields

U �

�
�� ������ ���
��

���
�� �������

�
��  �

�
�� ��	��� �

� ������

�
�� V �

�
�� ������ ����
��
���
�� ������

�
��

Compared to either the threshold value or the relative error� it is clearly reasonable to

assume that rank�G� � 	� and no exact solution of the matrix D exists� Thus� the

dimension of G must be increased by adding more Markov parameter matrices� Before

collecting more Markov parameters� It is convenient for further analysis to modify �G� by

setting its smallest singular value to zero� i�e��

�G�
� � U �V

�

�
�� ������ ���
��

���
�� �������

�
��
�
�� ��	��� �

� �

�
��
�
�� ������ ����
��
���
�� ������

�
�� �

�
�� 	��	�� ��
�
�

������ 	�
���

�
��

This is a reasonable approximation when a singular value is signi�cantly smaller than

other singular values and the matrix has been tested to be rank defective� If fact� it

is recommended to test the rank of each Markov parameter matrix and modify them

accordingly before one forms the block�Toeplitz matrix G and the block matrix *� Now

increase the dimension of G by

G �

�
�� �G�

� �

�G�
�G�
�

�
�� ���	��

The SVD decomposition yields

 �

�
��������

������ � � �

� ������ � �

� � ������ �

� � � �

�
��������

V �

�
��������

������ ������� ���
�� �

������ �����
� ����	�� �

����	�� ������� ������ ����
��
����

	 ������� �����	 ������

�
��������

Clearly rank�G� � � and

V�� �

�
�� �

�

�
��



��

An exact solution of D exists and the order of the interactor matrix d � � is selected�

The block matrix is formed as

�* �

�
�� 	��	�� ������ ���
��	 �	���
�
��
�
� 	�
��� ������� �	�	���

�
��
T

Following the algorithm in �Rogozinski et al�� 	
��� �see Appendix A also�� the estimated

unitary interactor matrix can be factored as

�D �

�
�� �������q ����
��q
����
��q� ������q�

�
��

This result agrees well with the theoretical open�loop interactor matrix shown in

Equation ���	���

Example 	 To evaluate the proposed algorithm on a physical process� both open�loop and

closed�loop experiments have been conducted on a two�interacting tank pilot�scale process�

Each tank is a double�walled glass tank �	 cm high with an inside diameter of ���� cm�

The levels �h�� h�� of the two tanks are the two controlled variables� The signals to the two

valves �u�� u�� are manipulated to control the levels� The process is shown in �gure ���

The sampling interval is taken as Ts � ��sec� A two�step delay �including zero�order�

hold� is introduced in front of the �rst valve� and a three�step delay �including zero�order�

hold� is introduced in front of the second valve� Two sets of multiloop P�PI controllers

are implemented in the experiments� Open�loop and closed�loop interactor matrices are

estimated from open�loop and closed�loop data respectively� The estimated open�loop and

closed�loop interactor matrices are then compared�

An open�loop multivariable test was conducted with the result shown in �gure ���� The two

manipulated signals� u� and u�� are applied simultaneously� The multivariate prediction

error method �Ljung� 	
��� is used for identi�cation of this multivariate process� which

yields the following Markov parameters�

Topen �

�
�� ��	��� �

���	�
 �

�
�� q�� �

�
�� ��	��� ���	��

������ ��	��


�
�� q�� � � � �



�


Following the procedure as introduced in the foregoing sections� a unitary interactor matrix

can be calculated as

Dopen �

�
�� ���

��q� ���	���q�

���	���q� ��

��q�

�
�� ���	��

The interactor matrix depends on the �rst few steps of the initial responses� Since the

initial responses of the interaction terms between the two tanks are relatively weak� the

interactor matrix is dominated by the diagonal terms�

Closed�loop tests with a P�controller �Proportional only� and with a PI�controller are

conducted respectively� which yield results shown in �gure ���� Dither signals� w� and

w�� are applied to the process simultaneously� The following Markov parameters of the

closed�loop process are obtained from the closed�loop data�

TP �

�
�� ��	
	� �

���	
� �

�
�� q�� �

�
�� ��	��� ����
�

����	� ��	���

�
�� q�� � � � �

and

TPI �

�
�� ��	��� �

���	�� �

�
�� q�� �

�
�� ��	��	 ���	��

�����
 ��	�
�

�
�� q�� � � � �

These yield the closed�loop interactor matrices as

DP �

�
�� ���

��q� ���	���q�

���	���q� ��

��q�

�
�� ���	��

and

DPI �

�
�� ���

��q� ���	���q�

���	���q� ��

��q�

�
�� ���	��

The similarity between equation ���	�� and equations ���	�� and ���	�� clearly

demonstrates that the interactor matrix is �feedback�invariant�� and can be estimated

from closed�loop data� The small di�erences between these three interactor matrices may

be attributed to disturbances�

��� Industrial application

Example � A multivariate industrial distillation process is studied in this example� A
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Figure ���� Schematic of the two�interacting tank pilot�scale process�
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Figure ���� Open�loop �input and output� test data where u � � corresponds to ���

open of the valve� and the units of h� and h� are voltage� The time scale

is the sampling intervals�
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Figure ���� Closed�loop �dither and output� test data where the units of h� and h�
are voltage� The time scale is the sampling intervals�
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unitary interactor matrix is estimated from industrial closed�loop data�

The process consists of � distillation towers as shown in �gure ���� The bottom product

of the last tower is the main product and the distillates or the top products of the

remaining two towers are recycled to the upstream process� The problem encountered

for the multiloop controller design of this process is the strong interaction between levels

of the �rst two towers and between the temperature and the level of the second tower�

Since the last tower is relatively small� temperature variation in the second tower can

signi�cantly disturb the temperature of the last tower� Regulating the temperature of the

last tower at a constant value is important for regulating the quality of the �nal product�

Due to the strong interaction between the temperature and the level loops in the second

tower� a multivariable controller is clearly desirable� Therefore� the control objective in

this study is the temperature and level control of the second tower in order to reduce

disturbances to the last tower� To design a high performance multivariable controller� it

is in the interest of control engineers to know the interactor matrix�

Simple closed�loop setpoint changes were conducted on this process� To simplify

the test� setpoint changes of the level and temperature were conducted separately�

Identi�cation of the closed�loop Markov parameters or transfer function matrix can

therefore be cast as four separate open�loop identi�cation problems of SISO impulse

response parameters or transfer functions� Figure ��� shows the four SISO identi�cation

results� The corresponding setpoints are shown in �gure ���� To identify closed�loop

LC

LC

TC

Steam

Feed

Product

Recycled

Figure ���� The industrial process �owsheet
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Figure ���� Setpoints for the closed�loop tests� The time scale is the sampling intervals

transfer function matrices of the temperature and level� only two experiments are required�

One is for the level setpoint test� and the other one is for the temperature setpoint test�

However� in this example the level setpoint tests were conducted twice with di�erent

excitation signals due to saturated data record of the temperature response when the �rst

set of level setpoint test was conducted� Note that in �gure ���� the solid line denotes

the estimated�model prediction based only on the past inputs� and the dash�doted line

denotes actual outputs�

The four identi�ed SISO models form the closed�loop transfer function matrix and

yield the following Markov parameters�

�G �

�
�� � �

� ��	�	�

�
�� q�� �

�
�� � ������

���	�� ��	���

�
�� q�� �

�

�
�� ����	� �������
���		� ��	���

�
�� q�� � � � �

Since time�delays of each SISO model can be easily determined through SISO identi�cation

procedure �Soderstrom and Stoica� 	
�
�� zeros which appear in the above Markov



��

0 100 200 300
−10

−5

%0

5

10
Level − Level SP

0 50 100 150
−1

−0.5

C

0

0.5
Temp. − Level SP

0 100 200 300
−4

−2

0
%

2

4

6
Level − Temp. SP

0 100 200 300
−1

−0.5

C
0

0.5

Temp. − Temp. SP

Figure ���� Predicted vs actual outputs� all data have been zero�mean centered� The

time scale is the sampling intervals

parameter matrices are exact zeros and correspond to time�delays in the SISO models�

Following the same procedure as introduced earlier� an order of the interactor matrix

d � � is obtained� The block matrix of the �rst three Markov parameters is formed as

�* �

�
�� � � � ���	�� ����	� ���		�

� ��	�	� ������
 ��	��� ������� ��	���

�
��
T

The unitary interactor matrix is calculated as

D �

�
�� ��
��
q� �������q
������q� ��
��
q�

�
��

��	 Conclusions

In this chapter� an algorithm has been developed for estimating interactor matrices

and in particular the unitary interactor matrices under closed�loop as well as open�loop

conditions� The singular value decomposition method has been used to determine the order

of the interactor matrix� The algorithm for factorization of the unitary interactor matrix



��

has been simpli�ed by using only �rst few Markov parameter matrices� The proposed

algorithm has been evaluated by simulated example� pilot�scale experiment and industrial

processes� The results presented in this chapter are useful for the design of minimum

variance or singular LQ control� optimal H��control� optimal �ltering� and particularly

multivariable control loop performance assessment methods�



Chapter �

Feedback Controller Performance

Assessment� Simple Interactor

��� Introduction

The interactor matrix D can be one of the three forms as discussed in Chapter �� If

D is of the form� D � qdI� then the transfer function matrix T is regarded as having a

simple interactor matrix� This is the simplest form of the interactor matrices� Although it

is usually unlikely to encounter a real process with a simple interactor matrix� the result

presented in this chapter provides a basis for solutions to processes with diagonal and

general interactor matrices that follow later in this thesis�

This chapter is organized as follows� The feedback controller�invariance property of

the minimum variance control term is discussed in Section ���� The FCOR �for Filtering

and CORrelation analysis� algorithm is presented in Section ���� The proposed algorithm

is illustrated by a simulated example in Section ���� followed by concluding remarks in

Section ���

�A version of this chapter is in the Proceedings of ���� American Control Conference and a part of

material will also appear in Automatica �in press��

��
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��� Feedback controller�invariance of minimum variance

term and its separation from routine operating data

The simplest form of a multivariable process has a square process transfer function

matrix with a simple interactor matrix� Keviczky �Keviczky and Hetthessy� 	
��� and

Borison �Borison� 	
�
� have given the minimum variance control law for processes with

simple interactor matrices� The purpose of this section is to show that the minimum

variance term is feedback control invariant and can be estimated from routine operating

data�

Theorem � For the multivariable process with a simple interactor matrix�

Yt � TUt �Nat ���	�

the minimum variance control is obtained by minimizing

J � E#Y T
t Yt$

or equivalently �for the simple interactor matrix� minimizing

J � E#YtY
T
t $

The performance measure is given by the following steps�

�� The quadratic measure of minimum variance is given by

E#Y T
t Yt$min � E�eTt ��et� � tr�V ar�Fat��

and the minimum variance itself is given by

V ar�Yt�jmin � V ar�et� � V ar�Fat�

where et � Fat� the polynomial matrix F depends only on the time�delay d and the

noise model� and satis�es the identity�

q�dDN � F� � � � �� Fd��q
��d���� �z �

F

�q�dR

where R is a proper rational transfer function matrix� and furthermore
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� if one models closed�loop routine operating data under feedback control by the

following multivariate moving�average process�

Yt �E�Yt� � F�at � F�at�� � � � �� Fd��at�d��� �z �
et

�L�at�d � L�at�d�� � � � �� �z �
wt�d

then the minimum variance term� et � Fat� consists of the �rst d terms of this

moving�average model� and therefore can be separated using time series analysis of

routine operating data and be used as a benchmark measure of multivariate minimum

variance control�

Proof� For this case of the simple interactor matrix� the transfer function matrix can

be written as

T � q�d �T �����

where �T is the delay�free transfer function matrix of T � Substituting equation ����� into

equation ���	� yields

Yt � q�d �TUt �Nat

Consider the feedback control law given by Ut � �QYt� The closed�loop transfer function
is then given by

Yt � �q�d �TQYt �Nat �����

Now consider the Diophantine identity�

N � F � q�dR �����

where

F � F� � F�q
�� � � � �� Fd��q

��d���

and R is the remaining proper and rational transfer function matrix� Substituting

equation ����� into equation ����� gives

Yt � �q
dI � �TQ���qd�F � q�dR�at



�


Applying the matrix inverse lemma yields

Yt � #q�dI � q�d �T �I � q�dQ �T ���Qq�d$qd#F � q�dR$at

� Fat � q�d �T �I � q�dQ �T ���QFat � q�dRat �

�q��d �T �I � q�dQ �T ���QRat

� Fat � q�dRat � q�d �T �I � q�dQ �T ���QNat

�
� Fat � Lat�d �����

where

L � R� �T �I � q�dQ �T ���QN �����

is a proper rational transfer function matrix� The two terms on the right hand side of

equation ����� are therefore independent�

De�ne et � Fat and wt�d � Lat�d� Then

V ar�Yt� � V ar�et� � V ar�Fat�

and

E#Y T
t Yt$ � E#eTt et$ � tr�V ar�Fat��

The equality holds under minimum variance control when L � �� The minimum variance

control law is therefore obtained by simply setting L � � in equation ������ The resulting

controller transfer function� Ut � �QYt is given by

Q � � �T���q�dI �NR�����

Combining this with equation ����� yields

Q � � �T��#q�dI � �F � q�dR�R��$��

� �T��RF�� �����

which is the minimum variance control law� Notice that in equation ������ the controller

has no in�uence on the �rst term� which is minimum variance term of the process output�

Ytjmv � et � Fat � �F� � F�q
�� � � � �� Fd��q

��d����at �����



��

Therefore if a closed�loop response under feedback control is modelled by a multivariate

moving�average process as

�Yt �E� �Yt� � F�at � F�at�� � � � � � Fd��at�d��� �z �
et

�L�at�d � L�at�d�� � � � �� �z �
wt�d

���
�

It follows that the feedback control invariant term� et� can be separated out from other

feedback control relevant terms� The minimum variance performance is subsequently

estimated from et�

��� The FCOR algorithm

����� Multivariable performance index

As proved in the last section� et
�
� Fat is the feedback control invariant minimum

variance term� This minimum variance term can be used as a benchmark for the

multivariable performance measure� By using equation ������ one can write the minimum

variance term et as

et � �F� � q��F� � � � �� q�d��Fd���at

Thus

 mv � E#ete
T
t $

� F� aF
T
� � � � �� Fd�� aF

T
d�� ���	��

where

 a � E�ata
T
t �

On the other hand� the closed�loop output vector Yt under feedback control can be

represented by an in�nite multivariate moving average process� i�e��

Yt � F�at � F�at�� � � � �� Fd��at�d�� � Fdat�d � � � � ���		�

So the covariance of the output and the noise at lag i is given by

 Y a�i� � E#Yta
T
t�i$ � Fi a ���	��



�	

Now consider the de�nition of the performance index as

��d�
�
� tr� mv

� ��Y ��n ���	��

where n is the dimension of Yt� � Y � diag� Y � and  Y � V ar�Yt�� When a process

is under minimum variance control� we have  Y �  mv" thus it can be shown that

��d� � 	� If control is poor relative to the minimum variance control� then we should

expect � � ��d� � 	� Applying equation ���	�� to a SISO process where n � 	 gives

��d� � tr�
��mv

��y
� �

��mv

��y

which is the performance measure of a SISO process� A correlation analysis yields a

computationally simple procedure for calculating ��d� as follows�

Equation ���	�� can be written as

n� ��d� � tr� mv
� ��Y �

� tr�� 
����
Y  mv

� 
����
Y � ���	��

Substituting equations ���	�� into equation ���	�� and using the relation established in

equation ���	�� yields

n� ��d� � tr#� 
����
Y  Y a��� 

��
a  aY ���� 

����
Y �

�� 
����
Y  Y a�	� 

��
a  aY �	�� 

����
Y �

� � � �� � 
����
Y  Y a�d� 	� ��a  aY �d� 	�� ����Y $

� tr��Y a����
��
a �aY ��� � �Y a�	��

��
a �aY �	� � � � ��

��Y a�d� 	����a �aY �d� 	��

where �Y a�i� � � 
����
Y  Y a�i�� 

����
a � �� a

�
� diag� a��� is the multivariate cross correlation

between Yt and at�i" �a � � 
����
a  a � 

����
a � is the multivariate autocorrelation of at� If a

scaled cross correlation is de�ned as !�Y a�i�
�
� �Y a�i��

����
a and

Z
�
�

	
!�Y a��� !�Y a�	� � � � !�Y a�d� 	�




then we have

��d� � trZZT�n ���	��



��

Note from equation ���	�� and equation ���	�� that

ZZT � � 
����
Y  mv

� 
����
Y

The above multivariable performance thus has a clear physical interpretation which is

stated as follows� The diagonal elements of matrix ZZT are the performance measures of

each single output �Y ��d�� � � �� �Y n�d�� and therefore

��d� � tr�ZZT ��n �
�Y ��d� � � � � � �Y n�d�

n

� �the average performance of n outputs�

where the individual performance� �Y i�d�� is the ratio of the minimum variance �under

multivariable minimum variance control� and the actual variance in the ith output� The

performance measure is therefore a comparison between the variance of each single output

and that of the corresponding minimum variance output achieved under multivariable

minimum variance control� Thus� one can simultaneously obtain the single output

performance index from the diagonal elements of the matrix ZZT � when we calculate the

overall multivariable performance index ��d�� Furthermore� if we take the process o�set

into account� the modi�ed performance index can be written as

���d� � tr� mv
� ��mse��n ���	��

where � mse is the diagonal matrix of  mse� and  mse �  Y � ��T is the mean square

error� The expression for ���d� can also be simpli�ed by following the analogous procedure

for ��d� that results in expression ���	�� from equation ���	���

Although at is unknown� it can be replaced by the estimated white noise �at as

introduced in the next section� The FCOR approach provides a relatively easy way to

calculate the performance measure of a multivariable process with a simple interactor

matrix� However� the algorithm is not limited to the simple interactor matrix process�

In the following chapters it will be shown that� via interactor �ltering of the outputs�

multivariable processes with diagonal or triangular interactor matrices can eventually be

transferred to the simple interactor matrix form for the sake of minimum variance control

and performance assessment�



��

����� Filtering or whitening

The original source of variation in a regulatory closed�loop process may be traced back

to a white noise excitation� at� as shown in Figure ��	� The relationship between Yt and

at is established by the closed�loop transfer function GY a � �I � TQ���N � Thus the

variation of Yt is due to the excitation of at through GY a� The estimation of this noise

sequence is important for performance assessment� By reversing the process� the white

noise sequence can be viewed as an output from a �lter whose input is the process output

Yt� Many methods have been developed to �t the �lter model and obtain estimates of

the white noise sequence from output data� and in some literature the estimation of at

is known as �whitening� or �prewhitening� �Box and MacGregor� 	
��" Soderstrom and

Stoica� 	
�
" Goodwin and Sin� 	
���� Such a whitened noise sequence can also be denoted

as the �innovation sequence� �Goodwin and Sin� 	
���� The process of obtaining such a

�whitening� �lter is analogous to time�series modeling� where the �nal test of the adequacy

of the model consists of checking if the residuals are �white�" these residuals are the

estimated white noise sequence� In contrast to time�series modeling where the estimation

of the model is of interest� the residual or the innovation sequence is the main item of

interest in this �whitening� process� Depending on data� an AR or ARMA �alternatively

a Kalman Filter based innovation model in state space representation� can be used for

estimating at� The identi�cation of these MIMO innovation models �i�e�� �whitening�

�lters� has attracted some interest �Reinsel� 	

�" Aoki� 	
���� Many e�cient algorithms

have been developed such as arx� armax� etc� in Matlab �The Math Works� Inc���

��� Simulation

Example � This example illustrates the performance assessment of a multivariable

process with a simple interactor matrix�

Consider a multivariable process� Yt � TUt �Nat� where

T � q��

�
��

�
����
q��

�
����	q��

�
�����q��

�
�����q��

�
��



��

N �

�
��

�
�����q��

�
�����q��

�
����
q��

�
����	q��

�
��

Because

lim
q����

q�T �

�
�� 	 �

	 	

�
��

is of full rank� we conclude that d � �� Using equation ������ N is separated to

N �

�
�� � � 	��q�� 	 � ���q��

	 � ���q�� � � q��

�
���

�
��

����q��

�����q��
����q��

�����q��

����q��

����
q��
��	q��

����	q��

�
��

�
� F � q��R ���	��

Under minimum variance control� the process output is written as et � Fat� and this

part of the output is invariant under feedback control and can be used as a benchmark to

access controller performance of this process�

For the sake of illustration� consider a simple proportional control of the form

Ut � �QYt � �

�
�� K �

� K

�
�� Yt

Applying the FCOR algorithm to the output vector Yt yields the results shown in

Figure ���� The solid line and the dashed line denote the theoretical value of the

performance indices with and without considering the o�set respectively� while the asterisk

and circle denote the corresponding estimated performance indices� The abscissa in this

graph corresponds to the value of the proportional gain� It can be seen that for this

form of proportional� diagonal control� if the o�set is not considered in the performance

measure� the maximum performance measure is ��� when the proportional gain K takes

the value of ��	� The performance measure under open�loop condition �when K � ��

appears to be acceptable compared to the maximum performance measure ������ If the

o�set of a process output is also considered in the measure of performance� a deteriorated

performance would be expected� As shown by the dashed line �the setpoint is taken as

Y sp
t � #�� �$T in the simulation�� the overall performance index is now lower than the

performance measure without considering the o�set� The open loop process�K � �� no



��

longer demonstrates good performance� The best performance is obtained when K � ���

instead of K � ��	� Increasing the proportional gain decreases the o�set and therefore

improves the performance when the o�set dominates the output� This is the reason that

the best performance shifts toward the right fromK � ��	 to K � ���� However� with gain

greater than ���� the process becomes more oscillatory and eventually becomes unstable�

When the variation caused by the oscillation dominates the output� the performance goes

down rapidly� The o�set no longer dominates the performance measure and the measure

now approaches the same performance as that without considering the o�set�

��� Conclusions

The multivariable performance measure has been de�ned� and the computationally

simple algorithm �the FCOR algorithm� to estimate multivariate performance indices has

been established in this chapter� The results can be applied to multivariable processes with

simple interactor matrices and provide a basis for the following chapters� The application

of the proposed algorithm has been demonstrated by a simulated example�
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represents an estimation based on �			 data points using the FCOR

algorithm�



Chapter �

Feedback Controller Performance

Assessment� Diagonal Interactor

��� Introduction

Although minimum variance control is not practically desirable due to its poor

robustness andor excessive control e�ort requirement� it does provide an absolute lower

bound on the process variance� This lower bound naturally serves as a useful benchmark

to evaluate current control loop performance if reduction of process variation is the

control objective� Such a control loop performance measure provides guidelines and useful

information for control engineers when they design� tune or upgrade controllers or control

strategies� If the best performance cannot satisfy the requirement� alternative control

strategies such as implementing feedforward control andor reducing dead time may be

necessary� For a number of industrial processes �particularly pulppaper processes��

reduction of process variation is the main objective in controller design� Performance

assessment with minimum variance control as the benchmark is therefore particularly

useful for such processes� In fact� the �rst application of the performance assessment

technique was on a paper machine �Astrom� 	
���� However� most industrial processes

�A version of this chapter is to appear in the Canadian Journal of Chemical Engineering� February�

�����

��



��

are inherently multivariate in nature� Performance assessment with multivariate minimum

variance control as the benchmark is therefore more desirable� This chapter is an extension

of Chapter � considering closed�loop performance assessment of multivariate processes with

the diagonal interactor matrix�

In this chapter� feedback invariance of multivariable processes with diagonal interactor

matrix is discussed in Section ���� followed by a brief extension of the FCOR algorithm

in Section ���� The chapter also considers a detailed evaluation of an industrial headbox

control system using routine operating data in Sections ��� and ����

��� Feedback controller�invariance of minimum variance

term and its separation from routine operating data

Chapter � has shown that the measure of minimum variance control performance of

SISO processes can be estimated from routine operating data� The key to this property

is that the minimum variance term is feedback control invariant� This idea has been

extended to MIMO processes with the simple interactor matrix in Chapter ��

For MIMO processes with a general interactor matrix �neither simple nor diagonal��

the feedback invariance property of minimum variance control �minimizing J � E�Yt �
Y sp
t �

T �Yt�Y sp
t � or J � E�Yt�Y sp

t �
TW �Yt�Y sp

t �� can also be solved by using the unitary

or weighted unitary interactor matrix as will be discussed in Chapter �� Just as a priori

knowledge of the time delay is required for SISO applications� performance assessment

of MIMO processes with general interactor matrices requires that the interactor matrix

must be known from a priori knowledge� This is tantamount to knowing the entire transfer

function matrix �Goodwin and Sin� 	
��� or at least the �rst few Markov parameters or

impulse response coe�cients of the transfer function matrix as discussed in Chapter ��

However� some well�designed multivariable processes have the structure of the diagonal

interactor� Like the SISO case� the diagonal interactor matrix only depends on the pure

time delays of the transfer function and is easier to obtain from a priori knowledge of

processes� This diagonal structure is therefore elaborated in the present chapter� The



�


treatment of the general interactor matrix is discussed in Chapter ��

In Chapter �� we have shown that for the process with a simple interactor matrix�

Yt � q�d �TUt �Nat ���	�

where d is the time delay and �T is the delay�free transfer function matrix� the following

inequality holds�

V ar�Yt� � E�et��et�
T � V ar�Fat�

where et � Fat� F is de�ned by the identity�

N � F� � F�q
�� � � � �� Fd��q

��d���� �z �
F

�q�dR

Fi �for i � �� � � � � d � 	� are also constant coe�cient matrices� and R is a proper rational

transfer function matrix� If closed�loop� routine operating data under feedback control is

modelled by a multivariate moving�average process�

Yt �E�Yt� � F�at � F�at�� � � � �� Fd��at�d��� �z �
et

�L�at�d � L�at�d�� � � � �� �z �
wt�d

�����

where Li �for i � �� 	� � � �� are constant coe�cient matrices� then the term wt�d is feedback

control dependent� and the term et consisting of the �rst d terms of the moving�average

model is independent of feedback control� Under minimumvariance control� wt�d vanishes�

and therefore et represents the process under minimum variance control and can be

estimated from routine operating data�

Now consider a process with a diagonal interactor matrix� D � diag�qd� � qd� � � � � � qdn��

Yt � TUt �Nat � D�� �TUt �Nat �����

Multiplying both sides of equation ����� by q�dD� where d � max�d�� � � � � dn�� yields

q�dDYt � q�d �TUt � q�dDNat

� q�d �TUt � �Nat �����

where �N is a proper transfer function matrix between the disturbance at and the interactor�

�ltered output q�dDYt� By de�ning �Yt � q�dDYt� equation ����� has been transferred to



��

the same form as equation ���	�� i�e��

�Yt � q�d �TUt � �Nat �����

This is a process with a simple interactor matrix� It follows that

V ar� �Yt� � E��et���et�
T � V ar� �Fat�

where �et � �Fat� and �F is de�ned by the identity�

�N � �F� � �F�q
�� � � � �� �Fd��q

��d���� �z �
�F

�q�d �R

Thus if the interactor��ltered� routine operating data under feedback closed�loop control

is modelled by a multivariate moving�average process�

�Yt �E� �Yt� � �F�at � �F�at�� � � � � � �Fd��at�d��� �z �
�et

� �L�at�d � �L�at�d�� � � � �� �z �
�wt�d

�����

then the minimum variance term �et is independent of feedback control and can therefore

be estimated from routine operating data�

Although the feedback invariance term �et represents the minimum variance term of the

interactor��ltered variable �Yt� it also represents the minimum variance term of the original

variable Yt� Dugard et al��	
��� have shown that for the case of the diagonal interactor

matrix� the control law which minimizes variance of the interactor��ltered variable �Yt also

minimizes variance of each element of the original variable Yt �i�e�� yi�t�� for i � 	� � � � � n��
Thus the diagonal elements of V ar��et� also provide absolute lower bounds of variance

for each original output under multivariable feedback control� Furthermore note that

�yi � q�d�diyi� and therefore

V ar�y��t�� � V ar��y��t��

���

V ar�yn�t�� � V ar��yn�t��

i�e�� the diagonal elements of variance �covariance� matrix of the original variable Yt are

the same as that of the interactor��ltered variable �Yt� As shown in Chapter �� the diagonal



�	

elements of the variance �covariance� matrix are the variance of each output and are the

terms required in performance assessment� Thus performance assessment of the original

variable Yt is equivalent to performance assessment of the interactor��ltered variable �Yt�

One natural question that arises is� how does one do performance evaluation of

processes that have non�minimum phase zeros% Desborough and Harris �	

�� and Huang

et al� �	

�b� have pointed out that this does not a�ect its application� Performance

assessment simply provides an absolute lower bound of process variance� although the

lower bound may or may not be practically realizable or admissible depending on the zero

location of the process� This information of the absolute lower bound is particularly useful

for the design� tuning� monitoring and upgrading of control loops� For loops which indicate

high performance measures� further tuning of controllers is neither necessary nor useful�

For loops which indicate poor performance measures� further analysis such as process

identi�cation andor re�design of the control algorithm may be necessary� Existence of

non�minimum phase zeros implies that the actual or achievable lower bound is larger than

the absolute lower bound� Consequently the performance measure underestimates the

actual or achievable performance� Take the performance measure of a SISO process as an

example� This performance measure or index is de�ned as ��d� � ��mv��
�
y � where �

�
mv is

the absolute lower bound of process variance� and ��y is the variance of the process output�

If a process has non�minimum phase zeros� then its achievable minimum variance is ���mv

with ���mv � ��mv� Consequently

��d� � ��mv��
�
y � ���mv��

�
y � ���d�

where ���d� is the achievable performance measure� Therefore the performance measure

��d� underestimates the achievable performance ���d�� However� this does not a�ect

its application� For example� if a process has an acceptable performance measure �e�g�

��d� � ����� design considerations due to the existence of non�minimum phase zeros should

in fact bolster its acceptability since its achievable performance measure is likely to be even

higher than its absolute performance measure �i�e� ���d� � ��d� � ����� On the other hand�

if a process has an unacceptable performance measure� it falls into the category of processes

which may require further analysis� e�g� identi�cation or controller re�design� Therefore



��

existence of non�minimum phase zeros does not matter since these non�minimum phase

zeros can be detected via identi�cation and the achievable performance measure ���d� can

be subsequently obtained anyway� Once again� it must be emphasized that the techniques

proposed in this chapter and other literature� e�g� Harris�	
�
�� only require routine

operating data and a priori knowledge of time delays�

��� Performance measures

����� The FCOR algorithm

The multivariable performance index is de�ned in Chapter � as�

��d�
�
� tr� mv

� ��Y ��n �����

and performance indices of individual outputs or the individual performance indices are

de�ned as�

#�y� � � � � � �yn $T
�
� diag� mv

� ��Y � �����

where � Y � diag� Y ��  Y � V ar�Yt�� and  mv is the lower bound of  Y � These indices

indicate the comparison of variance between the diagonal elements of the actual variance

matrix and the corresponding diagonal elements of the minimum variance matrix�

For the process with a diagonal interactor matrix� these performance indices

are equivalent to performance indices of the interactor��ltered variable� Therefore

performance assessment of the original variable can be obtained from performance

assessment of the interactor��ltered variable� i�e��

��d� � tr� �mv
� ���Y ��n ���
�

and

#�y� � � � � � �yn $T � diag� �mv
� ���Y � ���	��

where � �Y � diag� �Y ��  �Y � V ar� �Yt�� and  �mv is the lower bound of  �Y �

Chapter � has shown that multivariate correlation analysis yields a computationally

simple procedure for calculating these performance indices as follows�



��

De�ne a scaled cross correlation as

!� �Y a�i�
�
� � �Y a�i��

����
a

and a block matrix as

Z
�
� #!� �Y a���� !� �Y a�	�� � � � � !� �Y a�d� 	�$

where � �Y a�i� �
� 
����
�Y

 �Y a�i�
� 
����
a is the multivariate cross correlation between �Yt and at�i

�note � a � diag� a� and � �Y � diag� �Y ��" and �a � � 
����
a  a � 

����
a is the multivariate

autocorrelation of at� Then

��d� � tr�ZZT ��n ���		�

and

#�y� � � � � � �yn $T � diagfZZT g ���	��

where ��d� is in fact the average of the individual performance indices� Although at is

unknown� it can be replaced by the estimated white noise �at from a �ltering process as

shown in Chapter �� This �ltering procedure is equivalent to �tting Yt by a multivariate

time series �ARI or ARIMA�� The residual after �tting is the �whitened� noise �at� This

procedure based on Filtering and CORrelation analysis is labelled as the FCOR algorithm�

Thus the FCOR approach provides a relatively easy way to calculate the performance

measure of a multivariable process with a diagonal interactor matrix� which avoids solving

the multivariate Diophantine identity� However� the algorithm is not limited to processes

with the diagonal interactor matrix� It will be extended to processes with the general

interactor matrix in Chapter ��

����� The e�ect of sampling intervals

To apply the FCOR algorithm� a representative set of routine operating data should

be sampled� Theoretically� the data sampling frequency is assumed to be the same as

the controller sampling frequency� However� this sampling frequency may not be always

desirable in practice due to the following reasons� 	� the quality measure of many industrial

process is based on the outputs sampled at other frequencies which can be higher or lower

than the controller sampling frequency� and a di�erent sampling frequency of a stochastic



��

signal may result in a di�erent measure of the variance �MacGregor� 	
���" �� controller

sampling rate can be very fast or even continuous on some control loops such as PID

loops� and minimum variance control using such fast controller sampling frequency usually

requires an excessive control action and gives an unrealistic benchmark performance"

�� di�erent control loops may have di�erent controller sampling frequencies� i�e� no

unique sampling frequency may be available for multivariate performance assessment"

and �� many available industrial data are sampled typically at a lower frequency than the

controller sampling frequency� In such cases� one has to use a data sampling frequency

which is di�erent from the controller sampling frequency� Since the feedback�invariance

property holds for any causal linear feedback controller within the time�delay period�

the FCOR algorithm is generally valid for any sampling frequency as well� It calculates

a performance index relative to a minimum variance controller whose control sampling

frequency is the same as the data sampling frequency� However� a controller sampling

frequency di�erent from the data sampling frequency means that actual performance

assessment should consider the di�erent e�ect of an extra time delay in addition to the

actual physical delay in the process� This additional time delay corresponds to the presence

of a zero�order�hold device� To illustrate the point� we assume that the process time delay

is td� the control interval of the existing controller is tc� and the data sampling interval or

the control interval of the assumed benchmark �minimum variance� control is ts� Then the

actual time�delay in the process is td� tc� and the time�delay for the assumed benchmark

�minimum variance� control is td� ts� In order to separate the minimum variance portion

from routine operating data� feedback�invariance property must hold within the time�delay

period from � to td � ts in the existing control loops� Since feedback�invariance does hold

within the actual time�delay period from � to td � tc� the FCOR algorithm estimates a

theoretically exact result if td � ts � td � tc� i�e� if the data sampling frequency is higher

than the controller sampling frequency� However� if td� ts � td� tc� i�e� the data sampling

frequency is lower than the controller sampling frequency� then the feedback�invariance

property holds within the actual time�delay period from � to td�tc� but does not hold from

td� tc to td� ts� Therefore td� tc �instead of td� ts� is recommended as the approximate

time�delay in the calculation of the performance index when the data sampling frequency



��

is lower than the controller sampling frequency� This underestimates the time�delay by

the portion ts� tc and consequently may underestimate the performance index� However�

as illustrated in the last section� slight underestimation of the performance index does not

a�ect its application�

��� Application to a headbox control system

The headbox is the soul of the entire pulppaper machine �Newcombe� 	

	�� Its

purpose is to transform a pipe �ow of pulp stock into a homogeneous� uniform �ow across

the width of a machine wire running at high speed� Weyerhaeuser�s Grande Prairie NSK

pulp mill utilizes a Fourdrinier machine commissioned in the early 	
���s� The process

description� control objectives and problem description are discussed in the following�

����� Process description

The headbox is a unit operation within the pulppaper�making process which takes

stock �pulp and water mixture� �owing in a pipe and transforms it into a uniform�

rectangular �ow equal in width to the machine wire and at a uniform velocity in the

machine direction� Good headbox operation results in uniform basis weight� little or no

�occulation� and excellent retention on the wire� The schematic of the Fourdrinier machine

employed by the mill at Grande Prairie is shown in Figure ��	� The pressurevacuum�air�

pad headbox is used to produce a sheet of approximately 	�
�� kg����� m� ���� lb����

ft��� White water mixed with thick stock is delivered to the bottom of the headbox

by a high�speed fan pump� A rotating recti�er near the slice lip keeps the pulp evenly

distributed across the machine� A vacuum pump is used to reduce the air pad pressure

below atmospheric�

����� Process control

The primary control objective in headbox control is to obtain a uniform basis weight�

moisture� and caliper on the sheet� These properties are important for both the operability



��

of the machine and the pulp�s �nal quality� In keeping with common practice �Nordstrom

and Norman� 	

��� sheet formation is maintained by continuous jetwire ratio� headbox

consistency and pond level control� The plant experiences poor operability when these

control parameters deviate from their optimum values� Headbox consistency is controlled

through thick stock �basis mass� valve adjustments� although slice opening will impact

consistency as well �Rice� 	
���� Pond level is controlled by changing the fan pump speed�

The jetwire ratio is a function of total head and wire speed� The total head at the slice

lip is indirectly controlled by adjusting the air pad pressure which is directly controlled by

adjusting the air �ow valve on the high pressure side of the air re�circulation pump� Wire

speed �in conjunction with the basis mass valve� is manually adjusted by the operator to

control production rate�

����� Problem description

Unlike consistency control� which has been trouble�free over the years� jetwire and

pond level control have been the source of many operational problems� These problems

stem from the pressure and level loops complexity in dynamics� a high degree of coupling

between the two loops� signi�cant noise in the measured values" and the dependence of

the loops on external variables that change with time such as production rate or grade

changes�

Man�power limitation is also a major cause of poorly tuned control loops� For

instance� the duties of control engineers usually include maintenance of the control system�

maintenance of existing computer applications� development of new control applications�

and other day�to�day ��re��ghting� assignments� Therefore� the largest problem in

achieving or maintaining �healthy� control loops is the time�consuming testing required

to analyze and monitor each individual control loop� From a time allocation perspective�

manual loop analysis results usually fall into one of three categories� 	� A preponderance

of tests achieves very good performance for hundreds of control loops� but occupies most

of the control engineer�s time� �� A large number of negative results indicates that testing

is insu�cient� but no control engineer is available to mitigate the problems� �� A series



��

of time�consuming and labour�intensive tests shows very good tuning results� but process

drifts or changes quickly nullify the results and re�tuning is required all over again� Because

of other time commitments� insu�cient testing is the norm and� as a result� costly sheet

breaks are often the �rst indication of poor control performance�

The objective of this research into loop performance is to provide the plant control

engineers with an on�line measure of control loop performance obviating the time�

consuming manual test� This measure can be monitored on a regular basis and

performance statistics used to schedule loop re�tuning� The result of a proactive re�

tuning schedule that requires less control engineer and technician e�ort will maintain

better overall loop performance and reduce plant downtime�

��� Performance assessment of the headbox control

system

��	�� Single loop performance assessment

The schematic diagram of the current control system is shown in �gure ���� The present

control strategy is to regulate the total head �pressure plus level� by adjusting the air pad

pressure and the pond level via multiloop PID controllers� To assess control performance�

we �rst applied the SISO loop performance assessment technique to individual loops�

which may answer the following questions� 	� If the current level loop cannot be further

tuned due to some constraints� is it possible to further reduce variation of the total head

by adjusting the pressure loop controller% �� If the pressure loop is well tuned and cannot

be adjusted� is it possible to further reduce variation of the level by adjusting the level

loop controller%

Feedback control performance assessment of SISO processes has been discussed by

Harris �	
�
�� and Desborough and Harris �	

�� � The FCOR algorithm can also be

directly applied to SISO processes� However� the setpoint of the pressure loop is randomly

adjusted in this application� which requires a special treatment�



��

The process of the pressure loop can be written in a standard form as

pt � q�dTut �Nat

where T and N are �SISO� rational transfer functions� Under feedback control ut �

�Q�pt � pspt ��

pt � �q�dTQ�pt � pspt � �Nat

This is equivalent to

pt � pspt � �q�dTQ�pt � pspt �� pspt �Nat

The random adjusted setpoint can be modelled by pspt � Mbt� where M is a rational

transfer function and bt is white noise� By de�ning �t � pt � pspt � we have

�t � �q�dTQ�t �Mbt �Nat

The last two terms on the right hand side of the equation may be lumped as ��t via� e�g�

the spectral factorization� where � is a rational transfer function and �t is white noise�

Therefore

�t � �q�dTQ�t � ��t ���	��

Equation ���	�� is a standard form as used in performance assessment of SISO processes

with a zero setpoint� Thus the algorithm in Chapter � can be applied to assess performance

of the variable �t without restriction� The only question is whether it is appropriate to

replace pt with �t as the monitored variable�

The rushdrag ratio is de�ned by

Kt
�
�

p
Pt �Ht

cVt

where Kt is the rushdrag ratio� Vt is the wire speed� Pt is the pressure� Ht is the level

and c is a unit conversion coe�cient� Here we use the notation that Pt and Ht are the

original variables �actual measurements� of the pressure and the level respectively� while

pt and ht are their deviation variables�

Ideally� the rushdrag ratio should be kept constant so that the �bre suspension

can be distributed uniformly on the wire� In practice� the operator always monitors the

rushdrag ratio which is an indication of how well the total head is being controlled�



�


It follows from Figure ��� that

P sp
t � �cKspVt�

� �Ht ���	��

The setpoint of rushdrag ratio Ksp is set by the operator and is a constant� Vt is kept

constant by the motor driving the wire� Using deviation variables� equation ���	�� can be

written as

pspt � �ht

Thus

�t � pt � pspt � pt � ht

which is a variable representing the total head variation and is indicative of the rushdrag

ratio variation� This is indeed the most important variable for the operator to monitor

continually�

Presently� the performance measure of the headbox by the operating personnel is the

variance of pressure and level data being sampled with the sampling interval 	� seconds�

The same sampling interval is therefore used for performance assessment here� It is

known from previous step tests that both the pressure and level loops have time delays of

approximately � sampling intervals each� Figure ��� shows a typical set of data which was

collected over �� hours at a 	� seconds sampling interval� Note that both the level and the

pressure are measured by using the pressure unit� Pa� The process was under multiloop

PID control with a control interval of 	 second� Applying the FCOR algorithm to variables

�t and ht respectively yields results shown in Figure ���� where each performance index is

calculated from 	��� data points� i�e� ��� hours for calculation of each performance index�

By de�nition� the performance index should be in�between +�� and +	�� While +	�

means the best performance� +�� means the worst performance including unstable control�

For example� a performance index of ��� implies that current variance can be reduced

�potentially� by a factor of ��� if an optimal tuning is implemented� Depending on

the application� the loop performance measure can be classi�ed as optimalgoodbad

or acceptableunacceptable or others� Single loop performance assessment results shown

in Figure ��� clearly indicate an +optimal� performance of current single loop tunings




�

of both loops� Note that the benchmark performance is minimum variance control of

the individual loop� Therefore there is little potential for further reduction in process

variance by adjusting or re�designing the controller individually� It should be noted that

the performance index is cycling periodically due to di�erences between day�and�night

ambient conditions� Although the headbox process is housed inside a building� ambient

conditions do a�ect the pulp quality before it enters the headbox�

��	�� Multivariate performance assessment

SISO performance assessment can only indicate the potential of performance

improvement by adjusting individual loops� Since the level and the pressure loops are

coupled� a multivariate control strategy can further reduce process variations� Multivariate

performance assessment can provide the measure of such potential�

Previous tests provided the following a priori knowledge of the process� 	�the time

delay from a change of the air �ow control valve to both the pressure and level responses

is approximately � sampling intervals" ��the time delay from the fan pump speed change

to the level response is approximately � sampling intervals� and the time delay from the

fan pump speed change to the pressure response is approximately � sampling intervals� It

follows from Tsiligiannis and Svoronos �	
��� that this process has a diagonal interactor

matrix� i�e�� by examining each row of the transfer function matrix� it can be shown that

each output can be paired to an input with the minimum delay in that row� For detailed

discussion of the occurrence of diagonal interactor matrix in practice� readers are referred

to Appendix B�

Since the pressure loop has a randomly adjusted setpoint and the variable of interest

of this assessment is the total head �p� h�� the problem should be reformulated as it was

done in the SISO case� The multivariable model with the outputs pt and ht can be written

as

pt � T��u� � T��u� �N��a� �N��a� ���	��

ht � T��u� � T��u� �N��a� �N��a� ���	��




	

where u� is the manipulated variable of the air �ow control valve" u� is the manipulated

variable of the fan pump speed" T��� T�� and T�� are approximately �rst�order transfer

functions� while T�� can be approximated by a second order transfer function" Nij �for

i � 	� �� j � 	� �� are disturbance transfer functions and can be modelled by autoregressive

moving average processes� The pressure� pt� is measured by a low range di�erential pressure

transmitter with the low side of the transmitter vented to atmosphere� The level� ht� is

measured by a �ange mounted transmitter� The air �ow control valve on the suction of the

vacuum pump is a Fisher V	�� segmented ball valve� The fan pump speed is controlled by

a variable speed DC drive� Multiloop PID controllers are implemented in the process� The

pressure loop is controlled by manipulating the air �ow control valve� and the level loop is

controlled by manipulating the fan pump speed� Note that except for a priori knowledge

of the time�delays in Tij� other information about Tij� Nij and controller transfer functions

is not required for performance assessment�

It follows from the analysis in the SISO case that �in the deviation variable sense��

pspt � �ht ���	��

Substituting equation ���	�� into equation ���	�� yields

pspt � �T��u� � T��u� �N��a� �N��a� ���	��

Subtracting equation ���	�� from equation ���	�� yields

pt � pspt � �T�� � T���u� � �T�� � T���u� � �N�� �N���a� � �N�� �N���a� ���	
�

For simplicity� equation ���	
� can be written as

�t � T ���u� � T ���u� �N �
��a� �N �

��a� ������

It follows from equation ���	�� that �t � pt � pspt � pt � ht � �total head� which

conveniently is the variable of interest that we would like to monitor� More importantly�

equation ������ represents the pressure equation� which transfers the random setpoint to

a constant �zero� setpoint� Therefore equation ������ together with ���	�� represents a

� � � multivariable process with constant setpoints for both variables �t and ht� In this




�

case� it can be easily veri�ed that the time delay structure of the multivariable process

with process variables �t and ht is the same as that of the multivariable process with

process variables pt and ht� Therefore� performance assessment methods as introduced in

the foregoing sections can be readily applied and their results are shown in Figure ����

In Figure ���� +�� represents the performance index of the total head� and +,� represents

the performance index of the level output� The average performance index of the total head

is ���� and the average performance index of the level is ����� Note that the benchmark

is multivariable minimum variance control� Compared to the SISO assessment which

yields the performance index of the total head as an almost perfect +	�� multivariate

assessment does indicate that� if desired� there is a potential to reduce the variation

of the total head very slightly by implementing multivariable control� However� the

improvement may not be signi�cant to justify implementation of the multivariable control

or an interaction compensator in practice� There is clearly a potential to reduce level

variation by implementing multivariate control� However� reduction of level variation is

not the objective� Therefore in order to reduce the variance of the total head� alternative

control strategies such as feedforward control or reduction of the dead time may be

necessary if further improvement in performance is desired�

Since the current total head variance is ����� Pa� ������� #in� H�O$
�� and level variance

is ��� Pa� ������� #in� H�O$
��� the multivariable performance indices also imply that within

the present control framework the total head variance is never less than ���������� � ��	��
Pa� ������� #in� H�O$

�� and the level variance is never less than ���� � ����� � ���� Pa�

�����	� #in� H�O$
���

The assessment results thus indicate that�

	� the overall control performance is subject to periodic changes due to the di�erence

between day and night ambient conditions"

�� within the framework of the single�loop controller tuning� there is little potential to

reduce the total�head variance by tuning the pressure controller or reduce the level

variance by tuning the level controller"




�

�� within the current control structure� total�head variance is no less than ��	�� Pa�

������� #in� H�O$
�� under any linear �SISO or MIMO� feedback control"

�� the present controllers have been well tuned� and it may be unnecessary to further

adjust controller tunings or implement a multivariable control algorithm"

�� since any possible deduction in the total�head variance is no more than 	�� by tuning

or re�designing the feedback control� it may be necessary to implement feedforward

control or reduce dead times or change the current control structure in order to

signi�cantly reduce the variance of the total head�

Since the selected data sampling frequency is lower than the controller sampling frequency

in this example� as stated in the previous sections� a possible underestimation of the

performance indices may be expected� However� any possible underestimation error only

implies that the actual performance is even better than the estimated performance or the

actual lower bound is larger than the estimated lower bound� and therefore it does not

a�ect any of the above conclusions�

��� Conclusions

Control�loop performance assessment of multivariate processes with diagonal interactor

matrices has been introduced� Both single loop performance and multivariable

performance of the headbox control loops have been estimated from actual industrial

data� The results have shown that the present controllers have been well tuned� and

it is unnecessary to further adjust controller tunings or implement multivariate control

under current control structure� In order to further improve control performance�

implementation of feedforward control or reduction of dead times or re�design of the

control structure may be necessary� These results therefore provide guidelines for control

loop tuning and provide an insight for the potential bene�ts of exploring multivariable

control strategy�
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Figure ���� Performance assessment from the multivariate approach�



Chapter �

Feedback Controller Performance

Assessment� General Interactor

	�� Introduction

Factorization of a simple or diagonal interactor matrix only requires a priori knowledge

of the pure time�delays of each element in a transfer function matrix� Factorization of a

general interactor matrix� however� requires a complete knowledge or at least the �rst

few Markov parameter matrices of a MIMO process� The unitary interactor matrix as

introduced by Peng and Kinnaert�	

�� plays an important role in feedback controller

performance assessment of processes with general interactor matrices� Estimation of the

unitary interactor matrix using closed�loop data from simple closed�loop tests has been

discussed in Chapter ��

The main contribution of this chapter is to obtain the feedback controller�invariant

term for MIMO processes with general interactor matrices and proposal of a control

loop performance measure that is conceptually simple and computationally e�cient� The

algorithm is valid for performance assessment of all class of multivariable �square or non�

square� systems� Although the method introduced in this chapter can be applied to

�A version of this chapter is to appear in Automatica �in press�� and a shorter version is also in the

Proceedings of the ���� IFAC World Congress�


�




�

simple or diagonal interactor matrices as well� it is not recommended since the algorithms

introduced in Chapters � and � are more e�cient in handling these special class of

processes�

This chapter is organized as follows� The interactor matrix is �rst reviewed� and a

suitable expression for the MIMO feedback controller�invariant� minimum variance control

loop performance measure� is derived� all in section ���� The key ingredient of this

scheme is �ltering and subsequent correlation analysis �FCOR�� The FCOR algorithm

is used to estimate the achievable multivariate minimum variance performance from

routine operating data� Its derivation for the general interactor matrix is considered

in section ���� The application of the FCOR algorithm to a simulated square and a

non�square MIMO process� and an industrial absorption unit is considered in section ����

followed by concluding remarks in section ����

	�� Feedback controller�invariance of minimum variance

term and its separation from routine operating data


���� Review of the unitary interactor matrix

Consider the MIMO process with a general interactor matrix�

Yt � TUt �Nat ���	�

where Tand N are proper �causal�� rational transfer function matrices in the backshift

operator q��" Yt� Ut� and at are output� input and white�noise vectors of appropriate

dimensions�

Wolovich and Falb�	
��� and Goodwin and Sin�	
��� have shown existence of a unique

lower triangular form of the general interactor matrix� However� the interactor matrix

can also take other forms� It can be a full matrix or an upper triangular matrix �Shah

et al�� 	
���� Rogozinski et al��	
��� have introduced an algorithm for the calculation

of a nilpotent interactor matrix� Peng and Kinnaert�	

�� have introduced the unitary

interactor matrix� which is a special case of the nilpotent interactor matrix� The unitary







interactor matrix has been discussed in Chapter �� Some important properties of the

unitary interactor matrix in minimum variance or singular LQ control have been discussed

in Chapter ��

Existence of the unitary interactor matrix is established in Peng and Kinnaert�	

���

The unitary interactor matrix has been shown to be an �ideal� factorization of the time

delay matrix for minimum variance or singular LQ type control in Chapter �� A simple

algorithm exists for the calculation of the unitary interactor matrix �Rogozinski et al��

	
��" Peng and Kinnaert� 	

�� �see also Appendix A�� The traditional procedure for

factorization of the general interactor matrix does require complete knowledge of the

transfer function matrix �Wolovich and Falb� 	
��" Goodwin and Sin� 	
��" Rogozinski

et al�� 	
��" Peng and Kinnaert� 	

��� In Chapter �� it has been shown that factorization

of the interactor matrix can be achieved from the �rst few Markov parameter or impulse

response coe�cient matrices of the process� Consequently� estimation of the unitary

interactor matrix is simpli�ed and can be estimated by using closed�loop data from

simple closed�loop tests� The two special interactor matrices� the simple interactor matrix�

D � q�dI� and the diagonal interactor matrix� D � diag�q�d� � � � � � q�dn�� are also unitary
interactor matrices� Performance assessment for the simple interactor and the diagonal

interactor has been discussed in Chapter � and Chapter � respectively�


���� Feedback controller�invariance of minimum variance term and its

separation from routine operating data

Minimum variance control �or the benchmark control� is de�ned by a feedback control

law which minimizes the output LQ objective function without penalty on the control

action�

J � E�Yt � Y sp
t �

T �Yt � Y sp
t �

or the weighted LQ objective function�

J � E�Yt � Y sp
t �

TW �Yt � Y sp
t �

This is also regarded as Singular LQ control �Peng and Kinnaert� 	

��� For simplicity in

the following proof we shall �rst assume that the setpoint� Y sp
t � is zero and the weighting



	��

function W � I� Then the singular LQ objective function is reduced to

J � E#Y T
t Yt$

The general case is discussed in Remark � when the setpoint is not zero� and in Remark �

when W �� I�

Consider the multivariable process

Yt � TUt �Nat

Using the notation of multivariable minimum variance control due to Goodwin and

Sin�	
���� the minimum variance control law can be designed to make the variance of

the output DYt or equivalently �Yt � q�dDYt minimum� where the positive integer d is

the maximum order �highest power of q� of all the elements of the interactor matrix� D�

The �lter� q�dD� removes in�nite zeros from the transfer function matrix� Since D is a

unitary interactor matrix� the singular LQ or minimum variance control laws for �Yt and

Yt are the same� This important property of the unitary interactor matrix is discussed in

Remark �� Unlike previous work on the design of multivariable minimum variance control

by Goodwin and Sin�	
��� and many others in the literature �Tsiligiannis and Svoronos�

	
��" Harris and MacGregor� 	
���� the main focus of this study is the derivation of a

suitable expression for the feedback controller�invariant� minimum variance term� from

routine operating data�

Theorem � For a multivariable process

Yt � TUt �Nat �����

the minimum variance control is obtained by minimizing

J � E# �Y T
t
�Yt$ �����

where �Yt � q�dDYt is the interactor��ltered output� The performance measure is then

given by the following steps�



	�	

�� The quadratic measure of minimum variance is given by

E# �Y T
t
�Yt$min � E�eTt ��et� � tr�V ar�Fat��

where et � Fat� the polynomial matrix F depends only on the interactor matrix and

the noise model� and satis�es the identity�

q�dDN � F� � � � �� Fd��q
��d���� �z �

F

�q�dR �����

where R is a proper rational transfer function matrix�

� If one models closed�loop routine operating data under feedback control by the

following multivariate moving�average process�

�Yt �E� �Yt� � F�at � F�at�� � � � �� Fd��at�d��� �z �
et

�L�at�d � L�at�d�� � � � �� �z �
wt�d

�����

then the minimum variance term� et � Fat� consists of the �rst d terms of this

moving�average model� and therefore can be separated from time series analysis of

routine operating data and be used as a benchmark measure of multivariate minimum

variance control�

Proof� As shown in Chapter �� for a process with a simple interactor matrix� i�e�

D � q�dI�

Yt � q�d �TUt �Nat �����

where �T is the delay�free transfer function matrix� the following inequality holds�

E#Y T
t Yt$ � E�eTt ��et� � tr�V ar�Fat��

where et � Fat� and F is de�ned by the identity�

N � F� � F�q
�� � � � �� Fd��q

��d���� �z �
F

�q�dR

where Fi� for i � �� � � � � d� 	� are constant coe�cient matrices� and R is a proper rational

transfer function matrix� The equality holds when the minimum variance control law is

implemented on the process�



	��

If routine closed�loop operating data under feedback control is modelled by a

multivariate moving�average process�

Yt �E�Yt� � F�at � F�at�� � � � �� Fd��at�d��� �z �
et

�L�at�d � L�at�d�� � � � �� �z �
wt�d

�����

then the term wt�d is feedback controller�dependent� and the term et consisting of the �rst

d terms of the moving�average model is independent of feedback control� Under minimum

variance control� wt�d vanishes� and therefore et represents the minimum variance term

and can be separated from time series analysis of routine operating data�

Now consider the process with a general unitary interactor matrix i�e� D �� q�dI�

Yt � TUt �Nat � D�� �TUt �Nat �����

Multiplying both sides of ����� by q�dD yields

q�dDYt � q�d �TUt � q�dDNat

� q�d �TUt � �Nat ���
�

where �N is a proper transfer function matrix� By de�ning �Yt � q�dDYt� equation ���
� is

now transformed to the same form as ������ i�e�

�Yt � q�d �TUt � �Nat ���	��

This is a process with a simple interactor matrix� It follows that

E# �Y T
t
�Yt$ � E��eTt ���et� � tr�V ar� �Fat��

where �et � �Fat� �F is de�ned by the identity�

�N � q�dDN � �F� � �F�q
�� � � � �� �Fd��q

��d���� �z �
�F

�q�d �R ���		�

Thus if the interactor��ltered� routine operating data under feedback control is modelled

by a multivariate moving�average process�

�Yt �E� �Yt� � �F�at � �F�at�� � � � �� �Fd��at�d��� �z �
�et

� �L�at�d � �L�at�d�� � � � �� �z �
�wt�d

���	��



	��

then the lower bound term �et is independent of feedback control and can therefore be

estimated from routine operating data� To simplify notation� the tilde signs� � � on the

right hand side of equation ���	�� and ���		� have been dropped in the statement of

Theorem ��

Remark � The feedback controller�invariant property of the minimum variance term

is valid for both square and non�square transfer function matrices� When the transfer

function is of full rank with the row dimension smaller than the column dimension� then

the minimum variance is achievable� This is clear from the proof in Chapter � and

Chapter �� where the inverse of �T � �T��� is replaced by its pseudoinverse� �T y� On the other

hand� when the transfer function matrix is a non�square matrix with the row dimension

larger than the column dimension� then the feedback controller�invariant term may not

be achievable� Since a unitary interactor matrix can always be factored irrespective of

whether the transfer function matrix is a square or non�square matrix �Rogozinski et al��

	
���� the methodology for performance assessment as proposed in this chapter is valid

for both square and non�square transfer function matrices�

Remark 	 If the setpoint is not zero� then we de�ne

�t
�
� Y sp

t � Yt

The interactor��ltered singular LQ objective is now written as

J � E� �Yt � �Y sp
t �

T � �Yt � �Y sp
t � � E#��Tt ��t$

where �Yt � q�dDYt� �Y
sp
t � q�dDY sp

t and ��t � q�dD�t� Chapter 		 will show that in this

case� instead of using �Yt for the time series analysis as shown in Theorem �� ��t should be

used for the analysis� Then the �rst d terms of the moving�average model of ��t constitute

the feedback controller�invariant minimum variance term�

Remark � It has been shown in Chapter � that if D is a unitary interactor matrix� then

the minimum variance control law which minimizes the following objective function of the

interactor��ltered variable �Yt�

J� � E� �Yt � �Y sp
t �

T � �Yt � �Y sp
t � ���	��



	��

also minimizes the objective function of the original variable Yt

J� � E�Yt � Y sp
t �

T �Yt � Y sp
t � ���	��

and J� � J��

Thus the performance measure of the original variable Yt can be obtained via the

performance measure of the interactor��ltered variable �Yt�

Remark � In Remark �� if the unitary interactor matrix is replaced by a weighted unitary

interactor matrix� Dw� then

E� �Yt � �Y sp
t �

T � �Yt � �Y sp
t � � E�Yt � Y sp

t �
TW �Yt � Y sp

t �

where Dw satis�es DT
wDw � W � Existence and factorization of such weighted unitary

interactor matrix can be found in Chapter �� With such an interactor matrix� the minimum

variance control law for the interactor��ltered variable� �Y � is identical to the weighted

minimum variance control law for the original variable� Yt� In fact� in Chapter � it has

been shown that the minimum variance control law is identical to the singular LQ control

law solved via the spectral factorization method �Harris and MacGregor� 	
����

To summarize Theorem � and Remarks � to �� the following general result is presented�

For a multivariable �squarenon�square� process

Yt � TUt �Nat

the minimum variance control is obtained by minimizing

J � E#�Yt � Y sp
t �TW �Yt � Y sp

t �$ � E��Tt W�t�

If one models closed�loop routine operating data under feedback control by the following

multivariate moving�average process�

��t �E���t� � F�at � F�at�� � � � �� Fd��at�d��� �z �
et

�L�at�d � L�at�d�� � � � �� �z �
wt�d



	��

where ��t � q�dDw�t� then the minimum variance term� ��tjmv � et � Fat� consists of

the �rst d terms of this moving�average model� and therefore can be separated from time

series analysis of routine operating data� The quadratic benchmark performance measure�

E��Tt W�t�jmv can then be calculated from E�eTt et��

Remark 
 Deduction of the minimum variance control benchmark performance as in

this chapter requires knowledge of only the time�delays �or in�nite zeros� of the transfer

function matrix� No other information is required� In practice there are many limitations

in reducing output variance through feedback control� Control action constraints�

existence of poorly damped or unstable �NMP� zeros� desired robustness characteristics

etc�� are examples of such limitations� Time�delays or the interactor matrices are the most

fundamental level of limitation in reducing variance� and is the only possible performance

limitation that can be estimated from routine operating data� Identi�cation of such

benchmark performance does not imply implementation of such a control law� However�

this benchmark performance provides an absolute lower bound or global minimum �Astrom

and Wittenmark� 	

�� of process variance and �so can be used much like the Cramer�

Rao lower bound on variance in statistical parameter estimation�Harris et al�� 	

����

Even for minimum phase systems� implementation of minimum variance control is usually

not recommended �Desborough and Harris� 	

�" Eriksson and Isaksson� 	

�� due to its

poor robustness and need for excessive control action� Certainly for non�minimum phase

systems� it would be imprudent to implement such a benchmark control law� Nevertheless�

minimum variance control does serve as a useful �global minimum� reference point and

provides a �rst�level benchmark against which to assess current control performance� This

�rst�level performance measure is obtained with minimum e�ort�from routine operating

data together with a priori knowledge of the time delay matrix� This a priori knowledge

can be obtained from simple tests of the MIMO process under closed�loop conditions and

subsequent SVD analysis of the data as discussed in Chapter �� Using this SVD method�

entire knowledge of the model of the process is not a necessary prerequisite for estimating

the interactor� The proposed method thus provides an e�cient tool to comprehensively

monitor modern processing facilities which can have hundreds and possibly thousands

of control loops� For those loops which indicate good �rst�level performance measures�



	��

no further adjustment or testing is necessary� For loops which indicate poor performance

measures� a second�level study which may require process identi�cation andor redesign or

retuning of control loops� may be necessary� Thus the second�level performance assessment

need only be conducted on a limited number of loops and this saves valuable personnel

time� The benchmark performance �local minimum� subject to constraints such as non�

minimum phase and control action constraints can then be studied at this second�level

performance assessment" other performance measures such as regulation of step�type

disturbances �Eriksson and Isaksson� 	

�� are also studied at this level" these issues

will be discussed in the following chapters�

	�� The FCOR algorithm for general interactor matrices


���� Multivariable performance measures

As proved in the previous sections� performance assessment of multivariable processes

can be reduced to �nding the minimum variance term� et� from a multivariate moving

average process� which has the general form shown in equation ������ From equation ������

the covariance between the output and the white noise sequence at lag i �for i � d� is

given by

E# �Yta
T
t�i$ � Fi a

�
�  �Y a�i� ���	��

where  a � E�ata
T
t �� From

q�dDYtjmv
�
� �Ytjmv � et � F�at � � � �� Fd��at�d��

one can solve for Ytjmv as

Ytjmv � qdD���F�at � F�at�� � � � � � Fd��at�d���

where �Ytjmv is the interactor��ltered output under minimum variance control� and Ytjmv

is the original output under the same control law� Note that from Remark � the minimum

variance control laws of Yt and �Yt are identical� For the unitary interactor matrix� we have

�D���q� � DT �q����� i�e�



	��

D�� � �D�q
d � � � ��Dd��q�

��

� DT
� q

�d � � � � �DT
d��q

�� ���	��

Therefore

Ytjmv � �DT
� � � � ��DT

d��q
d����F� � � � �� Fd��q

�d���at

�
� �E� �E�q

�� � � � ��Ed��q
�d���at ���	��

�Note that for a weighted unitary interactor matrix� D��
w �q� �� DT

w�q
���� but Dw �

DuniW
��� and Duni is a unitary interactor� Thus� D��

w � W����DT
uni�q

��� and

equation ���	�� has to be modi�ed accordingly��

Due to causality� any term with positive power of q in equation ���	�� must be zero�

Equation ���	�� can be written as a compact matrix form�

#E�� E�� � � � � Ed��$ �

#DT
� � D

T
� � � � � �DT

d��$

�
������������

F� F� � � � Fd��

F� F� � � �
���

���
��� Fd��

Fd��

�
������������

���	��

From equation ���	��� variance of Yt under minimum variance control can be written as

 mv � V ar�Ytjmv� � E� aE
T
� � � � ��Ed�� aE

T
d��

�
� XXT ���	
�

where X
�
� #E� 

���
a � E� 

���
a � � � � � Ed�� 

���
a $ ������

From equation ���	��� we have Fi �  �Y a�i� 
��
a ����	�

Substituting equation ����	� into ���	��� and then substituting the result into ������ yields

X � �DT
�
� DT

�
� � � � � DT

d���

�
����������

� �Y a����
����
a � �Y a����

����
a � � � � �Y a�d� ���

����
a

� �Y a����
����
a � �Y a����

����
a � � �

			
			

			 � �Y a�d� ���
����
a

� �Y a�d� ���
����
a

�
����������



	��

Since variance of Yt under minimum variance control can be calculated from

equation ���	
�� the objective function based performance measure �denoted as MIMO

performance measure� can be calculated as

��d� �
minimum variance

actual variance
�
E#Y T

t Yt$min

E#Y T
t Yt$

�
tr mv

tr�E#YtY
T
t $�

�
tr�XXT �

tr Y

It is often desired to compare the variance�covariance matrix of the actual output with

the variance�covariance matrix of ideal output under minimum variance control� The

performance indices of individual outputs are obtained from the diagonal elements of such

comparison�

#�y� � � � � � �yn $T � diagf mv
� ��Y g � diagfXXT � ��Y g

where � Y � diag� Y �� The individual output performance indices represent the

performance of each output with respect to the ideal output under multivariable minimum

variance control� If an o�set exists in the process output� then the output variance�

 Y � should be replaced by the output mean square error in the above calculation of the

performance indices�

Although at is unknown in this calculation� it can be replaced by the estimated

�white� noise sequence� �at� or the innovation term via time series analysis as introduced

in the �ltering or whitening section in Chapter �� This whole procedure of obtaining the

multivariable performance index is the FCOR algorithm� The FCOR approach provides

a relatively easy way to calculate the performance measure of a multivariable process�

Harris et al��	

�� have proposed another approach to assess performance of

multivariable systems using spectral factorization to normalize the lower triangular

interactor matrix and subsequently using the Diophantine identity to calculate the

benchmark performance� Readers are referred to Harris et al��	

�� for detailed discussion�



	�


	�� Evaluation of the FCOR algorithm on a simulated

example and an industrial application


���� Simulated example

Example 
 This simulation example demonstrates application of the FCOR algorithm to

both square and non�square multivariable systems with the general interactor matrix�

Consider a ��� multivariable process� with the open�loop transfer function matrix T and
disturbance transfer function matrix N given by

T �

�
��

q��

����
q��
K��q��

�����q��

���q��

�����q��
q��

�����q��

�
��

N �

�
��

�
����	q��

����
����	q��

��	
����	q��

���
����	q��

�
��

The white noise excitation� at� is a two�dimensional normally�distributed white noise

sequence� with  a � I� The output quality is measured by J � E#Y T
t Yt$� A unitary

interactor matrix D can then be factored out as�

D �

�
�� ���
���q �������q
�������q� ��
���q�

�
�� ������

Then DN is given by

DN �

�
��

������
q
�����	q���

����
q
�����	q���

������q�

�����	q���
������q�

�����	q���

�
��

q�dDN �d � �� can be separated in the form of equation ������ where F and R matrices

are obtained as

F �

�
�� �	�	�	�q�� ������q��

��	
	� � ���
��q�� 	�	��� � �����	q��

�
�� ������

R �

�
��

���		�
����	q��

���
�
����	q��

���
�
����	q��

������
����	q��

�
�� ������



		�

The feedback controller�invariant term is therefore

et � Fat �

�
�� �	�	�	�q�� ������q��

��	
	� � ���
��q�� 	�	��� � �����	q��

�
�� at

The theoretical minimum variance matrix under the minimum variance control can be

calculated from Ytjmv � qdD��Fat as

Ytjmv �

�
�� 	� �������q�� ����� ��	���q��

��� � ���
	��q�� 	 � ����	�q��

�
�� at

This will be the theoretical benchmark to assess performance of the feedback controller�

The FCOR algorithm will estimate this benchmark from routine operating data�

Suppose a multiloop minimumvariance controller based on the two single loops without

interaction compensation�

Q �

�
��

��	�����q��

����	q�� �

� ���	������q��

�����	q��������	q���

�
��

is implemented on this process� The a priori knowledge of the interactor matrix can be

estimated either from previous open�loop tests or from simple closed�loop tests� One can

then apply the FCOR algorithm to the interactor��ltered variable �Yt� and the MIMO

performance index of the original variable Yt can be estimated� The result is shown in

�gure ��	� where performance indices include objective function based performance index

�denoted as MIMO� and individual output performance indices �denoted as y	 and y�

respectively�� In this example� when K�� � � �K�� is the numerator gain of element �	���

of the process transfer function matrix T ��� the performance measure of both outputs

reaches the optimal value due to weak interaction� However� with increasing interaction

�i�e� asK�� increases� the performance deteriorates� and eventually the performance index

of y� approaches zero� Performance of y� is more sensitive to the change in K��� It appears

that the objective function based MIMO performance index is in�uenced signi�cantly by

y� in this example� This plot also shows a good agreement of the estimated performance

indices with the theoretical ones�
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Figure ��	� Performance assessment of a square MIMO process �with a general

interactor matrix� under multiloop minimum variance control

To see the e�ect of output weighting� a weighting matrix

W �

�
�� 	 �

� �

�
��

is assumed� i�e� y� is regarded as a more important output variable than y�� Following

the procedure in Chapter �� a weighted unitary interactor matrix is formed as

Dw �

�
�� �������q �	���
q
���	��q� �	��	�q�

�
��

The feedback control invariant polynomial matrix F can be calculated from q�dDwN �

F � q�dR as

F �

�
�� �	�����q�� ����	��q��

������� � ��	�	�q�� ������� � 	��	��q��

�
��

The theoretical minimum variance matrix under the weighted minimum variance control

can be calculated from Ytjmv � qdD��
w Fat as

Ytjmv �

�
�� 	� �������q�� ����� ������q��

��� � �������q�� 	 � �����
q��

�
�� at

This will be the theoretical benchmark to assess performance of the feedback controller�

The FCOR algorithm will estimate this benchmark from routine operating data� The



		�

results are shown in Figure ���� Since y� becomes the more important output variable�

the benchmark variance of y� should be reduced and the benchmark variance of y� is

expected to increase� Consequently� the performance indices of y� should decrease and the

performance indices of y� is expected to increase� The objective function based MIMO

performance indices should somehow move toward the performance index of y�� All these

are con�rmed by Figure ���� This �gure also shows good agreement between the theoretical

indices and estimated from the FCOR algorithm� Notice that while individual performance

indices can be larger than 	� the objective function based MIMO performance indices are

always less than 	�

The FCOR algorithm can also handle non�square systems� Consider the input�output

transfer function in example � replaced by a �� � transfer function matrix�

T �

�
��

q��

����
q��
K��q��

�����q��
���q��

����	q��

��q��

�����q��
q��

�����q��
���q��

����q��

�
��

This non�square transfer function matrix has the following unitary interactor matrix�

D �

�
�� ����	
�q �������q
�������q� ���	
�q�

�
��

Suppose a multivariable controller�

Q �

�
�����

��	�����q��

����	q��
�

� ���	������q��

�����	q��������	q���

�������q��

��q��
�������q��

��q��

�
�����

is designed for this system� With the multivariable controller operating on this ��output

and ��input system� the performance can be estimated by using the FCOR algorithm

on routine operating data� The results are shown in �gure ���� For this example�

the performance index of y� steadily deteriorates with increasing interaction� while the

performance index of y� shows a more complicated pattern of performance change with

increasing interaction�



		�


���� Industrial application

An industrial absorption process is shown in �gure ���� The process is designed for

the removal of CO� from the feed gas that is a mixture of CO�� H�� and N�� The solution

contains a combination of potassium carbonate and a catalyst additive� It absorbs CO�

from the CO� absorber on the right and is regenerated in the CO� stripper on the left by

reboiling and steam�stripping the CO� from the solution� The term �lean solution� refers

to stripper bottom �ow which is mostly free of CO� whereas the �semi�lean solution�

coming from the �rst�stage stripping still contains some CO�� Since the solution is

circulated continuously between the two towers� an extremely strong interaction exists

between the two PID�controlled level loops of both towers� The objective of this analysis

is performance assessment of the two level controllers� For this process� the output quality

is measured by J � E�Yt � Y sp
t �

TW �Yt � Y sp
t � with the weighting matrix W � I �de�ned

as weighting -	� and the setpoint being constant� Di�erent weighting matrices are also

studied in this example� A representative set of routine operating data was sampled over

	� hours with sampling time Ts � �sec as shown in Figure ���� The time delay of the

loop u� �y� is known to be 	
 sampling periods� and the time delay of the loop u� � y�

is known to be �� sampling periods� The interactor matrix has the diagonal structure�

which is a special unitary interactor matrix� According to plant engineers� the u� � y� loop

is supposed to be tightly tuned�

The left graph in Figure ��� shows the estimated multivariable performance indices

�weighting -	�� where each point represents the performance measure based on the last

��� data points� i�e one hour of data� The performance indices can be seen to be fairly

stable over 	� hours with an average multivariable performance index �objective function

based� of ���� To further investigate this process� the individual output performance is

studied� The performance indices of output y� and y� are also shown in the left graph of

Figure ���� The performance measure of y� is close to minimum variance control�	 	��

However� the performance measure of y� �	 ���� indicates rather poor control of this

output� Thus these two loop tunings are fairly �unbalanced�� Further study shows

that a strong negative correlation exists between the variations of y� and y�� Therefore



		�

this assessment suggests that 	� in order to improve the overall performance� the loop 	

controller �for y�� needs to be detuned so that the loop � controller �for y�� can be more

tightly tuned" �� there may be little or no incentive to further improve the performance

of y� since it is performing at almost minimum variance levels" and �� the performance

of y� may be signi�cantly improved by simply adjusting current control parameters or

redesigning the control algorithm� e�g�� by detuning the loop 	 controller and tightly

tuning the loop � controller� In summary� this assessment justi�es further analysis of this

process� and indicates the potential for improving regulatory performance� particularly

the performance of y��

Now suppose that the level of the �rst column is a much more import variable to

regulate than the level of the second column� A weighting matrix W � diag�	��� 	�

�de�ned as weighting -�� is assumed� Then� one would expect this process to indicate

good performance in terms of objective function based MIMO performance index� On the

other hand� if a weighting matrix W � diag�	� 	��� �de�ned as weighting -�� is assumed�

i�e� the level of the second column is much more important than the �rst column� then

one should expect that this process has very poor performance� All these are con�rmed

in the right side graph in Figure ����

	�� Conclusions

The main contributions of this chapter are�


 Development of a computationally simple algorithm to estimate control loop

performance measure of a general class �square and non�square� of MIMO processes�

The use of this measure for preliminary process diagnosis and monitoring of

multivariable processes under multiloop control has been illustrated by application

to an industrial process� This later topic is bound to be the subject of considerable

industrial interest for pre� and post�audit of advanced control applications�


 The derivation of this algorithm is based on the idea of a minimum variance

benchmark standard that has been extended from the SISO to the MIMO case�



		�


 The derived algorithm is simple and has been successfully evaluated by simulated

and actual industrial application�


 The proposed performance assessment together with the analysis of dispersion and
spectral analysis as introduced by DeVries and Wu�	
��� can result in a powerful

tool for multivariable performance monitoring and diagnosis�
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Figure ���� Performance assessment of a square MIMO process �with a general

interactor matrix and output weighting� under multiloop minimum

variance control
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Figure ���� Performance assessment of a non�square MIMO process �with a general

interactor matrix� under multivariable control



		�

N2

22

,2
2

2

Semi-lean Solution

Lean Solution

H

Feed Gas
Steam

OH

CO

loopyu

u y loop1 1
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Figure ���� Multivariable performance assessment of absorption process



Chapter �

Feedforward � Feedback

Controller Performance

Assessment


�� Introduction

Minimum variance feedback control is the best possible feedback control in the sense

that no other controllers can give lower process variance than it� If a process indicates

a good performance measure relative to minimum variance control� further tuning of the

existing feedback controller is neither useful nor helpful� If further reduction of process

variance is required� then one may have to implement feedforward control�

Design of minimum variance feedforward � feedback control can be found in Box

and Jenkins�	
���� Sternad and Soderstrom�	
���� Desborough and Harris�	

�� have

discussed feedforward controller performance assessment of SISO processes� The main

contribution of this chapter is to extend the MIMO feedback controller performance

assessment technique to feedforward plus feedback case� If feedforward controllers have

not been actually implemented on the process� then this analysis gives a measure of the

potential bene�t of implementing feedforward controllers� This chapter is organized as

		




	��

follows� In section 
��� the theoretical background and calculation procedure for FF�FB

control performance assessment is established� The proposed method is then illustrated by

a numerical example and an industrial application in section 
��� followed by concluding

remarks in section 
���


�� Performance assessment of MIMO processes using

minimum variance FF�FB control as the benchmark

����� Minimum variance FFFB control benchmark performance

Consider a MIMO process�

Yt � TUt �Naat �Nbbt �
�	�

where T �n�n� is the input�output transfer function matrix� Na �n�na� and Nb �n�nb�

are disturbance transfer function matrices� at �na� 	� is the �driving force �white noise��
for realization of the unmeasurable disturbances� and bt �nb� 	� is the �driving force� for
realization of the measurable disturbances and is independent of at� The �driving force��

bt� can be indirectly measured through time series analysis �data prewhitening��

	t � Gmbt �
���

where 	t �nb � 	� is directly measured disturbances� Gm �nb � nb� is the transfer function

matrix obtained from time series analysis of 	t�

By factoring T as T � D�� �T where D�� is the delay matrix or the inverse interactor

matrix� equation�
�	� can be written as

Yt � D�� �TUt �Naat �Nbbt �
���

Multiplying both sides of equation�
��� by q�dD where d is the order of the interactor

matrix �the smallest integer that makes q�dD casual or the largest power of q in D�� yields

�Yt � q�d �TUt � �Naat � �Nbbt �
���



	�	

where

�Yt � q�dDYt

�Na � q�dDNa

�Nb � q�dDNb

Using the Diophantine identity

�Na � Fa � q�dRa

�Nb � Fb � q�dRb

where

Fa � F
�a�
� � F

�a�
� q�� � � � �� F

�a�
d��q

��d���

Fb � F
�b�
� � F

�b�
� q�� � � � � � F

�b�
d��q

��d���

are matrix polynomials� and Ra and Rb are proper rational transfer function matrices�

Using these Diophantine identities� equation�
��� can be written as

�Yt � Faat � Fbbt � �TUt�d �Raat�d �Rbbt�d �
���

Due to causality of the control law� Ut�d must be independent of Faat and Fbbt� since

these two terms occur after the time t � d� Therefore� the �rst two terms on the right

hand side of equation�
��� are control independent� In other words�

V ar� �Yt� � V ar�Faat � Fbbt�

or in LQ form �total variance��

E� �Y T
t
�Yt� � tr�V ar�Faat�� � tr�V ar�Fbbt��

Equality holds when the remaining terms on the left hand side of equation�
��� are equal

to zero� i�e�

�TUt�d �Raat�d �Rbbt�d � �

which gives the following control law�

Ut � � �T���Raat �Rbbt� �
���



	��

Substituting equation�
��� into equation�
��� yields

�Yt � Faat � Fbbt

This gives

at � F��a � �Yt � Fbbt� �
���

Substituting equation�
��� into equation�
��� results in the feedback plus feedforward

control law�

Ut � � �T��RaF
��
a �q�dD�Yt � �T���RaF

��
a Fb �Rb�bt �
���

By using equation�
���� equation�
��� can be written as

Ut � � �T��RaF
��
a �q�dD�Yt � �T���RaF

��
a Fb �Rb�G

��
m 	t �
�
�

The �rst term on the right hand side of equation�
�
� re�ects the feedback part of the

minimum variance feedforward and feedback control law� and the second term re�ects the

feedforward part of the minimum variance feedforward and feedback control law� This

minimum variance control law may or may not be practically implementable depending

on the invertibility of process zeros� In practice� there are many limitations on achievable

performance in addition to time�delays and non�invertible zeros� Constraints on control

action� existence of poorly damped zeros� and desired robustness characteristics are

examples of such limitations on the achievable performance as discussed in Chapter ��

Nevertheless� this minimum variance control provides the absolute lower bound on the

process variation and serves as a convenient benchmark for the �rst�level performance

assessment�

This minimum variance feedback � feedforward control law apparently only minimizes

the total variance �LQ objective function� of the interactor��ltered variable �Yt� However� if

D is a unitary interactor matrix� then the minimum variance control law which minimizes

the following LQ objective function �total variance� of the interactor��ltered variable �Yt�

J� � E# �Y T
t
�Yt$ �
�	��

also minimizes the LQ objective function of the original variable Yt�

J� � E#Y T
t Yt$ �
�		�



	��

and J� � J� �for proof see Lemma ��� In the sequel� this LQ objective function or total

variance will be used for the scalar performance measure of the MIMO system� and we

will no longer distinguish the performance measures between the original variable� Yt� and

the interactor��ltered variable� �Yt�

In summary� under minimum variance FF�FB control� the closed�loop response can

be denoted by

et
�
� �Ytjmin � Faat � Fbbt �
�	��

where et is the FF�FB controller�invariant term� i�e� no feedforward and feedback

controllers can change this term� and therefore it can be estimated from routine closed�loop

operating data under any linear FF�FB controllers� This yields the following theorem�

Theorem 
 The minimum variance of the interactor��ltered output �Yt is FF�FB control

invariant� and can be estimated from routine operating data Yt� The estimation is via

multivariate moving�average time series analysis of �Yt� i�e� if write �Yt as

�Yt � F
�a�
� at � � � �� F

�a�
d��at�d��� �z �

eut �Faat

�F
�a�
d at�d� � � ��F �b�

� bt � � � �� F
�b�
d��bt�d��� �z �

emt �Fbbt

�F
�b�
d bt�d� � � �

then

et � eut � emt

constitutes the minimum FF�FB variance� where eut � Faat is the contribution of the

unmeasurable disturbances to the minimum variance sequence et� and emt � Fbbt is the

contribution of the measurable disturbances to the minimum variance sequence et�

Note that this minimum FF�FB variance may not be achieved by minimum variance

feedback control only� and the lower bound achieved by feedback control is no less than the

lower bound achieved by feedforward plus feedback control �Pierce� 	
���� Estimation of

the lower bound achieved by feedback control �minimum FB variance� has been established

in Chapter �� i�e� if one models the interactor��ltered output� �Yt� by the following moving�

average model�

�Yt � F��t � � � �� Fd���t�d��� �z �
eFBt

�Fd�t�d � � � �



	��

then eFBt is feedback controller�invariant� and E#�eFBt �T �eFBt �� constitutes the total

minimum FB variance� Here �t is actually a lumped disturbance from both unmeasurable

and measurable disturbances� The bene�t of implementing feedforward � feedback control

is therefore

&J � JFB � JFF�FB � E#�eFBt �T �eFBt �$�E�eTt et� �
�	��

or the bene�t relative to the present process variance

&J� �
E#�eFBt �T �eFBt �$�E�eTt et�

E�Y T
t Yt�

or the bene�t relative to minimum FB variance

&J� �
E#�eFBt �T �eFBt �$�E�eTt et�

E#�eFBt �T �eFBt �$

����� Feedback controller performance assessment of MIMO processes

using minimum variance FFFB control as the benchmark

A closed�loop response to both unmeasurable and measurable disturbances can be

written as

Yt � Gaat �G�	t �
�	��

where Ga and G� are rational� proper transfer function matrices� Equation �
�	�� can be

estimated via any standard system identi�cation tools with 	t as the known input and Yt

as the output� Substituting 	t � Gmbt into equation�
�	�� yields

Yt � Gaat �G�Gmbt �
�	��

where the transfer function matrix Gm can be estimated from multivariate time series

analysis of 	t via system identi�cation tools� Multiplying equation�
�	�� by q�dD yields

q�dDYt � �Yt � q�dDGaat � q�dDG�Gmbt �
�	��

Equation �
�	�� can be further written as the Markov parameter form �impulse response

form��

�Yt � F
�a�
� at � � � �� F

�a�
d��at��d���� �z �

eut

�F
�a�
d at�d � � � �� �z �

�eut

�F
�b�
� bt � � � �� F

�b�
d��bt��d���� �z �

emt

�F
�b�
d bt�d � � � �� �z �

�emt

�
�	��



	��

where F
�a�
i and F

�b�
i are the Markov parameter matrices �impulse response coe�cient

matrices�" �eut is the in�ation in eut due to non�optimal FB control to the unmeasurable

disturbances" �emt is the in�ation in e
m
t due to non�optimal FFFB control to the measurable

disturbances� From equation�
�	��� we have

V ar�eut � � F
�a�
�  a�F

�a�
� �T � � � �� F

�a�
d�� a�F

�a�
d���

T

V ar�emt � � F
�b�
�  b�F

�b�
� �T � � � �� F

�b�
d�� b�F

�b�
d���

T

where  a � E�ata
T
t � and  b � E�btb

T
t �� Thus the quadratic measure �total variance� of

minimum FF�FB variance control�

JFF�FB � E�eTt et� � E�eut �
T �eut � �E�emt �

T �emt �

can be calculated following the above procedure and can then be used as the benchmark

against which to assess performance of feedforward � feedback controllers� The quadratic

measure of minimum FB�only control JFB � E#�eFBt �T �eFBt �$ may be estimated via the

FCOR algorithm� Then the bene�t of implementing optimal FF�FB control can be

calculated from equation �
�	���


�� Numerical example and an industrial application

����� Numerical example

Performance assessment of feedback control for a � � � process has been studied in
Chapter �� In this example� the bene�t of implementing feedforward � feedback control

to the same process will be discussed� The process has the following transfer function

matrices�

T �

�
��

q��

����
q��
q��

�����q��

���q��

�����q��
q��

�����q��

�
��

Na �

�
��

�
����	q��

����
����	q��

��	
����	q��

���
����	q��

�
�� Nb �

�
��

���q��

����
q��
����q��

�����q��

���q��

�����q��
��
q��

�����q��

�
��



	��

A unitary interactor matrix D can be factored as�

D �

�
�� ���
���q �������q
�������q� ��
���q�

�
��

Then �Na � q�dDNa is given by

�Na �

�
�� �	�	�	�q�� ������q��

��	
	� � ���
��q�� 	�	��� � �����	q��

�
��

� �z �
Fa

�q��

�
��

���		�
����	q��

���
�
����	q��

���
�
����	q��

������
����	q��

�
��

� �z �
Ra

and �Nb � q�dDNb is given by

�Nb �

�
�� � �

� ������q��

�
��

� �z �
Fb

�q��

�
��

�
�		q������
�q��

�	�q����	��q���
�����	�	����q��

����q��������q���

��
�	����q��

�	�q����	��q���
����
������q��

����q��������q���

�
��

� �z �
Rb

The minimum FF�FB variance term can then be written as

et � Faat � Fbbt �

�
�� �	�	�	�q�� ������q��

��	
	� � ���
��q�� 	�	��� � �����	q��

�
�� at �

�
�� � �

� ������q��

�
�� bt

Assuming  a � Eata
T
t � I and  b � Ebtb

T
t � �I� the quadratic measure �total variance�

of minimum variance FF�FB control can be calculated as

JFF�FB � EeTt et � ������

If� on the other hand� only minimum variance feedback control law is implemented� the

feedback controller�invariant minimum variance term can be estimated by applying a FB

performance assessment algorithm such as the FCOR algorithm to process data� This

gives the quadratic measure �total variance� of minimum feedback control as

JFB � ��	���

The bene�t of adding optimal feedforward control relative to minimum FB variance is

then�

&J� �
��	��� � ������

��	���
� 	
���



	��

In summary� the achievable total variance by implementing any feedback control is no less

than ��	���" the achievable total variance by implementing any feedback and feedforward

control is no less than ������� The bene�t of adding feedforward control is about ���

relative to minimum variance FB control� The optimal values may or may not be

achievable depending on practical constraints�

����� Industrial application

The proposed performance assessment methods were applied to a Mitsubishi Chemical

Corporation industrial process at Mizushima� Japan� As depicted in Figure 
�	� the

process consists of an integrated cracking unit and a separation unit� In the current

operation� oscillatory behavior in both TC� and TC� occurs frequently which causes the

composition of the distillate and bottoms to �uctuate� Clearly� the cracking furnaces are

highly integrated with the distillation column and therefore when tuning all of the single

loop controllers� interactions and the multivariable plant performance must be considered�

The main objective of this study is to assess the current control performance of TC� and

TC�� identify their primary source of variation and analyze the bene�t of implementing

feedforward control� Based on this analysis� recommendations regarding control structure�

controller tuning and process modi�cation can be made that will reduce variation of TC�

and TC�� Expected bene�ts of a reduction in the variance of TC� and TC� are improved

operability and yields of subsequent processes and lower reboiler and condenser energy

requirements for the distillation column�

It is known from a previous plant test that the process has a diagonal interactor matrix

as

D�� �

�
�� q�� �

� q��	

�
��

This interactor matrix clearly satis�es DT �q���D�q� � I� which is a unitary interactor

matrix� The number of data points used for this analysis is ���� with sampling

interval Ts � 	min� There are more than �� measured disturbances� Three measured

disturbances were selected from a screening test as candidates for feedforward control�



	��

They are the �ow rate measurement FM�� the temperature measurement TM	 and the

pressure measurement PM�� In this case� feedforward controllers have not been actually

implemented� This study will analyze the bene�t of implementing feedforward controllers�

A representative set of data for the two outputs and the three measured disturbances is

shown in Figure 
��� Following the procedure as proposed in this chapter� the total

minimum FF�FB variance is estimated as

JFF�FB � E�eut �
T �eut � �E�emt �

T �emt � � ������ � ������ � ��	��


The total minimum FB variance �if only minimum variance feedback control is

implemented� is estimated from the FCOR algorithm as

JFB � E#�eFBt �T �eFBt �$ � ��	���

The total current process variance is calculated as

Jact � E�Yt � Y sp
t �

T �Yt � Y sp
t � � ������

Based on these results� the total variance of the process variables may be reduced from

the current value of ������ to a minimum of about ��	� or ��� reduction in the variance

by implementing a multivariate minimum variance feedback control only� The minimum

value itself may or may not be achievable depending on invertibilty of the process zeros�

On the other hand� a multivariate minimum variance feedforward plus feedback control

strategy may bring the total variance down by 	���	��
������� � ���� The improvement
relative to the actual variance due to applying feedforward control is therefore

&J� �
��	��� � ��	��


������
� 	��

These results lead to the recommendations that both feedforward control and multivariate

feedback may be bene�cial and worthwhile for further analysis�


�� Conclusions

This chapter has extended the MIMO performance assessment of feedback controllers

to feedforward plus feedback controllers� It has been shown that the minimum FF�FB



	�


variance is feedforward and feedback controller�invariant and can be estimated from

routine operating data via time series analysis� The proposed performance assessment

method has been illustrated by a numerical example and applied to an industrial

application�



	��
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�	� Schematic diagram of the industrial process
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��� Process data trajectory� The time scale is the sampling intervals�



Chapter �	

Performance Assessment of

Nonminimum Phase Systems

���� Introduction

With complete knowledge of process dynamics� any possible limitations on the

achievable performance may be calculated via procedures such as convex optimization

and linear programming �Boyd and Barratt� 	

	" Dahleh and Diaz�Bobillo� 	

��� This

is generally not a very attractive approach to process performance monitoring� since a

typical plant can have hundreds and thousands of control loops� and identi�cation of all

loops� to obtain process models� is a very demanding requirement� Performance monitoring

should be carried out in such a way that the normal operation of a process is a�ected as

less as possible� In addition� process dynamics and disturbances may drift from time to

time� and the initially identi�ed model may not represent the true dynamics� Thus on�line

performance monitoring is necessary�

Di�erent types of constraints require di�erent levels of process knowledge� Some

constraints require less a priori knowledge of processes than others� If one can separate

the constraints into di�erent levels� then control loop performance may be assessed from

the simplest to the hardest constraints with progressively more information required about

the process at each stage� Only those loops which indicate poor performance at the �rst

	�	



	��

level then need to be examined at the next level of performance assessment� Time�delays

pose the �rst level of performance limitations� However� time�delays are easiest to obtain

or estimate� Therefore� performance limitations due to time�delays is assessed at the �rst

level� The second level of performance limitation would be due to non�invertible zeros�

Tyler and Morari�	

�� have considered performance assessment of SISO systems with

non�invertible zeros� In Chapter �� � and �� performance assessment of MIMO processes

with time delays or in�nite zeros has been considered� This chapter is an extension to

the previous results in which we can consider performance limitations and assessment in

the presence of unstable process zeros� Throughout this chapter� we shall assume that the

process is open�loop stable� i�e� no poles lie outside the unit circle�

This chapter is organized as follows� The generalized unitary interactor matrix� an

all�pass factor� is introduced in Section 	���� Performance assessment of processes with

non�invertible zeros is discussed in Section 	���� followed by a numerical example in

Section 	���� Concluding remarks are addressed in Section 	����

���� Generalized unitary interactor matrices

For multivariable processes with non�invertible zeros� an interactor matrix which can

also factorize the non�invertible zeros in addition to the in�nite zeros is desirable� The

optimal control law corresponding to the admissible minimum variance and minimum ISE

control requires such an interactor matrix �Tsiligiannis and Svoronos� 	
�
��

De�nition � An interactor matrix� DG� satisfying the following four conditions� is

de�ned as the generalized unitary interactor matrix of T �

�� The unitary condition is held� DT
G�q

���DG�q� � I�

� There exists a non�singular constant matrix Kinf � Rn�m such that

lim
q����

DGT � Kinf �	��	�



	��

�� There exist non�singular matrices Ki � Rn�m such that

lim
q������i

DGT � Kfi �i � 	� � � � � s� �	����

where �i� �i � 	� � � � � s� are the non�invertible zeros of T � i�e� j�ij � 	�

�� The poles of DG in terms of q are f��� � � � � �sg �including the multiplicities��

The algorithm for factorization of the unitary interactor matrix as discussed in

Chapter � extracts in�nite zeros from the transfer function matrix� To extract

�nite non�invertible zeros� a bilinear transformation as introduced by Tsiligiannis and

Svoronos�	
�
� can be used�

q�� �
	 � p���

p�� � �

and therefore

p�� �
	� �q��

q�� � �

where � is an unstable zero� and p�� is a map of q��� For any non�minimum phase zero

q�� � 	��� this mapping transforms the �nite zero in the q�domain to an in�nite zero in

the p�domain� i�e� from q�� � 	�� to p�� � �� Therefore existing methods for extraction

of the in�nite zeros can be applied� This also proves existence of the generalized unitary

interactor matrix�

The generalized unitary interactor can therefore be factored as

DG � DfDinf

where Dinf is a unitary interactor matrix representing in�nite zeros of T � and Df is

a unitary interactor matrix representing non�invertible zeros of T � The order �d� of the

interactor matrixDG is de�ned as the order of Dinf � According to this procedure� each p�q

transformation factors out one unstable zero� To factor out all f��� � � � � �sg non�invertible
zeros� s steps of such transformation are required� Each step involves a simple algebraic

manipulation� Df can therefore be written as

Df � DfsDfs�� � � �Df�



	��

The �Inner�Outer� factorization �Chu� 	
��� can also factor the unstable and in�nite zeros�

It involves solution of an algebraic Riccati equation in the state space framework� The

generalized unitary interactor matrix provides an alternative solution to the inner�outer

factorization�

Example � Consider the following system from Tsiligiannis and Svoronos�	
�
��

T �

�
��

���q��

����
q��
��	q��

����	q��

���q��

����	q��
���q��

����
q��

�
��

Tsiligiannis and Svoronos�	
�
� have shown that a lower triangular generalized interactor

matrix can be factored as �
�� q �

�	��
��q ����	
qq���	
 q ����	
qq���	


�
��

The optimal control law based on such lower triangular interactor matrix results in optimal

�minimum variance� control of the �rst variable� and conditional optimal control of the

remaining variables �Tsiligiannis and Svoronos� 	
�
�� Therefore� importance of each

variable depends on the order it is stacked in the output vector� Di�erent ordering of the

output vector results in the di�erent optimal control laws� On the other hand� as shown

in the next section a generalized unitary interactor matrix gives an optimal control law

which minimizes the LQ objective function or H� norm and therefore the resulting optimal

control law is unique�

Now we show a procedure for factoring a generalized unitary interactor matrix from

this process� The transfer function matrix has a simple time�delay structure or a simple

interactor matrix Dinf � qI �therefore d � 	�� and an unstable zero at 	�
p
��� � 	������

If the in�nite zeros are factored out� then the transfer function matrix with �nite �stable

and unstable� zeros is obtained as�
��

���q��

����

��	

����	q��

���
����	q��

���
����
q��

�
��

Mapping from q�domain to p�domain using the bilinear transformation

q�� �
	 � 	�����p��

	����� � p��



	��

yields the transfer function matrix � �Tf � in the p�domain as

T �

�
��

������	
�p���
���
�������p��

��	���	
�p���
���
�������p��

������	
�p���
���
�������p��

������	
�p���
���
�������p��

�
��

This can be further written in the Markov parameter form as�

T �

�
�� ����
	 ������

������ ����
	

�
���

�
�� ������ ���	��

����	� ������

�
�� p�� � � � �

The �rst Markov parameter matrix is rank defective� therefore there is at least one in�nite

zero in T in the p�domain� Using the �rst two Markov parameter matrices to form a block

Markov parameter matrix yields

*��� �

�
��������

����
	 ������

������ ����
	

������ ���	��

����	� ������

�
��������

Applying the algorithm given by equations �A��� to �A��� to *���� one can then proceeds

as follows�

For i � 	 �iteration -	�� r� � 	� k� � 	�

Q��� �

�
�� ������� ������

������� �������

�
��

U ��� �

�
��������

� �

	 �

� 	

� �

�
��������

U ����q� �

�
�� � 	

p �

�
��

*��� �

�
��������

�	����	 �	��
��
����
� �������
������	 �������

� �

�
��������



	��

Because rank�*���� � � � min�n�m�� the algorithm terminates and the unitary interactor

matrix given by equations �A��� and �A��� is calculated as

Df �p� �

�
�� ������� �������
�������p ������p

�
��

Substituting the bilinear transformation

p�� �
	� 	�����q��

q�� � �

back into Df �p� yields the unitary interactor matrix in q�domain which contains the

unstable zero of T �

Df �

�
�� ������� �������

�����	�����	
q�
q���	


���
������	
q�
q���	


�
��

A generalized unitary interactor matrix� containing both in�nite and �nite non�invertible

zeros� can therefore be calculated as

DG � DfDinf �

�
�� �������q �������q

�����	�����	
q�q
q���	


���
������	
q�q
q���	


�
��

���� Feedback controller performance assessment of

MIMO processes with non�invertible zeros

������ Performance assessment with admissible minimum variance

control as the benchmark

For MIMO systems with non�invertible zeros� the LQ problem can be solved via

spectral factorization �Youla and Bongiorno� 	
��" Harris and MacGregor� 	
��" Peng

and Kinnaert� 	

��� via optimal H� control �Morari and Za�riou� 	
�
" Dahleh and

Diaz�Bobillo� 	

�� or via the state space approach �Kwakernaak and Sivan� 	
����

Alternatively� one may solve it through a simple and intuitive approach as discussed

in Astrom and Wittenmark�	

�� � This last approach provides an explicit expression

for the feedback controller invariant terms� and is the most suitable approach for seeking



	��

the feedback control invariant term �benchmark control performance� for control loop

performance assessment� Astrom and Wittenmark�	

�� have shown that this admissible

minimum variance control problem for SISO systems can be solved by minimizing the

�ltered variable yft � The �lter is an all�pass factor� which removes all zeros that are

outside the unit circle from the input�output transfer function while keeping the spectrum

unchanged� The spectrum of yft is therefore the same as that of yt� Minimization of

V ar�yft � is equivalent to minimization of V ar�yt�� The generalized unitary interactor

matrix is also an all�pass factor and can serve as such a �lter for the MIMO system as

well� Thus the methodology used in the SISO case can be extended to the MIMO case in

an intuitive way� The following theorem is an extension to Astrom and Wittenmark�	

��

� or to Goodwin and Sin�	
��� to consider the generalized unitary interactor matrix for

the solution of the admissible minimum variance control law� The admissible minimum

variance control law can also be derived from the optimal H� control law� This is discussed

in Section 	������

Theorem � Consider a MIMO process with unstable zeros

Yt � TUt �Nat �	����

The control objective is to minimize the LQ objective function de�ned by

J � E�Y T
t Yt� �	����

Then the admissible minimum variance control law is given by

Ut � � �T��Rmp�F � q�dRnmp�
���q�dDG�Yt �	����

where �T � DGT � d is the order of the interactor matrix� DG is the generalized unitary

interactor� F � Rmp and Rnmp are derived from the Diophantine identity�

q�dDGN � F� � F�q
�� � � � �� Fd��q

�d��� �z �
F

�q�d �Rnmp �Rmp�� �z �
R

�	����

where Fi �for i � �� 	� � � � � d�	� are constant coe
cient matrices� R is the remaining proper

transfer matrix� Rnmp contains all unstable poles of R after partial fraction expansion� and

Rmp is the remaining term of R after the partial fraction expansion�



	��

Proof� Multiplying both sides of equation �	���� by q�dDG yields

q�dDGYt � �TUt�d � q�dDGNat �	����

Substituting equation �	���� into equation �	���� yields

q�dDGYt � �TUt�d � Fat � q�dRnmpat � q�dRmpat �	����

Since GT
G�q

���GG�q� � I by the de�nition of the generalized unitary interactor�

minimization of E#�q�dDGYt�
T �q�dDGYt�$ is equivalent to minimization of E#Y

T
t Yt$ for

any admissible feedback control�

The following interpretation of the unstable operator follows from Astrom and

Wittenmark�	

�� �see also Wiener�	
�
��� Consider the operator 	��	 � aq��� where

jaj � 	� This operator is normally interpreted as a causal unstable operator� Because

jaj � 	� and the shift operator has the norm jqj � 	� the series expansion
	

	 � aq��
�
	

a

q

	 � q�a
�

q

a
#	� 	

a
q �

	

a�
q� � � � �$

converges� Thus the operator 	��	 � aq��� can be interpreted as a noncausal stable

operator� Therefore the term� q�dRnmp� in equation �	���� can be expanded in terms of

the +q� operator� For example� consider Rnmp � 	��	 � aq���� Then the expansion

q�d

	 � aq��
�
	

a

q�d��

	 � q�a
�
	

a
#q�d�� � 	

a
q�d�� �

	

a�
q�d�� � � � �$

converges� and the most recent term in this expansion is �
aq
�d�� that cannot be controlled

by the control action� Ut�d � Utq
�d� which is one step earlier� Clearly the term Fat is also

independent of Ut�d� Therefore the optimal control law is obtained by letting the sum of

the remaining terms in equation �	���� to zero� This yields

Ut�d � � �T��Rmpat�d �	��
�

or

Ut � � �T��Rmpat �	��	��

Substituting equation �	��	�� into equation �	���� yields

q�dDGYt � �F � q�dRnmp�at �	��		�



	�


Thus

at � �F � q�dRnmp�
���q�dDG�Yt �	��	��

Substituting equation �	��	�� into equation �	��	�� yields the admissible minimum

variance control law�

Ut � � �T��Rmp�F � q�dRnmp�
���q�dDG�Yt �	��	��

From equation �	��		�� the closed�loop response under the admissible minimum variance

control is given by

Yt � �q
�dDG�

���F � q�dRnmp�at
�
� Gminat �	��	��

Now we are in the position to show an approach to estimate the admissible minimum

variance control variance from closed�loop data using the results in Theorem 
� It is clear

from the proof of Theorem 
 that for such a purpose� one needs to estimate the terms F

and Rnmp from closed�loop data in order to obtain equation �	��		� or equation �	��	���

If DG contains only in�nite zeros� then equation �	��		� reduces to

q�dDGYt � Fat

Any non�optimal feedback control will in�ate the process by adding an extra term to this

equation as discussed in Chapter �� i�e�

q�dDGYt � Fat � Lat�d

where L is a proper rational transfer function matrix and is feedback control dependent�

The correlation analysis between the interactor��ltered variable q�dDGYt and at yields

the feedback controller�invariant term F � Thus a simple FCOR based correlation analysis

yields the benchmark performance� However� ifDG contains unstable poles �non�invertible

zeros of T �� then equation �	��		� is the closed�loop response under admissible minimum

variance control� It is evident from the proof of Theorem 
 that the terms F and Rnmp
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are feedback control invariant� and any non�optimal feedback control will add an extra

term to equation �	��		� as

q�dDGYt � Fat �Rnmpat�d � Lat�d

where L is feedback control dependent�

To estimate the terms F and Rnmp� we shall �t Yt by a time series model as

Yt � Gclat

Then multiply Gcl by q
�dDG to obtain the interactor��ltered closed�loop transfer function

matrix G�
cl� i�e�

G�
cl � q�dDGGcl

Let G�
cl be expanded to

G�
cl � Fat �)at�d

where F � F��F�q
��� � � ��Fd��q

�d��� and ) is the remaining rational proper transfer

function matrix of G�
cl� Finally� from ) one can obtain Rnmp as

Rnmp � f)g�

where f�g� denotes that after a partial fraction expansion of the operand� only the terms
corresponding to unstable poles are retained� With the knowledge of F and Rnmp� the

closed�loop response under the admissible minimum variance control can be calculated

from equation �	��	���

The algorithm to calculate the admissible minimum variance control response for

feedback control performance assessment of nonminimum phase processes is summarized

in Table 	��	

������ Alternative proof of admissible minimum variance control

To justify the proof and also the interpretation of causal unstable operators adopted

in Theorem 
� we compare the control law obtained in Theorem 
 with the optimal H�

control law� Morari and Za�riou�	
�
� have solved minimum H��norm control for the



	�	

Table 	��	� The procedure for calculation of the benchmark performance of MIMO

processes with non�invertible zeros

	� estimate or factorize the generalized unitary interactor matrix from T as DG"

�� �t routine operating data Yt by a time series model to obtain Gcl"

�� multiply Gcl by q�dDG to obtain G�
cl � q�dDGGcl� where d is the order of the

interactor matrix"

�� expand G�
cl into

G�
cl � F� � F�q

�� � � � � � Fd��q
��d���� �z �

F

�q�d

where Fi for �i � 	� �� � � � � d � 	� are constant coe�cient matrices� and  is the

remaining term after the expansion"

�� using partial fraction expansion�  can be expanded into

 � Rnmp � L

where Rnmp contains all unstable poles which are the non�invertible zeros of T � and

L is the remaining term after the partial fraction expansion� Then the process under

admissible minimum variance control can be written as

Yt � qdD��
G �F � q�dRnmp�at �	��	��



	��

MIMO system with non�invertible zeros� In this section� we show that the admissible

minimum variance control law given in Theorem 
 is the same as the optimal H� control

law given by Morari and Za�riou�	
�
� for stochastic systems�

Theorem �� �Morari and Za�riou� ������ Consider the MIMO process with non�

invertible zeros�

Yt � TUt �Nat

Factor T into all�pass portion and minimum�phase portion

T � D��
G
�T

where D��
G or DG is an all�pass factor� Similarly factor N into

N � �NNp

where Np is an all�pass factor� Then� the H� optimal control is given by

Q� � q �T��fq��DG
�Ng� �N��

where Q� is the controller transfer function matrix in the IMC framework� Its relation

with the conventional feedback control Q �Ut � �QYt� is given by

Q � Q��I � TQ����

The operator f�g� denotes that after a partial fraction expansion of the operand� only the

strictly proper terms are retained except those corresponding to the poles of DG�

Assume N has no zeros outside unit the circle� This is a general assumption for

the stochastic system �Astrom and Wittenmark� 	

�" Goodwin and Sin� 	
���� since

any unstable zeros in N can be replaced by their image �reciprocal� without changing the

disturbance spectrum� With this assumption� the control law under conventional feedback

control framework can be written as

Q � Q��I � TQ���� �	��	��

� q �T��fq��DGNg�N���I � qT �T��fq��DGNg�N�����

� q �T��fq��DGNg��N � qD��
G fq��DGNg����

� q �T��fq��DGNg��DGN � qfq��DGNg����DG �	��	��
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With use of the Diophantine identity�

q�dDGN � F� � F�q
�� � � � �� Fd��q

�d��� �z �
F

�q�d �Rnmp �Rmp�� �z �
R

we have

q��DGN � qd���q�dDGN�

� qd��F � q��Rnmp � q��Rmp �	��	��

In equation �	��	��� only the term q��Rmp is strictly proper without containing poles of

DG� Note that poles of DG are the non�invertible zeros of T � Therefore

fq��DGNg� � q��Rmp �	��	
�

and consequently

DGN � qfq��DGNg� � qdF �Rnmp �	�����

Substituting equations �	��	
� and �	����� into equation �	��	�� yields

Q � q �T��q��Rmp�q
dF �Rnmp�

��DG

� �T��Rmp�F � q�dRnmp�
���q�dDG�

Thus the optimal H� control law expressed in the conventional feedback control framework

can be written as

Ut � � �T��Rmp�F � q�dRnmp�
���q�dDG�Yt

which is the same as the admissible minimum variance control law in equation �	��	���

���� Numerical example

Example �� Consider the same system as in Example � with the disturbance transfer

function matrix as�

N �

�
��

�
����	q��

����
����	q��

��	
����	q��

�
����	q��

�
��



	��

A generalized unitary interactor matrix has been factored in Example 
 as

DG � DfDinf �

�
�� �������q �������q

�����	�����	
q�q
q���	


���
������	
q�q
q���	


�
��

With the order of the interactor matrix d � 	� we have the Diophantine identity

q�dDGN � q��DGN

�

�
�� �	����� �������

����	� �	���
�

�
��

� �z �
F

�q��

�
��

���	��
����	q��

�����
����	q��

��������
���q��

�����	q��������	
q���
���
����������q��

�����	q��������	
q���

�
��

� �z �
R

�

�
�� �	����� �������

����	� �	���
�

�
��

� �z �
F

�q��

�
�� � �

����	
����	
q��

�������
����	
q��

�
��

� �z �
Rnmp

�q��

�
��

���	��
����	q��

�����
����	q��

���
��
����	q��

�������
����	q��

�
��

� �z �
Rmp

�

�
�� �	����� �������

�����������
�q��

����	
q��
������������q��

����	
q��

�
��

� �z �
F�q�dRnmp

�q��

�
��

���	��
����	q��

������
����	q��

���
��
����	q��

�������
����	q��

�
��

� �z �
Rmp

�	���	�

The closed�loop response under admissible minimum variance control is therefore

q�dDGYt � �F � q�dRnmp�at

Substituting numerical values� we have�
�� ������� �������

�����	�q�����	
�
����	
q��

���
��q�����	
�
����	
q��

�
��Yt �

�
�� �	����� �������

�����������
�q��

����	
q��
������������q��

����	
q��

�
�� at

This can be simpli�ed as�
�� ������� �������
��������q�� � 	������ �������q�� � 	������

�
�� Yt �

�
�� �	����� �������
����	� � ��	���q�� �	���
� � �����	q��

�
�� at

�	�����

Equation �	����� represents the theoretical closed�loop response under admissible

minimum variance control� Assume� for simplicity� that V ar�at� � I� then the achievable

minimum variance can be calculated from equation �	����� as

V ar�Yt�jmv �

�
�� 	��	�� ������	
������	 	��
��

�
�� �
�  ach �	�����



	��

De�ne the individual output variance under the admissible minimum variance control as

#����ach� �
�
��ach$

�
� diagf achg �	�����

Now consider calculation of this achievable minimum variance from the closed�loop

transfer function under feedback control� An IMC controller �Tsiligiannis and Svoronos�

	
�
� given by

Q� �
�	� ���q����	 � ���q���

�	� �����q����q�� � 	������

�
�� �����	 � �����q��� �������	 � ���q���
�	������	 � ���	�q��� 	��	 � ���q���

�
��

is implemented on the process� The controller transfer function matrix Q� denotes the

control under IMC framework� Under IMC control� the closed�loop transfer function�

which can be estimated via time series analysis in practice� is written as

Gcl � �I � TQ��N

�

�
�� 	� q�� �

���������q���q��

��	
�q��
��	
���q���
��	
�q��

�
��
�
��

�
����	q��

����
����	q��

��	
����	q��

�
����	q��

�
�� �	�����

The interactor��ltered closed�loop transfer function matrix can be written as

G�
cl � q�dDGGcl

� q��DGGcl

�

�
��

�����	�����q��������q��

�����	q������	
�q���
���	���������q������
�q��

�����	q������	
�q���

�������������q��

�����	q��������	
q���
������������q��

�����	q��������	
q���

�
��

�

�
�� �	����� �������

����	� �	���
�

�
��

� �z �
F

�q��

�
��

��������
��q��

�����	q������	
�q���
����	������	��q��

�����	q������	
�q���

������������q��

�����	q��������	
q���
���	
��������q��

�����	q��������	
q���

�
��

� �z �
R

�

�
�� �	����� �������

����	� �	���
�

�
��

� �z �
F

�q��

�
�� � �

����	
����	
q��

�������
����	
q��

�
��

� �z �
Rnmp

�q��

�
��

���	��
����	q��

�����
����	q��

���
��
����	q��

�������
����	q��

�
��

� �z �
L

�

�
�� �	����� �������

�����������
�q��

����	
q��
������������q��

����	
q��

�
��

� �z �
F�q�dRnmp

�q��

�
��

��������
��q��

�����	q������	
�q���
����	������	��q��

�����	q������	
�q���

��


�
����	q��

�������
����	q��

�
��

� �z �
L



	��

The �rst term on the left hand side of the last equation is the same as that given in

equation �	���	�� Therefore� one can see that the achievable minimum variance term

F � q�dRnmp can indeed be estimated from closed�loop data� In practice� estimation of

this term requires time series analysis of closed�loop data Yt and the a priori knowledge

of the generalized unitary interactor matrix DG�

By the assumption that V ar�at� � I� the closed�loop output variance can be calculated

from equation �	����� as

V ar�Yt� �

�
�� 	��	�� �	�	���
�	�	��� 
��	��

�
�� �
�  Y �	�����

Comparing equation �	����� to equation �	������ allows one to compare the actual variance

with the achievable minimum variance� The objective function based performance index

as de�ned in Chapter � can be calculated as

�
�
�
min�E#Y T

t Yt$�

E#Y T
t Yt$

�
tr ach
tr Y

� ����

which indicates an overall MIMO feedback control performance� With the maximum

performance index as 	 and poorest performance index as �� this index indicates relatively

poor performance� The reason is� in Tsiligiannis and Svoronos �	
�
�� the controller

is actually designed for setpoint tracking of a step change but not for regulating the

disturbances as assumed in this example� Nevertheless� output -	 is close to its lower

bound with the individual performance index as

��
�
�
����ach
��y�

�
	��	��

	��	��
� ���


where ��y� is the individual output variance de�ned by

#��y� � �
�
y� $

�
� diag� Y �

Output -�� on the other hand� is far away from its lower bound with the individual

performance index as

��
�
�
����ach
��y�

�
	��
��


��	��
� ��	�

Thus� the controller has good performance in regulating output -	 but poor performance

in regulating output -�� The reason is� as shown in Tsiligiannis and Svoronos �	
�
��



	��

a lower triangular interactor matrix was used for the control design� and therefore good

performance of the �rst output should be expected�

���� Conclusions

A generalized unitary interactor matrix has been introduced in this chapter� The

admissible minimum variance control law derived by using the generalized unitary has been

shown to be identical to the optimalH� control� With a priori knowledge of the generalized

unitary interactor matrix� the admissible minimum variance control performance can be

estimated from routine operating data� and subsequently used for control loop performance

assessment� A numerical example demonstrates the applicability of the proposed method�



Chapter ��

A Uni�ed Approach to

Performance Assessment

���� Introduction

Feedback control performance assessment with minimum variance control as the

benchmark has been discussed in the earlier chapters� It has been shown that this

technique is an e�cient and also the most convenient tool to monitor industrial processes

which can have hundreds and even thousands of control loops�

However� Eriksson and Isaksson �	

�� have shown that the aforementioned technique

gives an inadequate measure of the performance if the aim is not stochastic control� but�

for example� step disturbance rejection or setpoint tracking� Tyler and Morari�	

�� have

a similar claim on this issue� One objective of this chapter is to discuss this issue and

extend Harris� idea of control loop performance assessment to cover practical issues such as

deterministic disturbances and setpoint changes� It is shown that many practical problems

such as those posed by Eriksson and Isaksson and others can be readily solved under the

same framework as proposed by Harris �	
�
� via appropriate formulation of the initial

problem� Another objective of this chapter is to unify the performance assessment of

�A part of this chapter has been accepted for presentation at the ���� IFAC Advanced Chemical Process

Control Symposium�

	��
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both stochastic and deterministic systems under the H� norm framework� Therefore� the

results developed in the earlier chapters can be extended to more general cases�

This chapter is organized as follows� Assessment of setpoint tracking performance

is discussed in Section 		��� In Section 		��� deterministic disturbances are explained

under the stochastic framework� Performance assessment of feedback controllers for

regulating both stochastic and deterministic disturbances is discussed in Section 		���

and the treatment on pure deterministic disturbances is discussed in Section 		��� In

Section 		��� a uni�ed approach for performance assessment is proposed� Simulation

example is given in Section 		��� followed by concluding remarks in Section 		���

���� Setpoint tracking problem

As discussed in the previous chapters� the standard formulation of performance

assessment using minimum variance control as the benchmark is shown in Figure 		�	

by assuming Y sp
t � � or 	t � �� where N � Q� T and M are disturbance� controller� plant

and setpoint transfer function matrices respectively" at is white noise with zero mean" For

this assumption it follows from �gure 		�	 that

Yt � �TQYt �Nat �		�	�

Under this formulation� routine operating data Yt can be used for performance assessment�

However� this formulation is of interest only when applied for performance assessment of

the regulatory controller� In some cases the setpoint tracking performance may also be of

interest�

De�ne �t � Y sp
t � Yt as the setpoint tracking error� Assuming at � � for consideration

of pure setpoint tracking problem�� it follows from �gure 		�	 that

�t � �TQ�t �M	t �		���

where the setpoint� Y sp
t � can be regarded as the realization of a white noise sequence� 	t� as

input into a rational transfer function matrix� M � It will be shown that a �deterministic�

�If at �	 � the setpoint signal needs to be considered with other disturbances� This issue will be

discussed in the following sections�
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setpoint can also be produced by �ltering a white noise input� One may note that

equation �		��� has the same form as equation �		�	�� i�e� the setpoint tracking problem

can be formulated as a regulatory control problem by a simple change of variables� The

only di�erence is the data used for analysis� For the setpoint tracking problem� one uses

�t � Y sp
t � Yt� while either �t or Yt can be used for the performance assessment of the

regulatory control problem� In the sequel� we will focus on the regulatory control problem�

i�e� we consider performance assessment of Yt with Y sp
t � �� If setpoint tracking is also

considered� then Yt simply needs to be replaced by the tracking error �t � Y sp
t � Yt� and

the results developed in the previous chapters can be used�

���� Deterministic disturbances occurring at random time

MacGregor et al��	
��� have shown that many deterministic disturbances such as the

step� ramp and exponential changes can be modeled as autoregressive�integrated�moving�

average �ARIMA� processes� The only di�erence between deterministic and stochastic

disturbances is the probability distribution of the shocks or the white�noise sequence�

This point is illustrated by using the following example�

Three �ARIMA� �lters are studied in this example� i�e� the integral �lter 	��	� q����

the double integral �lter 	��	�q���� and the sinusoidal �lter sin���q����	��q��cos����
q���� Figure 		�� shows probability density function of the shock in a special case� It is

symmetric but not normal�distributed� The shock takes only three values� �	� � and 	 with


�
�� probability density concentrated at the point �� Figure 		�� shows the realization

tε UY Ytt
sp

-
t

t

t

a

N

M
ξ

Q T

Figure 		�	� Block diagram of closed�loop process
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Figure 		��� Probability distribution of the shock

of the signal by passing the shock through the three �lters respectively� Clearly these

graphs represent a deterministic step� ramp or sinusoidal signal with possible magnitude�

slope or phase changes occurring at random times� The magnitude change of the sinusoidal

signal in Figure 		�� is due to the non�zero initial value when the second shock occurs�

The true deterministic signal �occurring at random time� is obtained in the limiting case�

Readers can also refer to �Ljung� 	
��� for discussion of such deterministic signals for

identi�cation problems�

Optimal stochastic control laws� such as MVC� GPC and LQG� are independent of

the probability distribution of the shock as long as the shock has zero mean and �nite

variance �MacGregor et al�� 	
���� Instead� how to formulate the disturbance model

is important for control design irrespective of the deterministic or stochastic nature of

the disturbances� The minimum variance control law generally yields a minimum SSE

control law� for deterministic disturbances �MacGregor et al�� 	
���� For example� if the

disturbance model is N � 	��	 � q���� then the minimum variance control law will be a

minimum SSE control law to step�type disturbances� Similarly� if the disturbance model is

of the sinusoidal structure� then the minimum variance control law yields a minimum SSE

control law to sinusoidal disturbances� These issues become more evident in the H� control

�SSE 	 Sum of Square Error� i�e� J 	 �

M

PM

i��
��i �
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Figure 		��� Signal generated by passing the shock through �lters

framework in Section 		��� Since the setpoint tracking problem can be re�formulated as a

regulatory control problem� minimum variance control can naturally handle stochastic or

deterministic setpoint tracking problems� Consequently� the methodology of performance

assessment for stochastic regulatory control can be generalized to performance assessment

of deterministic disturbance rejection as well as setpoint tracking property of the controller�

However� estimation of the performance index must be given a special treatment when

disturbances are deterministic in nature� This is illustrated in the following section�

���� Performance assessment with both stochastic and

deterministic disturbances

We begin with an example to show di�culties in performance assessment when both

stochastic and deterministic disturbances are concerned� Eriksson and Isaksson �	

��

have a numerical example showing an unreasonable performance measure if minimum

variance control is used as the benchmark� In the example� the transfer functions� in our



	��

notation� have the following values

q�d �T � q�

����

	� ����q��

N �
	� ���q��
	� ����q��

Q �
��� � ����q��

���� � ��	�q�� � ����q�


The white noise sequence at has variance �
�
a � ����� The controller is a well�designed

Dahlin controller� The minimum variance can be calculated as ��mv � ������� and the

output variance with the Dahlin controller acting on the process is given as ��y � ���		��

Hence the performance index �in our notation� is

�min
�
�
��mv

��y
�
������

���		�
� ����

where �min

 is the performance index with minimum variance control as the benchmark

with � � �min � 	� If the controller is changed to a P�only controller with a gain of ��	����
the output variance becomes ��y � ������� This yields the performance index as

�min �
������

������
� ��




This indicates that the performance of the P�controller is better than the Dahlin controller�

and seems an unacceptable conclusion� It is� however� a correct result�

Performance assessment techniques as proposed by Harris�	
�
� provide assessment

of control loop performance under routine operating conditions� In this example� step�

type disturbances or setpoint changes do not a�ect the process� An integral control is

clearly not necessary in this situation� Therefore a P �controller gives a better performance

measure than the Dahlin controller which has integral action� However� integral action is

practically desired in order to handle random�walk type stochastic disturbances or step�

type deterministic disturbances or setpoint changes� It is therefore necessary to sample the

data carefully before carrying out the performance evaluation� For example� one should

ask if the set of sampled routine operating data contains e�ects of all disturbances that

�In this chapter� the subscript �min� stands for minimum variance or optimal H� control� For example�

�min represents the performance index with minimum variance or optimal H� control as a benchmark�



	��

truly a�ect the process� i�e� if the set of data is representative� Performance assessment

will then estimate the benchmark which optimally regulates the disturbances occurring

during the data�sampling period�

Since all disturbances can be regarded as shocks �with di�erent probability

distributions� �ltered by di�erent disturbance �lters� all of the disturbances can be

theoretically lumped together via spectral factorization� Practically� the dynamics of

the lumped disturbances can also be estimated via time series analysis� The benchmark

control �one�degree�of�freedom control� would be a controller which minimizes the e�ect

of the lumped disturbances�

���� Performance assessment with pure deterministic

disturbances

If deterministic disturbances occur rather infrequently �e�g� only one step�change

occurs in the collected data�� time series modeling of the closed�loop process cannot

depict the nature �e�g� step�type� of the disturbances� Performance assessment then may

not be carried out under the stochastic framework� Under these circumstances� direct

identi�cation of the closed�loop transfer function from the disturbances to the process

output is desired� There is no di�culty in identifying such a model if the deterministic

disturbances are measurable �e�g� setpoint change� since it is equivalent to an open�loop

identi�cation problem�

Take the MIMO case with the simple interactor matrix �i�e� D � qdI� as an example�

The closed�loop transfer function from at to Yt can be written as

Yt � �I � q�d �TQ���Nat �		���

� �F� � F�q
�� � � � � � Fd��q

��d����� �z �
F

at � Fdat�d � � � � �		���

where Fi�s correspond to impulse response coe�cient matrices of the transfer function

matrix from at to Yt� and et � Fat is feedback invariant irrespective of the probability

distribution of at� If at is a random stochastic shock� then the closed�loop transfer



	��

function matrix from at to Yt can be estimated via time series analysis� If at is a single

shock �deterministic disturbances�� then the closed�loop transfer function matrix can be

identi�ed via identi�cation tools� In both cases the term of et � Fat can then be separated

from the closed�loop transfer function matrix� and subsequently used as a benchmark to

assess control loop performance�

The performance measure for stochastic disturbances can be directly applied to

performance assessment for deterministic disturbances� For stochastic disturbances� one

can always normalize at such that V ar�at� � I by adjusting N � According to the de�nition

of the objective�based performance index for the stochastic disturbances as de�ned in

Chapter �� we have

�min �
min�E#Y T

t Yt$�

E#Y T
t Yt$

�
tr�F T

� F� � F T
� F� � � � � � F T

d��Fd���

tr�F T
� F� � F T

� F� � � � �� F T
d��Fd�� � F T

d Fd � F T
d��Fd�� � � � ��

�		���

Equation �		��� de�nes an H� norm measure �Dahleh and Diaz�Bobillo� 	

�� of the

system� The denominator in equation �		��� represents the H� norm of the closed�loop

system� and the numerator represents the H� norm of the feedback controller�invariant

part� If at in equation �		��� is a scalar impulse or shock� then equation �		��� de�nes a

measure of SSE performance� i�e�

�min �
�F T

� F� � F T
� F� � � � �� F T

d��Fd���

F T
� F� � F T

� F� � � � �� F T
d��Fd�� � F T

d Fd � F T
d��Fd�� � � � �

�
min�SSE�

SSE

���� Unied assessment of stochastic and deterministic

systems

Whether disturbances are stochastic or deterministic in nature� they require the

two�step procedure for control loop performance assessment� The �rst step involves

�ltering �i�e� time series analysis using only output data to obtain closed�loop transfer

function from at to Yt� in the stochastic case� and identi�cation of the same closed�loop



	��

transfer function in the deterministic case� The second step involves calculation of the

performance index which is basically the ratio of the sum of square terms of the impulse

response coe�cients �matrices� of the closed�loop transfer function for both stochastic and

deterministic disturbances� The sum of square terms of the impulse response coe�cients

�matrices� is in fact the H� norm of the system� Thus performance assessment for both

deterministic and stochastic systems may be uni�ed under the H� framework�

The H� norm of a transfer function �matrix� G is de�ned as �Dahleh and Diaz�Bobillo�

	

���

jjGjj�� �
	

��

Z �

��
tr#G�ej��GT �e�j��$d�

�
�X
t��

tr#FtF
T
t $

where Ft is the impulse response coe�cients �or Markov parameter matrices� of G�

Consider the closed�loop response to disturbances at as shown in Figure 		�	�with

Y sp
t � ��� which is

Yt � �I � TQ���Nat

The corresponding closed�loop transfer function matrix is therefore

Gcl � �I � TQ���N

If at is a single +shock�� then Yt represents closed�loop response to a deterministic

disturbance� and the H� norm of Gcl de�nes the sum of square of the errors �SSE� of

the closed�loop system� However� if at is a white�noise sequence with V ar�at� � I� then

according to Parseval�s Theorem�

E�Y T
t Yt� � tr#V ar�Yt�$ �

	

��

Z �

��
tr�Gcl�e

j��GT
cl�e

�j���d� � jjGcljj��

which is the quadratic measure of variance of the closed�loop output� The variance matrix

of the white noise sequence� at� can always be normalized to an identity matrix by adjusting

the disturbance transfer function matrix N �

Therefore the H� norm applies to both stochastic and deterministic systems�

Consequently� the optimal H� control law is an optimal control law for both deterministic



	��

and stochastic disturbances� In the sequel� we simply consider the optimal or desired H�

control as the benchmark for control loop performance assessment of both stochastic and

deterministic systems� For example� the uni�ed scalar performance index with optimal

H� control as the benchmark is

�min �
min�jjGcljj���
jjGcljj��

Then for stochastic disturbances� this index is precisely the objective function based index

de�ned in Chapter � for performance assessment of stochastic systems�

���� Simulation

For the same process as used in �Eriksson and Isaksson� 	

��� performance of the

Dahlin�controller and the simple P�controller is re�assessed� In addition to the �routine�

disturbances from the shock at �Normal�distributed with V ar�at� � ������ deterministic

step�type disturbances are added to the system as shown in Figure 		��� bt is the shock

with the most of its probability density concentrated on bt � �� Therefore disturbance �t

is a randomly occurring step�type deterministic disturbance�

Simulation results of the process with the Dahlin�controller are shown in Figures 		��

and 		��� The FIR model or impulse response �using �� coe�cients� of closed�loop transfer

ttu y
tδ

t tba

- controller
-40.33q

1-0.67q-1

-11-0.4q

1-0.67q-1 -11-q

1

Figure 		��� Block diagram representation of the simulated process
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function from �t to yt is identi�ed as

Gy� � ��
�
��������q���������q���������q���������q�
���	���q�	�����

q���� � �

Due to time delay d � �� the �rst four terms of Gy� are feedback invariant for impulse

disturbances� i�e� for the disturbance model N � 	� For a step disturbance �i�e� for

N � 	��	�q����� one can either integrate impulse response coe�cients or directly use the

output and the di�erenced input data �i�e� �ltering input data �t by �	� q���� to obtain

the step response coe�cients� Direct identi�cation �using �� coe�cients� yields the step

response

st
�
� ytjstep � ��
������
���q���	����	q�����
���q���������q�
���		��q�	�������q���� � �

The �rst four terms are feedback control invariant for this step�type disturbance �i�e� for

N � 	��	� q����� This also implies that the peak error due to a unit step disturbance is

no less than 	 for any linear feedback controller� A comparison between theoretical step

response and predicted step response and 
�� error bounds �
�� con�dence interval�

is shown in Figure 		��� Clearly the Dahlin controller has performance very close to

minimum SSE or optimal H� controller for the step disturbance in this example since

the �rst four points are feedback control invariant� The performance index for the step

disturbance can be calculated as

�min �
min�jjstjj���
jjstjj��

	 ��
���� � ��
���� � 	����	� � ��
����

��
���� � ��
���� � 	����	� � ��
���� � ������� � ��		���

� ��
���

This is very close to the theoretically calculated index which is ��
��� The residuals

from Figure 		�� can be used to assess performance of the controller for rejection of

�routine� stochastic disturbances� Applying the FCOR algorithm to the residuals yields

the performance index for stochastic disturbances as

�min 	 ���


This result agrees well with previous analysis for the same process with only stochastic

disturbances in Section 		��� Therefore� in this example the Dahlin controller has
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Figure 		��� Process response and identi�cation results �Dahlin controller�

�optimal� performance for rejection of step�type disturbances� but has relatively �low�

performance for rejection of stochastic disturbances�

For the simple P�controller� using the same deterministic and stochastic disturbances

as those used for the simulation of the Dahlin controller� the following polynomial transfer

function is identi�ed�

Gy� �
��
��� � ������q��
	� ������q��

The predicted step response is

st
�
� ytjstep � ��
��� � ������q��

�	� ������q����	 � q���

This step response has an o�set� Therefore the SSE or H� norm of yt is in�nite� and the

performance index of the P�controller to step disturbance is

�min �
min�jjstjj���
jjstjj��

� �

Similarly the residuals after �tting can be used to assess performance of the P�controller

for rejection of the �routine� stochastic disturbances� Applying the FCOR algorithm

yields the performance index for stochastic disturbances as

� � ��
�
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Figure 		��� Predicted output response to a step disturbance �Dahlin controller�

This also agrees well with the previous analysis for the process with only stochastic

disturbances in Section 		��� Therefore� the simple P�controller has �optimal� performance

for rejection of �routine� stochastic disturbances� but has very poor performance for

rejection of step�type disturbances�

���	 Conclusions

Feedback control loop performance assessment for regulating both stochastic and

deterministic disturbances andor setpoint tracking has been discussed in a uni�ed manner

under the H� framework� It has been shown that performance assessment of deterministic

disturbances andor setpoint tracking can be treated in a very similar way as the treatment

of the stochastic system� The proposed method has been evaluated by a simulated

example�



Chapter ��

Performance Assessment�

User�de�ned Benchmark

���� Introduction

Control loop performance assessment has been extended to many situations� and many

approaches have been developed as discussed in the earlier chapters" e�g� performance

assessment of� 	� SISO feedback control systems �Desborough and Harris� 	

�" Stanfelj

et al�� 	

�" Kozub and Garcia� 	

�" Lynch and Dumont� 	

�" Tyler and Morari� 	

�b��

�� feedback control of nonminimum phase SISO systems �Tyler and Morari� 	

�a�" and ��

MIMO feedback control systems �Huang et al�� 	

�a" Huang et al�� 	

�b" Harris et al��

	

�" Harris et al�� 	

��� The portion of a process output that is feedback controller

invariant determines the theoretically achievable minimum variance and characterizes

the most fundamental performance limitation of a system due to existence of time�

delaysin�nite zeros� However� practically there are many other limitations on the

achievable control loop performance� Existence of nonminimum phase or poorly damped

zeros� sampling rate� amplitude andor rate constraints on control action� robustness

constraints etc� are examples of such limitations� Therefore� a feedback controller that

�A version of this chapter has been accepted for presentation at the ���� IFAC Advanced Chemical

Process Control Symposium�

	�	



	��

indicates performance reasonably close to minimum variance control does not require

further tuning �if the variance is of main interest�� However� a feedback controller

that indicates poor performance relative to minimum variance control is not necessarily

a poor controller� Further analysis of performance limitations and comparisons with

more realistic benchmarks is usually required� Performance assessment with minimum

variance control as a benchmark requires minimum e�ort �routine operating data plus

a priori knowledge of time�delays�� and therefore serves as the most convenient �rst�

level performance assessment test �if the variance is of main interest�� Only those

loops that indicate poor �rst�level performance need to be re�evaluated by higher�level

performance assessment tests� A higher�level performance tests usually requires more a

priori knowledge than just a knowledge of time�delays� This chapter addresses practical

issues which are considered for such higher�level performance assessment test�

The main contribution of this chapter is to propose a technique of practical control

loop performance assessment relative to a benchmark in terms of a user�speci�ed closed�

loop dynamics� All of these are discussed for SISO and MIMO systems� Normally� the

MIMO case is general and includes the SISO system as a special case� However� the

delay matrix �or the interactor matrix� of the MIMO system is not a simple extension

to the time�delay term of the SISO system� Thus� the SISO case is �rst considered for

clarity of presentation� This chapter is organized as follows� Performance assessment of

minimum phase systems with desired closed�loop dynamics as a more practical benchmark

is considered in Section 	���� and the treatment of nonminimum phase systems is discussed

in Section 	���� followed by concluding remarks in Section 	����

���� Preliminaries

In Section 	���� we will assume that the plant transfer function �matrix� T has no

zeros or poles outside the unit circle except for the time�delays �in�nite zeros�� This

condition will be relaxed in Section 	���� The disturbance transfer function �matrix� N

has no poles outside the unit circle� but can have zeros outside the unit circle� However�

an all�pass factor Np� which contains all zeros that are outside the unit circle including



	��

the in�nite zeros� can be factored out from N � such that N � �NNp and �N is a minimum�

phase transfer function �matrix�� This factorization does not change the H� norm of the

closed�loop system� i�e� jj�I � TQ���N jj�� � jj�I � TQ��� �N jj��� The admissible minimum
variance or optimal H� control law does not depend on the all�pass term Np�Astrom and

Wittenmark� 	

�" Morari and Za�riou� 	
�
�� Therefore� if there are unstable or in�nite

zeros in N � one simply needs to factorize an all�pass term from it� The remaining �N term

is then considered as the disturbance transfer function �matrix�� This will not a�ect the

H� norm of the closed�loop system and its optimal control law� Time series analysis does

automatically produce such minimum phase disturbance transfer function �matrix�� Thus�

we assume that the disturbance transfer function �matrix� N has no zeros outside the unit

circle as well�

���� Performance assessment with desired closed�loop

dynamics as the benchmark� minimum phase systems

������ SISO case

The minimumvariance or optimalH� control law serves as a good global reference point

to assess control loop performance� However� the minimum variance or optimal H� control

law may not be a desired one in practice� For example� if the process has a fast controller

sampling rate� then minimum variance or minimum SSE control with such sampling rate

usually requires excessive control actions� Therefore� in many practical circumstances� a

more realistic user�speci�ed benchmark control is desirable� For example� one may wish

to consider desired closed�loop dynamics as a reference benchmark in terms of settling

times� overshoot etc� Speci�cally it would be of interest to know if the actual closed�loop

dynamics are close to or far away from the desired dynamics� Kozub and Garcia�	

��

have suggested that one of the choices for the practical benchmark performance can be

the minimum variance control response ��nite moving�average term� �ltered by a �lter�

Tyler and Morari�	

�b� suggested using a generalized likelihood ratio to test if the

actual performance �in the form of impulse response coe�cients of the closed�loop transfer
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function Gcl � �I � TQ���N� is in the set of the desired performance� All of these are

limited to SISO applications� However� since the actual performance �in the form of

impulse response coe�cients of Gcl� can be estimated from data using time series analysis

or standard identi�cation tools �Ljung� 	
���� performance assessment can be directly

computed by comparing the actual impulse response coe�cients to the desired impulse

response coe�cients� Direct observation and analysis of the actual impulse response

coe�cients gives one signi�cantly more information than a simple �yes or no� test� and

can be easily extended to MIMO applications� For example� a maximum likelihood ratio

test cannot tell whether the controller is over�tuned or under�tuned or how and in which

way it is di�erent from the desired performance� On the other hand� a cursory study of

the impulse response coe�cients may easily provide such tuning guidelines�

An important fact that has been ignored by other researchers is that the desired closed�

loop dynamics �Gdes� cannot be arbitrarily speci�ed� They need to consider the physical

limitations� For example� closed�loop response within the time�delay period is feedback

control invariant and cannot be speci�ed by users� Nonminimum phase zeros cannot

be cancelled by a stable controller and must a�ect the desired closed�loop dynamics as

well� These limitations are considered in the present chapter when the desired closed�loop

dynamics are speci�ed�

The di�erences between optimal H� control and the user speci�ed benchmark control

�desired closed�loop dynamics� can be clearly seen from equation �		���� For optimal H�

control� the remaining terms after the �rst d terms should be zero� For user speci�ed

benchmark control� the �rst d terms should be the same as those under optimal H�

control� but the remaining terms are no longer zero� These remaining terms de�ne the

desired closed�loop dynamics� The closed�loop dynamics �e�g� for the SISO case� therefore

have the following form��

ytjuser � �f� � f�q
�� � � � �� fd��q

�d�� � fd��q
�d��� �z �

F

�q�dGR�at �	��	�

where GR is a stable and proper transfer function� There are many ways to specify the

�In this chapter� the subscript �user� stands for a user�speci
ed benchmark control� For example� yuser

represents the process output under the user�speci
ed control�



	��

term GR based on information such as closed�loop settling time� time constant� decay

ratio� desired variance� frequency domain characteristics� robust performance etc� If GR

is directly speci�ed as desired closed�loop dynamics� i�e� GR � Gdes� then only a priori

knowledge of time�delays is required for calculation of such benchmark performance� If

the desired closed�loop response is speci�ed by some other characteristic such as settling

time� then GR consists of a set of transfer functions� and no explicit expression for GR

is actually de�ned� One can simply test� for example� whether the actual closed�loop

settling time is the same as the desired value� However� all these speci�cations of GR are

somehow arbitrary� and it is not clear how such speci�cations a�ect closed�loop dynamics�

e�g� in terms of performance optimality and robustness properties� For example� in the

speci�cation of the settling time� there are in�nite number of GR that can be considered�

and one does not know which one has the performance closest to optimal control� On the

other hand� it is well�known that optimal H� control augmented by a �lter improves robust

performance and provides good compromise between performance and robustness� and

the closed�loop dynamics can be adjusted by the tuning of the �lter parameters �Mohtadi�

	
��" Morari and Za�riou� 	
�
��

Consider the speci�cation of GR as

GR � �	�GF �R �	����

where GF is a stable and proper �lter and� R �a rational proper transfer function� is

de�ned via the Diophantine identity�

N � F � q�dR

Then equation �	��	� becomes

ytjuser � �f� � f�q
�� � � � �� fd��q

�d�� � q�d�	�GF �R�at �	����

The �lter GF can be speci�ed according to the desired closed�loop dynamics� It should be

chosen in such a way that asymptotically �	�GF �R converges to zero� i�e� no o�set occurs�

For example� if R has a pole equal to 	 �e�g� step�type disturbances�� then �	�GF � must

have a zero equal to 	 in order to preserve the asymptotic property of the optimal H�



	��

control law� If a commonly used �rst�order �lter� which satis�es the asymptotic property

for type 	 system� is speci�ed as�

GF �
	� 


	� 
q��

then 
 can be calculated via the desired closed�loop settling time or time constant by


 � exp��&T
�
�

where &T is the sampling interval and � is the time constant of the closed�loop process�

However� one should note that the closed�loop dynamics also depend on R in addition to

the �lter dynamics�

We shall show that the speci�cation of the closed�loop system as in equation �	��	� is

practically achievable for a minimum�phase system� and the speci�cation in equation �	����

is equivalent to the H� optimal control law augmented by a �lter�

Consider the controller speci�cation in the IMC framework as shown in Figure 	��	�

Write the plant transfer function as T � q�d �T � where �T is the delay�free transfer function�

Then by assuming �T � T � we have

yt � �	� q�d �TQ��Nat

� Nat � q�d �TQ�Nat

� �F � q�dR�at � q�d �TQ�Nat

� Fat � q�d�R� �TQ�N�at �	����

Equating equation �	���� and equation �	��	� yields

R� �TQ�N � GR

This results in

Q� �
R�GR

�TN
�	����

This IMC controller is proper and stable� Therefore the closed�loop response speci�ed in

equation �	��	� is achievable� For speci�cation in equation �	����� equation �	���� becomes

Q� �
R� �	�GF �R

�TN
�
GFR
�TN

�	����



	��

If GF � �� then Q
� � � and the controller is in open�loop mode� If GF � 	� then according

to equation �	�����

ytjuser � �f� � f�q
�� � � � � � fd��q

��d����at

This is the minimum variance control response or optimal H� control response� Thus� the

controller as speci�ed in equation �	���� is in fact an optimal H� control law augmented

by a �lter GF �Morari and Za�riou� 	
�
�� The role of the �lter is to adjust or tune the

controller from the open�loop mode �GF � �� to optimal H� control mode �GF � 	��

However� the speci�cation in equation �	���� requires a knowledge of R� The term R

must be calculated from the disturbance transfer function N via the Diophantine identity�

Therefore� the disturbance transfer function should be known in order to apply such

a speci�cation� For most setpoint tracking problems and some regulatory problems� the

dynamics of the setpoint are known as a priori knowledge� For example� if one is interested

in the tracking or regulatory performance of step�type setpoint or disturbances� then the

disturbance dynamics are simply N � 	��	 � q���� If a priori knowledge of N is not

available� it will be shown in Section 	��� that the disturbance transfer function N can be

conveniently estimated under closed�loop conditions with dither excitation�

Since complete dynamics of the user�speci�ed closed�loop system are available� one

can directly compare the current closed�loop dynamics with the user�speci�ed closed�

loop dynamics� For example� to calculate the performance index under the stochastic

framework� the variance of the user�speci�ed benchmark control can be calculated from

equation �	��	� and is de�ned as ��user� The performance index can then be calculated as

the ratio�

�user �
��user
��y

Example �� Consider a �rst�order process with a time�delay and the transfer function

given by�

T �
��� q���q��

	� ���q��
Let the disturbance transfer function be�

N �
	

	� q��



	��

The sampling interval &T � � sec� The main objective in this design is to regulate yt in

the presence of integrated white noise or random�walk type disturbances� The choice of

the desired closed�loop time constant� ��� � � � 	 min� re�ects this� If setpoint tracking

performance was of interest� perhaps a smaller desired closed�loop time constant could

have been speci�ed�

Since the time�delay d � �� N is expanded according to the Diophantine identity as

N � 	 � q��� �z �
F

�q��
	

	� q��� �z �
R

Therefore� the minimum variance is

��mv � V ar�Fat� � ��
�
a

Now consider a �rst�order �lter�

f �
	� 


	� 
q��

To satisfy the desired closed�loop time constant ��� � � � 	 min with sampling interval

&T � � sec� the parameter 
 can be calculated from


 � exp��&T
�
�

This results in ���� � 
 � ��
�� The desired closed�loop response can be calculated from
equation �	���� as

ytjuser � f�at � f�at�� � �	� 	� 


	� 
q��
�

	

	� q��
at��

� at � at�� �



	� 
q��
at�� �	����

�
	 � �	� 
�q��

	� 
q��
at �	����

where ���� � 
 � ��
�� This gives the achievable user�speci�ed closed�loop response�

The variance of the desired closed�loop can also be calculated from equation �	���� as

��userj	����	 � V ar�yt�j	����	 � ��������a



	�


and

��userj	����� � V ar�yt�j	����� � ���	����a

Therefore

��������a � ��user � ���	����a

Now consider the same process under integral control

Q �
��	

	� q��

with V ar�at� � 	� The closed�loop system was simulated and ���� data points were

recorded� A truncated moving�average model is obtained from time series analysis of

yt� The coe�cients of this moving�average model correspond to the closed�loop impulse

response coe�cients� These coe�cients together with their 
�� bounds are plotted in

Figure 	���� The desired closed�loop dynamics have been shown in equation �	����� Their

corresponding impulse response coe�cients are calculated and plotted together with the

actual impulse response coe�cients in Figure 	���� Since the desired impulse response is

not a single curve but a region �a region between the two solid lines�� any actual impulse

response which falls within this region is considered acceptable� However� the actual

impulse response coe�cients are estimated values� Therefore a statistical test should be

used to determine whether or not the actual impulse response falls into the region� One

can consider the desired performance region as if it constitutes a thick or +fuzzy� desired

impulse response curve� �	� For any particular actual impulse response coe�cient� if its


�� con�dence interval and the +fuzzy� desired performance region do not intersect� then

we may conclude that this particular coe�cient does not fall in the desired region with


�� con�dence" ��� If more than �� of impulse response coe�cients� over the time�period

of interest� do not fall in the desired region as tested in the �rst step� then one may

conclude that the actual performance does not lie in the set of the desired performance�

The con�dence bounds can always be narrowed by increasing the data sampling size� and

hence the reliability of such test can be increased� This is a quantitative or +yes� or +no�

decision criteria� However� a visual or qualitative analysis of the plot is more important and

it is recommended that this be done� Figure 	��� clearly shows unacceptable performance



	��

of the integral controller� The actual closed�loop behaves as an underdamped system� and

in fact the system appears to be over�tuned�

Now we add a second�order �lter to the integral controller�

Q � �
���� � ����q��

�� ��
q�� � ����q�� �
	

	� q��

The simulation result is shown in Figure 	���� The actual closed�loop dynamics are slightly

slower than the desired� and in fact are not in the desired set� The controller appears to

be under�tuned� Finally a slightly aggressive controller

Q � �
��		 � �����q��

�� ����q�� � ��		q�� �
	

	� q��

is implemented� The result shown in Figure 	��� indicates that the actual performance is

now in the set of the desired performance�

Note that by using the same method� one can make many performance tests� For

example� one can even specify the desired performance set in terms of the frequency domain

speci�cations� Then the actual closed�loop dynamics together with their con�dence

intervals in the frequency domain can be calculated� The performance test can be

made in the frequency domain� The signi�cance of this method is that it can provide

information including tuning guidelines� via observation of the patterns of the impulse

response coe�cients or the spectrum of the closed�loop systems�

������ MIMO case

Consider the MIMO system�

Yt � TUt �Nat

where T is a process transfer function matrix� N is the disturbance transfer function

matrix� Yt� Ut and at are output� input and disturbance with appropriate dimensions�

A unitary interactor matrix D with DT �q���D�q� � I can be factored from the transfer

function matrix T � such that �T � DT is a delay free transfer function matrix� Factorization

of such a unitary interactor matrix does not change the H� norm of the transfer function



	�	
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Figure 	��	� Control loop con�guration under IMC framework
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Figure 	���� Closed�loop impulse response coe
cients for a simple integral controller�
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Figure 	���� Closed�loop impulse response coe
cients for an integral plus �lter

controller�
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Figure 	���� Closed�loop impulse response coe
cients for a detuned integral plus �lter

controller�



	��

matrix� i�e� jj �T jj�� � jjT jj��� Using the Diophantine identity� the disturbance transfer

function matrix N can be expanded as

q�dDN � F� � F�q
�� � � � �� Fd��q

��d���� �z �
F

�q�dR

where Fi �for i � 	� � � � � d � 	� are constant coe�cient matrices� and R is the remaining

proper transfer function matrix after the expansion� In Chapter � the minimum variance

or optimal H� norm control response has been shown to be��

Ytjmin � qdD���F� � F�q
�� � � � �� Fd��q

��d����at �	��
�

� �E� �E�q
�� � � � ��Ed��q

��d����at �	��	��

where Ei �for i � 	� � � � � d � 	� are constant coe�cient matrices� It has also been shown
in Chapter � that the minimum variance control response Ytjmin can be estimated from

routine operating data with a priori knowledge of the unitary interactor matrix D�

For performance assessment with a reference benchmark di�erent from minimum

variance or optimal H� norm control� a user speci�ed transfer function matrix GR should

be augmented to equation �	��	�� as

Ytjuser � �E� �E�q
�� � � � ��Ed��q

��d��� �GRq
�d�at �	��		�

GR is a stable and proper transfer function matrix� In practice� GR may be speci�ed as

a diagonal matrix� Then dynamics of each output correspond to the diagonal elements�

Now we are in the position to show that the user�speci�ed closed�loop response as shown

in equation �	��		� is achievable�

Under the IMC framework� the closed�loop response can be written as

Yt � �I � TQ��Nat

Factor T as T � D�� �T � where �T is the delay�free transfer function matrix� Then

Yt � �I �D�� �TQ��Nat

� qdD���q�dDN � q�d �TQ�N�at

�In Chapter �� Ytjmv represents the process output under minimum variance control� In this chapter�

this output is changed to Ytjmin to re�ect the minimum variance or equivalently optimal H� control�



	��

Using the Diophantine identity q�dDN � F � q�dR� we have

Yt � qdD���F � q�dR� q�d �TQ�N�at

� qdD��Fat �D���R� �TQ�N�at �	��	��

As shown in Chapter �� the �rst term on the right hand side of equation �	��	�� is the

minimum variance control response and can be written as

Ytjmin � qdD��Fat � �E� � � � ��Ed��q
�d���at �	��	��

Substituting equation �	��	�� into equation �	��	��� and then equating the result to

equation �	��		� yields

D���R � �TQ�N� � GRq
�d

This results in

qdD���R � �TQ�N� � GR �	��	��

Solving equation �	��	�� yields

Q� � �T���R� q�dDGR�N
��

Again� Q� is proper and stable� and therefore is a practically achievable controller�

As discussed in the SISO case� there are many ways to specify the transfer function

matrix GR� One may directly specify it as a desired transfer function matrix� i�e�

GR � Gdes� Performance assessment with such speci�cation requires only routine

operating data plus a priori knowledge of the interactor matrix�

Alternatively� one may directly add a desired term into equation �	��
� such that

Ytjmin � qdD���F� � F�q
�� � � � �� Fd��q

��d��� � q�dGR�at

where GR � I �GF � and GF is the user speci�ed �lter transfer function matrix according

to the desired closed�loop dynamics� The �lter serves as a tuning knob between optimal

H� control �GF � I� and open�loop performance �GF � ���



	��

Example �� Consider a process with the following transfer function matrices�

T �

�
��

q��

����
q��
q��

�����q��

���q��

�����q��
q��

�����q��

�
��

N �

�
��

�
����	q��

����
����	q��

��	
����	q��

���
����	q��

�
��

A unitary interactor matrix D can be factored out as�

D �

�
�� ���
���q �������q
�������q� ��
���q�

�
��

Then

q�dDN �

�
�� �	�	�	�q�� ������q��

��	
	� � ���
��q�� 	�	��� � �����	q��

�
��

� �z �
F

�q��

�
��

���		�
����	q��

���
�
����	q��

���
�
����	q��

������
����	q��

�
��

� �z �
R

The minimum variance term can be written as

et � Fat �

�
�� �	�	�	�q�� ������q��

��	
	� � ���
��q�� 	�	��� � �����	q��

�
�� at

Therefore

Ytjmin � qdD��et

� �

�
�� 	 ����
��� 	

�
��

� �z �
E�

�q��

�
�� ������� ���	���
���
	� ����	�

�
��

� �z �
E�

�at

Note that this explicit expression for Ytjmin can always be estimated from routine operating

data under any feedback control with a priori knowledge of the unitary interactor matrix�

If we assume  a � Eata
T
t � I� then the minimum variance can be calculated as

 min � V ar�Ytjmin� �

�
�� 	����	 ���	
��
���	
�� 	�����

�
��

with the quadratic performance measure �H� norm� as

E�Y T
t Yt�jmin � tr� min� � ��
���



	��

Now we assume that the controller sampling interval is &T � � sec� the desired

response of output -	 is �rst�order with time constant �� � 	 min� and the desired

response of output -� is also �rst�order but with time constant �� � ��� min� If the

desired closed�loop response is speci�ed as

Ytjuser � �E� �E�q
�� � � � ��GFEd��q

��d����at �	��	��

i�e� the closed�loop impulse response coe�cient matrices decay steadily at the desired

time constants starting from the last feedback control invariant term� Ed��� then the �lter

transfer function matrix should be designed according to the desired dynamics as

GF �

�
��

�
������q��

�

� �
�����	q��

�
��

Equation �	��	�� can be further written as

Yt � �E� �E�q
�� � � � ��Ed��q

��d��� � q�GF � I�Ed��q
�d� �z �

GR

�at

Since GF �q
�� � �� � I� GR � q�GF � I�Ed�� is proper� According to

equation �	��		�� this is an achievable closed�loop response� Substituting numerical values

to equation �	��	�� yields

Ytjuser �

�
��

�����
	q��

������q��
�����������q��

������q��

��	�������q��

�����	q��
�������q��

�����	q��

�
�� at

This achievable closed�loop response satis�es the user requirement� and can be estimated

from routine operating data under any feedback control with a priori knowledge of the

unitary interactor matrix� Its variance can be calculated as

 user � V ar�Ytjuser� �

�
�� 	����� ����	��
����	�� ������

�
��

with the quadratic performance measure �H� norm� as

E�Y T
t Yt�juser � tr� user� � �����


which is 	�� times as large as E�Y T
t Yt�jmin�



	��

���� Performance assessment with desired closed�loop

dynamics as the benchmark� nonminimum phase

systems

In this section� we relax the assumption of minimum�phase plants by assuming that the

plant transfer function �matrix� T can have zeros outside the unit circle� The user�speci�ed

performance assessment of the MIMO process when the process has non�invertible zeros

is discussed in this section�

Consider the MIMO system�

Yt � TUt �Nat

Factor T as T � D��
G
�T � where D��

G is the all�pass factor or the generalized unitary

interactor matrix as is discussed in Chapter 	�� which contains both in�nite and non�

invertible zeros of T � The generalized unitary interactor matrix D��
G can also be regarded

as an all�pass factor of T � and can be calculated via the Inner�Outer factorization �Chu�

	
��� as well� A proper feedback controller cannot cancel time�delays� Time�delays

are therefore constraints on the achievable performance� A stable controller cannot

cancel non�invertible zeros� Non�invertible zeros also impose constraints on the achievable

performance�

In Chapter 	�� we have shown a procedure for performance assessment of nonminimum�

phase MIMO processes� The procedure consists of the following steps�

	� Factor the generalized unitary interactor matrix from T as DG"

�� Fit routine operating data Yt by a time series model� Gcl"

�� Multiply Gcl by q�dDG to obtain G�
cl � q�dDGGcl� where d is the order of the

interactor matrix"

�� Expand G�
cl into

G�
cl � F� � F�q

�� � � � � � Fd��q
��d���� �z �

F

�q�d



	��

where Fi for �i � 	� �� � � � � d � 	� are constant coe�cient matrices� and  is the

remaining �proper� term after the expansion"

�� Using partial fraction expansion�  can be expanded into

 � Rnmp � L

where all poles of Rnmp are unstable poles which are the non�invertible zeros of T �

and L is the remaining term after the partial fraction expansion� Then the process

under admissible minimum variance or optimal H� control can be written as



Ytjadmv � qdD��
G �F � q�dRnmp�at �	��	��

This procedure will evaluate control performance with the admissible minimum variance

or optimal H� control as the benchmark� To assess control performance with the user

speci�ed benchmark as the desired closed�loop dynamics� a user speci�ed transfer function

matrix GR should be augmented to equation �	��	�� as

Ytjuser � qdD��
G �F � q�dRnmp � q�dGR�at �	��	��

Note that the closed�loop dynamics also depend on the poles of D��
G �reciprocals of the

non�invertible zeros� in addition to poles of GR�

Now we show that the speci�cation in equation �	��	�� gives performance that is

achievable� Under the IMC framework� closed�loop response can be written as

Yt � �I � TQ��Nat

� Nat � TQ�Nat �	��	��

� �qdD��
G ��q�dDGN�at � TQ�Nat �	��	
�

Using the Diophantine identity� q�dDGN can be expanded as

q�dDGN � F� � F�q
�� � � � �� Fd��q

��d���� �z �
F

�q�d �Rnmp �Rmp�� �z �
R

�In this chapter� the subscript �admv� stands for �admissible minimum variance control�� For example�

Ytjadmv represents the process output under the admissible minimum variance control�



	�


where Rnmp contains all unstable poles of R after partial fraction expansion� while

Rmp contains all stable poles after the partial fraction expansion� Using this identity�

equation �	��	
� can be written as

Yt � qdD��
G �F � q�dRnmp � q�dRmp�at � TQ�Nat

� qdD��
G �F � q�dRnmp�at � #�q

dD��
G �Rmpq

�d � TQ�N $at �	�����

Equating equation �	����� and equation �	��	�� yields

�qdD��
G �Rmpq

�d � TQ�N � qdD��
G GRq

�d

This can be written as

�qdD��
G �Rmpq

�d �D��
G
�TQ�N � qdD��

G GRq
�d �	���	�

Solving equation �	���	� yields

Q� � �T���Rmp �GR�N
�� �	�����

This is an achievable IMC control law�

As in the discussion for the minimum phase system� if one speci�es GR � �I�GF �Rmp�

where GF is a �lter transfer function matrix� then equation �	����� becomes

Q� � �T��GFRmpN
�� �	�����

and equation �	��	�� becomes

Ytjuser � qdD��
G �F � q�dRnmp � q�d�I �GF �Rmp�at �	�����

If Gf � �� then the process is in the open�loop mode� If GF � I� then equation �	�����

is the admissible minimum variance or optimal H� control response� Therefore� the �lter

GF adjusts the controller performance between open�loop mode and optimal H� control�

Consider the closed�loop transfer function de�ned by

Gw � �I � TQ���T

Gw is the closed�loop transfer function from the dither signal wt to the output Yt �see

Figure �	������ With dither signal excitation� Gw can be identi�ed under closed�loop



	��

conditions� Identi�cation of the closed�loop transfer function matrix Gw under closed�

loop conditions is equivalent to an open�loop identi�cation problem�

Using routine operating data� the disturbance transfer function N can be identi�ed

via time series analysis of sensitivity��ltered data S��Yt� i�e�

S��Yt � �I � TQ�Yt � Nat

where the sensitivity S is de�ned by S � �I � TQ���� Since Gw � �I � TQ���T � we have

S � I �GwQ

where Q is normally assumed to be known� but it can also be directly identi�ed from

closed�loop data� Therefore� the disturbance transfer function matrix can be estimated

under closed�loop conditions� With the knowledge of DG� N and the user speci�ed �lter

GF � one can calculate the user speci�ed benchmark performance via equation �	������

The simplest form of GR will be a diagonal matrix�

Example �� Consider the following system from Tsiligiannis and Svoronos�������

T �

�
��

���q��

����
q��
��	q��

����	q��

���q��

����	q��
���q��

����
q��

�
��

Assume the disturbance transfer function matrix as

N �

�
��

�
����	q��

����
����	q��

��	
����	q��

�
����	q��

�
��

A generalized unitary interactor matrix can be factored as�

DG � DfDinf �

�
�� �������q �������q

�����	�����	
q�q
q���	


���
������	
q�q
q���	


�
��

and the solution of the Diophantine identity yields

q�dDGN � q��DGN

�

�
�� �	����� �������

�����������
�q��

����	
q��
������������q��

����	
q��

�
��

� �z �
F�q�dRnmp

�q��

�
��

���	��
����	q��

������
����	q��

���
��
����	q��

������	
����	q��

�
��

� �z �
Rmp



	�	

The closed�loop response under admissible minimum variance control is therefore given by

q�dDGYtjadmv � �F � q�dRnmp�at �	�����

Assume� for simplicity� that V ar�at� � I� then the achievable minimum variance can be

calculated from equation �	����� as�

 admv
�
� V ar�Ytjadmv� �

�
�� 	��	�� ������	
������	 	��
��

�
�� �	�����

and its quadratic measure �H� norm�

E�Y T
t Yt�jadmv � tr� admv� � ��		��

Suppose that the controller sampling interval is &T � � sec and a closed�loop response

with time constant � � 	 min is desired� According to this requirement� a �lter can be

designed as

GF �

�
��

����
������q��

�

� ����
������q��

�
��

Since GF �q
�� � 	� � I� this speci�cation preserves the asymptotic property of the type 	

system� From equation �	������ the user speci�ed closed�loop response can be written as

q�dDGYt � �F � q�dRnmp � q�d�I �GF �Rmp�at �	�����

Substituting numerical values into equation �	����� and simplifying the results gives�
� ���
��� ������q�� � ������q�� ������� ������q�� � ������q��

������� ���
�
q��  ������q�� � ������q�� ������� ���
�
q�� � ������q��  ������q��

�
�Yt

�

�
� ������� ���
�
q�� � ����q�� ������
 ��
���q�� � �����
q��

��

��� �����
q��  ������q�� � ���
�
q�� ������� ������q�� � ������q��  �����
q��

�
� at

This is an achievable closed�loop response satisfying user�s requirement� Its variance can

be calculated as

 user
�
� V ar�Ytjuser� �

�
�� ���	�	 ���	��

���	�� ������

�
��

and its quadratic measure �H� norm� as

E�Y T
t Yt�juser � tr� user� � �����




	��

which is ��� larger than the achievable minimum variance� The performance indices

are also adjusted accordingly� For example� the quadratic function based performance

measure is adjusted according to

�user � 	���admv

where

�user
�
�
tr� user�

tr� Y �

���� Conclusions

Practical feedback control performance assessment has been discussed in this chapter�

A �ltered optimal H� control law with desired closed�loop dynamics has been proposed

as a practical benchmark to assess control loop performance� The proposed approach

has taken into account both minimum phase and nonminimum phase systems� Simulated

examples have illustrated application of the proposed methods�
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Figure 	���� Block diagram of the closed�loop system�



Chapter ��

Performance Assessment� LQG

Benchmark

���� Introduction

Many authors �Harris�	
�
�� Desborough and Harris�	

�� � Stanfelj et al��	

�� �

Lynch and Dumont�	

�� � Kozub and Garcia�	

�� � have reported the use of

minimum variance control as a benchmark standard against which to assess control

loop performance� This idea has been extended to MIMO processes in the previous

chapters� However� these methods are concerned with performance assessment with

minimum variance or optimal H� norm control as the benchmark� a benchmark which

does not explicitly take into account the control e�ort�

In any case� minimum variance control is usually not a desired control algorithm of

choice in most practical situations due to its demand for excessive control action and poor

robustness� However� performance assessment with minimum variance or optimalH� norm

control as the benchmark does provide us with such useful information as a global lower

bound of process variance or the H� norm measure� For example� if a controller indicates

good performance relative to minimum variance control� then further tuning of the existing

�A version of this chapter has been presented at the ���� AIChE Annual Meeting�

	��



	��

controller would be neither useful nor necessary� However� if a process indicates poor

performance relative to minimum variance control� then there is a potential to improve

its performance but no guarantee that the performance may be improved by retuning the

existing controller� In such cases further analysis� such as performance evaluation with

control action constraints taken into account� may be necessary� In general� tighter quality

speci�cations result in smaller variation in the process output but typically requires more

control e�ort� One may therefore be more interested in knowing how far away is the

control performance from the �best� achievable performance with the same control e�ort�

i�e� in mathematical form the resolution of the following problem may be of interest�

Given E#u�t $ � 
� what is minfE#y�t $g%

The solution �achievable performance� is given by a tradeo� curve as shown in

Figure 	��	� This curve can be obtained from solving the LQG problem �Kwakernaak and

Sivan� 	
��" Harris� 	
��" Boyd and Barratt� 	

	�� where the LQG objective function is

de�ned by

J��� � E#y�t $ � �E#u�t $

By varying �� various optimal solutions of E#y�t $ and E#u�t $ can be calculated� Thus a

curve with the optimal E#u�t $ as the abscissa and E#y�t $ as the ordinate is formed from

these solutions� Boyd and Barratt �Boyd and Barratt� 	

	� have also shown that a

variety of constraints �e�g� hard constraints� robustness speci�cation and etc�� can be

formed as convex optimization problems and are readily solved via convex optimization

tools� Any linear controller can only operate in the region above the tradeo� curve �Boyd

and Barratt� 	

	� shown in Figure 	��	� It is clear that given E#u�t $ � 
� the minimum

value �or the Pareto optimal value �Boyd and Barratt� 	

	�� of E#y�t $ can be found from

this curve� This curve therefore represents the bound of performance and can be used for

performance assessment purpose�



	��

���� Performance assessment with control action taken

into account

������ LQG solution via state space or input�output model

The theory in this section is well�known� Readers are referred to Kwakernaak and

Sivan �	
��� and Astrom and Wittenmark �	

��� We will not discuss the theory but

rather emphasize the LQG solution strategy via the Control Toolbox in Matlab in this

section�

Consider a state space model as

xt�� � Axt �But �Gwt

yt � Cxt �Dut � vt

where

E#w$ � E#v$ � �� E#wwT $ � Q� E#vvT $ � R� E#wvT $ � V

Then the Kalman �lter can be written as

xft � xpt �Kf �yt � Cxpt �Dut�

where xpt is the state prediction and can be written as

xpt�� � Axft �But

The steady state Kalman �lter gain Kf can be solved via the Riccati

equation �Kwakernaak and Sivan� 	
���� The solution is readily available via a Matlab

function such as dlqe� If the state transition matrix A is singular �e�g� due to time delays��

then the function dlqe in the Matlab based MPC toolbox can be used� This uses the

iterative method to solve the Riccati equation�

The optimal state feedback gain L �ut � �Lxft � is also solved via the Riccati

equation �Kwakernaak and Sivan� 	
���� The solution is readily available in the Matlab

function dlqr� For a singular matrix A� one could use dare in the LMIMatlab toolbox�

which also uses an iterative method to solve the Riccati equation�



	��

One can also solve the LQG problem with the input�output transfer function via

Harris and MacGregor �	
��� approach which uses the spectral factorization and the

solution of the Diophantine identity� A special case �when the control weighting is zero�

has been discussed in Chapter �� For the general solution� readers are referred to Harris

and MacGregor �	
����

������ LQG solution via GPC

Another way to solve this LQG problem is via the generalized predictive control �GPC�

or model predictive control �MPC� approach �since the multivariate MPCMatlab toolbox

is available�� Consider a cost function of the form �Clarke et al�� 	
����

JGPC � Ef
N�X

j�N�

#yt�j � rt�j$
� �

NuX
j��

�#&ut�j��$
�g

GPC gives a control law which �minimizes� the above objective function� However� in

order to achieve a time�invariant control law� only the �rst control action is actually

implemented in GPC� i�e� it is a receding horizon control law� Therefore� the GPC control

law does not truly minimize the above objective function� However for N� � 	� Nu � N��

and N� � �� this objective function converges to the LQG objective function �Clarke

et al�� 	
��" Garcia et al�� 	
�
" Bitmead et al�� 	

��� i�e�

	

N�
JGPC � JLQG � E#yt � rt$

� � �E#&ut$
�

Minimization of this LQG objective function� as has been shown in Kwakernaak and

Sivan �	
���� yields a time�invariant optimal control law� Since the control law is time

invariant for this special tuning� the GPC control law does truly optimize its objective

function irrespective of the fact that only the �rst control move is actually implemented�

Therefore� the LQG problem can be solved via the in�nite GPC solution� But as N� ���
GPC computation requires the solution of a large linear least squares problem� while LQG

involves the solution of the recursive Riccati equation� Nevertheless� in practice� a �nite

value of N� is usually enough to achieve the approximate in�nite horizon LQG solution

via the GPC approach� Thus� the MPC toolbox in Matlab provides a convenient approach

to solve the LQG problem of MIMO processes�



	��

������ The tradeo� curve

Once the problem is formulated as the LQG problem� the tradeo� curve can be

calculated by varying the control weighting �� For the SISO application� this is

straightforward� To extend this result into MIMO systems� we need to further explore

this idea� Suppose that the white noise sequence at satis�es V ar�at� � 	� However if

V ar�at� � ��a �� 	� one can always normalize it to achieve such a form� For example� in

the ARMAX form

Ayt � But � Cat

If V ar�at� � ��a �� 	� then multiply the polynomial C such that C � � C�a� and the new

ARMAX model can be written as

Ayt � But � C �a�t

where the new white noise sequence a�t � ���a at and therefore satis�es V ar�a
�
t� � 	� In

the sequel� we therefore assume V ar�at� � 	 without loss of generality�

Suppose that a regulatory LQG control law is ut � �E
F yt� then

yt �
CF

AF �BE
at

�
� Gyat

and

ut � � CE

AF �BE
at

�
� Guat

where F and E are functions of �� The variance can be expressed as

V ar�yt� � V ar#Gyat$ �
	

��

Z �

��
jGy�e

j��j���ad� � jjGyjj����a � jjGyjj��

where the second equality holds by applying Parseval�s Theorem� Similarly�

V ar�ut� � jjGujj����a � jjGujj��

Therefore� V ar�yt� and V ar�ut� are the H� norms of the closed�loop transfer functions

from disturbance at to yt and ut respectively� Thus� the �size� of the closed�loop transfer

function of yt or ut is of main concern in the performance assessment� irrespective of

the type of the disturbances at� In this way� the H��norm measure of yt or ut can



	�


also be applied to deterministic systems by replacing N to correspond to deterministic

disturbances or a speci�c setpoint model� More importantly� this measure can be directly

extended to the MIMO case� i�e� H� norms of the closed�loop transfer function matrices

from disturbance at to Yt and Ut are used for the performance measure�

For the MIMO case� the objective function of LQG control is written as

J � E#Y T
t WYt$ � �E#UT

t RUt$

where the output weighting W should be chosen in such a way that it re�ects the relative

importance of the individual outputs" the control weighting R is also chosen according

to the relative cost of individual control moves� By varying �� various LQG control

law can be calculated� From the LQG control laws� one can calculate the closed�loop

transfer function matrices from at to Yt and Ut respectively as e�g�� GY and GU � Then

the H� norm� jjGY jj�W � fE�Y T
t WYt�g and jjGU jj�R � fE�UT

t RUt�g can be used to plot
the tradeo� curve� The procedure for constructing the tradeo� curve is summarized in

Table 	��	

������ Performance assessment

Using LQG as the benchmark to assess control loop performance requires a complete

knowledge of the plant model� An open or closed�loop identi�cation e�ort is therefore

required� Recent research on control relevant identi�cation has shown that closed�loop

identi�cation is not necessarily poorer than open�loop identi�cation if the objective of

identi�cation is for control �Bitmead� 	

�" Gevers� 	

�" Van den Hof and Schrama�

	

��� For example� to design an LQG controller� the model is best identi�ed under closed�

loop condition with the desired LQG controller running in the loop �Zang et al�� 	

���

Calculation of the tradeo� curve is similar to the design of a series of LQG controllers

by identifying an appropriate plant model� In control relevant identi�cation� the �best�

model is identi�ed by using an iterative method� i�e� identify a model" then re�design

an LQG controller" re�identifying the model using data collected under the LQG control"

then re�designing the LQG controller and so on� This approach is clearly not suitable for

calculation of the tradeo� curve which requires a series of LQG designs� Identi�cation of



	
�

Table 	��	� The procedure for calculation of the LQG tradeo� curve

	� Formulate the problem in an appropriate LQG format�

�� Choose appropriate output weighting W and control weighting R�

�� By varying �� a series of LQG control laws can be calculated� Using these LQG

control laws� one can form the closed�loop transfer function from at to Yt and Ut

respectively�

�� The H� norms of the closed�loop transfer functions from at to Yt and Ut respectively

can then be calculated to provide a tradeo� curve�

a �best� model for calculation of the LQG tradeo� curve thus remains an open problem

for future research� In this section� the traditional identi�cation methods are used to �nd

the plant model instead� For example� we can identify the model under either closed�loop

or open�loop conditions� Under closed�loop condition� we can use direct identi�cation or

the two�step identi�cation as proposed in the next chapter�

The noise model is also important for the solution of the LQG problem� It may be

jointly identi�ed with the plant model using routine operating data with dither excitation�

if regulation of these �routine� disturbances is of interest� The prediction error method

�PEM� provides models of both plant and disturbances� On the other hand� one may want

to assess control loop performance with hypothetical disturbances� For example� one may

want to know how well a controller regulates step disturbances or tracks setpoints� In this

case� the noise model �or setpoint dynamics� may simply be substituted by 	��	 � q����

if step�type disturbance regulation or tracking is of interest�

Once the tradeo� curve is calculated� the next step is to calculate the H��norm of Yt



	
	

and Ut under existing control in order to compare them with the tradeo� curve� Three

di�erent situations need to be considered�

If �routine� disturbances are of interest� then the white noise sequence at can be

estimated from identi�cation of the plant and noise model� i�e�

�at � �N���Yt � �TUt�

where �T is the estimate of T and �N is the estimate of N � With the estimate of the white

noise sequence �at� the transfer functions from at to Yt and Ut can be identi�ed� Then the

H� norms of Yt and Ut are calculated�

If other hypothetical disturbances are of interest� then one needs to identify the

sensitivity function S� The closed�loop transfer functions from at to Yt and Ut can then

be written as

Yt � SNat

and

Ut � �SQNat

where

S � �I � TQ���

If hypothetical setpoint changes �rt� are of interest� then the tracking error Et is

considered� The closed�loop transfer functions from rt to Et and Ut can be identi�ed and

denoted as GE and GU � Then the H� norms of Et and Ut are jjGEN jj�� and jjGUN jj��
respectively� where N characterizes the hypothetical setpoint dynamics�

���� Pilot�scale experimental evaluation

Example �� To evaluate the proposed algorithm on a pilot�scale process� performance

assessment of multivariate control loops was conducted on a two�interacting tank process

shown in Figure ���� The levels �h�� h�� of the two tanks are the two controlled variables�

The two inlet �ow rates �u�� u�� are the manipulated variables� The sampling interval is
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Table 	���� Controller tuning parameters

Controller N� Nu �� ��

GPC -	 	� 	� ��� ���

GPC -� � � ���� ����

GPC -� � � ��� ���

selected as Ts � �sec� One step time delay �in addition to the delay due to the zero�order�

hold� is introduced at the actuator of the control valve supplying water to Tank ��

IMC and GPC �or MPC� controllers were implemented on this process� To implement

the IMC and GPC controllers� an open�loop identi�cation test was �rst conducted to

estimate the plant model� Using the pem function in Matlab� the open�loop model was

identi�ed as

T �

�
��

������q�������q���������q��

�������q�������q��
���
��q���������q���������q��

�����
�	q������
��q��

����
q��������q�������q��

�����	�q�������q��
���
��q���������q�������
q��

�����
�q��������q��

�
��

The time domain validation on a separate set of data is shown in Figure 	����

The hypothetical disturbances dynamics� in this example� is taken to be

N �

�
��

�
��q�� �

� �
��q��

�
�� �	��	�

to represent step�type disturbances or setpoint changes� Based on the estimated plant

model� three GPC controllers with di�erent tuning parameters were implemented on this

process� The tuning parameters are shown in Table 	���� As Nu � N� and N� ��� GPC
theoretically converges to LQG solution� In this example� GPC converges to the in�nite

horizon case as N� � Nu � 	�� Therefore� controller - 	 should theoretically give LQG

performance� But this may not be true due to possible model�plant mismatch� We will

evaluate the performance of these controllers in this section�

A multivariate IMC controller was also implemented on this process� To design the

IMC controller� a unitary interactor matrix has to be factored out from the plant transfer



	
�

function matrix T � It is

D �

�
�� ���

��q �������q
������q� ���

��q�

�
��

This unitary interactor matrix �an all�pass factor of the in�nite zeros� represents time�

delays in the MIMO system� The optimal IMC �OptimalH��norm� controller is the inverse

of the delay�free transfer function matrix �T � where

�T � DT

To make the IMC controller implementable on this process� a �lter

f �

�
��

���
�����q�� �

� ���
�����q��

�
��

has to be cascaded to the optimal IMC controller� The �nal IMC controller is

Q� � �T��f

where Q� is the controller in the IMC framework �Morari and Za�riou� 	
�
�� This IMC

controller is denoted as controller -� in the following discussion�

Now we begin the evaluation of these four controllers using experimental data� Suppose

we have no knowledge of the plant model and the controllers in this case� Closed�loop

identi�cation has to be used to identify this model in order to assess performance of the

four controllers� A random binary dither signal was inserted in the setpoint� The closed�

loop response �both Yt and Ut of the four controllers are shown in Figures 	���� 	����

	��� and 	���� One can roughly get an indication of the relative performance of the four

controllers by inspecting these four �gures� but it is di�cult to see how good these four

controllers are relative to the best achievable control with the same control e�orts�

A direct closed�loop identi�cation using the prediction error method �Ljung� 	
��"

Soderstrom and Stoica� 	
�
� was applied to the four sets of data to estimate the plant

model� Since the step�type setpoint tracking performance is of interest in this example�

the setpoint dynamics requires N to take the form as expressed in equation 	��	� The

tradeo� curve can be calculated as shown in Figure 	���� One can see di�erence in the
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curves from di�erent sets of data� This di�erence is clearly not due to disturbances since

the signal to noise ratio is fairly high in this experiment� It is mainly attributable to the

bias error� i�e�� the model sets does not contain the true dynamics of the plant� Thus an

�LQG relevant identi�cation strategy� is highly desirable for such an application� The

topic of control relevant identi�cation is beyond the scope of this thesis� Interested readers

are referred to Kosut et al��	

��� Shook et al��	

��� Bitmead �	

�� � Gevers �	

�� and

Van den Hof and Schrama �	

�� for interesting discussions on this topic�

Since controller -	 is the closest to LQG control� the tradeo� curve calculated from

this data set is used as the benchmark in this example� By directly �tting the tracking

error Et and the controller output Ut to the setpoint dither excitation rt� we can estimate

the closed�loop transfer function matrices from rt to Et and Ut respectively� The �ttings

from rt to Et and from rt to Ut are open�loop identi�cation problems� Time domain

validation ��rst 	�� data points� for one of the experiments� controller -	� is shown in

Figure 	��
� The upper two graphs represent time domain validation of the �tting from

rt�� � 	� to Et�� � 	�� The lower two graphs represent time domain validation of the
�tting from rt��� 	� to Ut��� 	�� The other three sets of controllers show similar results
and are not reproduced here� Using the setpoint dynamics as in equation �	��	�� the

H� norm of Et and Ut for the four sets of controllers can be calculated and is shown in

Figure 	��	�� From this graph� one can compare the performance of di�erent controllers

or just one controller with di�erent tuning parameters� Among the three GPC controllers�

controller -	 is the closest to LQG as it should be� The di�erence between controller

-	 and LQG may be attributed to model�plant mismatch� Controller -� has the same

�size� of tracking error as controller -	� but requires a larger control e�ort� Controller

-� exhibits a control e�ort which is similar to the IMC controller� controller -�� but

yields a much smaller tracking error� We do not intend to show the superiority of any one

controller over the other� In fact� any of the controllers can be retuned by adjusting the

tuning or the �lter parameters such that it moves toward the tradeo� curve� From this

curve� one can clearly see the potential for improving the performance of controllers -��

-� and -�� This study also provides insight as to how the various GPC controllers may

be tuned to give the desired performance�
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���� Case study on an industrial process

Example �	 The proposed performance assessment method was applied to monitor

control loop performance of an industrial cascade control loop shown in Figure ������

In this example� we are interested in control performance under a regulatory mode for

rejecting routine disturbances at the outer loop�

In Chapter �� We have shown that the average performance index in the outer loop is

approximately ��	�� indicating relatively poor control� Clearly this loop has the potential

to provide better controller via retuning the existing controller or redesigning the control

algorithm� However one may ask how good this controller is relative to the achievable

optimal control with the same control e�ort�

An open�loop test was conducted on this process using PRBS excitation� Due to

the strong signal�noise�ratio in the experiment� a reasonable open�loop model is expected

from open�loop data �Miller� 	

��� However� the estimated noise model from open�

loop data may not be completely reliable� since the noise model may vary with the

operating conditions� The routine closed�loop operation may also be di�erent from open�

loop operation� since a relative large dither signal excitation was injected to perform the

open�loop tests� Consequently the noise model obtained from open�loop tests may not

represent the true noise dynamics under routine closed�loop condition� For performance

assessment purposes� a noise model which reasonably represents the noise dynamics under

normal working condition is necessary�

One approach to bypass this problem is to use routine closed�loop operating data for

estimation of the noise model� This can be done by 	� calculating the sensitivity function�

i�e� S � 	��	 � TQ�" �� collecting routine closed�loop operating data and �ltering the

closed�loop data by the inverse sensitivity function� i�e� yf � y�S" �� �tting the �ltered

closed�loop data by a time series model� Then this time series model is the estimated noise

model from closed�loop data� This procedure is based on the fact that routine closed�loop

data yt can be written as

yt �
N

	 � TQ
at
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where N is the noise model and at is the white�noise excitation� If yt is �ltered by 	�S�

then yft � y�	 � TQ� � Nat� Therefore N can be estimated from time series analysis of

yft �

With the plant model and the noise model� the tradeo� curve is obtained from the

LQG solution as shown in Figure 	��	�� The abscissa represents the control variance

measured by the expectation of incremental control action� while the ordinate represents

the variance of the temperature�

Using this graph� we can also assess the performance relative to minimum variance

control� The graph indicates that the tradeo� curve converges �towards right� to ����

when there is no constraint on incremental control action &ut� Therefore the minimum

variance �without incremental control action constraint� is ��mv � ����� With the actual

temperature variance ��y � ����� the performance index ��d� � ��mv��
�
y � ��	��

The current variance of incremental control action is about E#&ut$
� � ����� Using this

control action variance� the achievable temperature variance can be found from the curve

which is about ��	� Thus the achievable performance measure with LQG as the benchmark

is ��	����� � ����� This is a more realistic measure of current control performance if control

action cannot be allowed to exceed the current level� This number indicates that there is

signi�cant potential to improve the feedback controller performance without increasing the

control e�ort� If we draw a horizontal line along the actual working point� it intersects the

tradeo� curve at the point where E#&ut$
� � �� A signi�cant reduction of the incremental

control variance would be possible without increasing output variance if an advanced

controller such as LQG or DMC is implemented�

���� Conclusions

A practical control benchmark has been proposed for assessment of control loop

performance� This practical benchmark takes both the control e�ort and the output

performance into account� Calculation of such a benchmark control requires process

identi�cation� LQG is one such practical benchmark and its tradeo� curve can be



	
�

obtained in terms of the H� norm of the appropriate transfer function matrices� Other

practical benchmarks� which usually yield a similar tradeo� curve �Boyd and Barratt�

	

	� and require a numerical solution� may also be considered for further study of

practical performance assessment�
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Chapter ��

Closed�loop Identi�cation

���� Introduction

A necessary prerequisite for model�based control is a model of the process� Such

certainty�equivalence� model�based control schemes rely on an o��line estimated model of

the process� i�e� the process is �probed� or excited by a carefully designed input�signal

under open�loop conditions and the input�output data are used to generate a suitable

model of the process� In a majority of model�based control schemes used in the chemical

process industry� the models are generated with little regard for their ultimate end�use�

e�g� as in model�predictive control� Almost always in such cases� reduced�complexity

models are generated to capture the most dominant dynamics of the process� Such batch

or o��line identi�cation methods represent a major e�ort and may require anywhere from

several hours to several weeks of open�loop tests�

In contrast with this� the objective in closed�loop identi�cation is to use routine

operating data with dither signal excitation to develop a dynamic model of the process�

It is practically a very appealing idea� In this mode� process identi�cation can commence

with the process in its natural closed�loop state� In some cases� the plant has to run under

closed�loop conditions due to safety reasons� In other cases� if a linearized dynamic model

�A version of this chapter has been accepted for publication in the Journal of Process Control and has

also been presented at the ���� CSChE Conference�

���
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around a nominal operating point is desired� then this can be achieved by closed�loop

identi�cation� since otherwise under open�loop conditions the process variables may drift

away from the nominal operating point�

The method of closed�loop identi�cation has been in the development stage over the

last �� years� Important issues such as identi�ability under closed�loop conditions have

received attention frommany researchers �Box and MacGregor� 	
��" Goodwin and Payne�

	
��" Gustavsson et al�� 	
��" Soderstrom and Stoica� 	
�
�� A number of identi�cation

strategies have been developed �Ljung� 	
��" Soderstrom and Stoica� 	
�
�� In traditional

identi�cation literature� the quality of identi�cation and identi�ability issues are mainly

addressed under the assumption that the model set contains the plant i�e� the model can

describe true process dynamics�

The more typical case is that of under�modelling or identi�cation of reduced�complexity

models when the plant is not in the model set� This is the focus of the present chapter and

is a more realistic situation since a plant is generally of relatively high�order and the model

structure used to approximate such process is almost always lower order� Stated simply�

identi�cation is an exercise in model�reduction� Under such circumstances� the model�

plant error consists of two terms� the bias error �due to under�modelling� and the random

error �or variance error� due to noise and disturbance e�ects� Several general expressions

for the asymptotic variance and bias errors have been given by Ljung �Ljung� 	
���� The

relationship between the variance and bias errors has been recently addressed by Guo and

Ljung �	

�� and Ljung �	

��� These general expressions for the bias distribution have

also been extended to closed�loop identi�cation �Bitmead et al�� 	

�" Zhu and Backe�

	

�" MacGregor and Fogal� 	

��� It is well known that a data pre��lter can change the

distribution of the bias error in the frequency range of interest �Ljung� 	
���� and therefore

plays a somehow similar role as the change in the frequency content of the dither signal�

The choice of this pre��lter or alternatively the spectrum of the input signal is application

dependent �Gevers and Ljung� 	
��" Ljung� 	
��" Rivera et al�� 	

���

Closed�loop identi�cation has also attracted much interest due to the emerging research

area of joint identi�cation and control� The key idea in the joint identi�cation and control
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strategy �as opposed to a +disjoint� or separate identi�cation and control� is to identify

and control with the objective of minimizing a joint global control performance criterion�

This topic has received attention under such headings as� control�relevant identi�cation�

iterative identi�cation and control etc� Readers are referred to Kosut et al��	

��� Shook

et al��	

��� Bitmead �	

�� � Gevers �	

�� and Van den Hof and Schrama �	

�� for

detailed discussions on these topics� The study of control�relevant identi�cation requires

that the best identi�cation strategy is to identify the process under feedback with the

intended controller in use� For example� a model intended for the design of minimum

variance control is best identi�ed under minimum variance feedback control �Gevers and

Ljung� 	
���� and similarly for LQG control �Zang et al�� 	

�" Hakvoort et al�� 	

���

model reference control �Hjalmarsson et al�� 	

�� etc�

The purpose of this chapter� however� is to focus attention only on the identi�cation

of the process model under closed�loop conditions� The estimated model is shown to have

asymptotically identical expressions for the bias and variance terms regardless of how the

identi�cation run is conducted� i�e� irrespective of open�loop or closed�loop conditions�

The estimated model can then be subsequently used for improving existing controller

design� controller re�design� control�loop performance assessment� general analysis� etc�

For example� a model obtained from closed�loop data under PID control may be used

for the design of a DMC controller� Control loop performance assessment techniques

as discussed in the previous chapters do not require an explicit process model when

minimum variance control is used as a benchmark� However� if a more practical benchmark

standard such as LQG is used for evaluating existing control loop performance� then more

information about the process is required�

The main contribution of this chapter is the development of a two�step closed�loop

identi�cation algorithm which asymptotically yields the same expressions for both variance

and bias errors as in open�loop identi�cation� These results obviate the need to conduct

expensive open�loop tests when simple closed�loop tests with dither signal excitation can

su�ce� This chapter illustrates the point that a suitable model of the process can be

estimated from closed�loop data with appropriate �ltering�
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The chapter is organized as follows� Section 	��� gives comparison between open�loop

and closed�loop identi�cation in terms of variance and bias errors� In Section 	���� a

two�step closed�loop identi�cation scheme is proposed� which asymptotically yields the

same expressions of variance and bias errors as open�loop identi�cation� The proposed

algorithm is evaluated on simulation examples in Section 	���� and a computer�interfaced

pilot�scale plant in Section 	����

���� Accuracy aspects of closed�loop identication

Consider a linear SISO plant� schematically illustrated in Figure 	��	� and described

by

y � Tx�Na

where a is a white noise sequence� x is the input to the process� T is the process transfer

function� and N is the noise transfer function� Let a model of the form

�y � �Tx� �Na

be used to approximate the process dynamics� The prediction error is de�ned as

�a �
	

�N
�y � �Tx�

The commonly used objective function for parameter identi�cation is to minimize the sum

of squares of the prediction error�

V �
	

M

MX
t��

�a��t�

This method is denoted as the prediction error method or PEM �Ljung� 	
���� The total

error of the estimates can be attributed to variance and bias errors �Ljung� 	
��� and may

be conceptually written as a sum of the variance error and the bias error �Ljung� 	

���

VT � VV � VB

In this section� we deal with both the bias and variance estimation errors and compare

them between the open�loop and closed�loop cases� We show that the issue of variance and
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bias error of the parameter estimates is common to both open and close�loop identi�cation�

The PEM is a general and e�cient method for system identi�cation� The variance of the

PEM estimator asymptotically reaches the Cramer�Rao lower bound �Ljung� 	
���� This

asymptotic variance expressed in the frequency domain has been given by Ljung�	
����

Theorem �� �Ljung� ����� For input and output data x and y obtained from the process

shown in Figure ����� where

y � Tx� v � Tx�Na �	��	�

the following result holds for large sample size M � large model order n and small n�M �

Cov

�
�� �T �ej��

�N�ej��

�
�� � n

M
)v���)

����� �	����

where

)��� �

�
�� )x��� )xa���

)ax��� ��a

�
�� and )v��� � jN�ej��j���a

and where )���� denotes the spectrum of the corresponding signal ��

Corollary � For an open�loop system� with the input x � w �w is input excitation signal

and is independent of noise a�� and output y� equation ������ can be written as

y � Tw � v � Tw �Na �	����

The asymptotic variance of estimates using the PEM is given by

V ar# �T �ej��$ �
n

M

jN�ej��j���a
)w���

�
n

M

)v���

)w���
�	����

V ar �N�ej��

jN�ej��j� �
n

M
�	����

T

N
v

a

yx

Figure 	��	� Process model block diagram
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Proof follows directly from equation �	�����

The results of Theorem 		 are more general than its statement may indicate� These

results are also applicable to the closed�loop case �direct identi�cation �� �Gevers and

Ljung� 	
��� since in this case the correlation between x and a� )xa���� is considered

in the expression for )��� �see equation�	������ In this way� Theorem 		 can also be

extended to �nd the asymptotic variance of estimates �T �Zhu and Backe� 	

�� and �N

under closed�loop conditions� i�e� )xa��� �� � �for the closed�loop case��

Corollary � Under closed�loop control� as illustrated in Figure ���� the asymptotic

variance of the estimates is given by

V ar# �T �ej��$ �
n

M

)v���

)w���

	

jS�ej��j� �	����

V ar# �N�ej��$ �
n

M
jN�ej��j��	 � jQ�ej��j� )v���

)w���
� �	����

where S � 	��	�QT � is the sensitivity function� w is the dither signal and is independent

of the noise sequence� a�

Proof� Under closed�loop conditions� the manipulated variable x can be written as

x � Sw � SQNa

Therefore

)x��� � jS�ej��j�)w��� � jS�ej��j�jQ�ej��j�jN�ej��j���a �	����

)xa��� � �S�ej��Q�ej��N�ej����a �	��
�

The corollary follows after substituting equation �	���� and �	��
� into equation �	�����

Thus the asymptotic variance of �T under closed�loop conditions depends on the sample

sizeM � the signal to noise ratio �SNR�� )w����)v���� and the sensitivity function S�e
j���

Increasing sample size tends to improve the estimate� However� the sensitivity function

�Direct identi
cation�identi
cation of a plant model by directly using the input and output data

regardless of the feedback e�ect�
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Figure 	���� Feedback control loop block diagram

a�ects the accuracy inversely� In process control� the asymptotic regulatory property

under closed�loop control is of main term of interest� i�e� it is desired to have asymptotic

disturbance rejection or lim��� S�e
j�� � �� Typically the disturbances are step�type and

therefore such asymptotic disturbance rejection �for step�type disturbances� is achieved by

incorporating integral action� The estimate is consequently poor at these low frequencies if

a white noise dither signal is used� However� one can also take advantage of the small value

of the sensitivity at low frequency and use a dither signal which has more power at low

frequency without upsetting the process� For other control strategies such as regulation

of stochastic disturbances� the sensitivity function may have a small value in the middle

or high frequency range� and therefore poor estimates in middle or high frequency range

would be expected� The main di�erence in the asymptotic variance between open�loop

and closed�loop identi�cation� is the presence of the sensitivity function S �cf eqns �	����

and �	������

In addition to the variance of the estimates� another important measure of

identi�cation quality is the bias error� It exists whenever the process dynamics are not

contained in the model set� as in reduced�complexity model identi�cation� This in fact is

almost always the case in practice� The distribution of bias errors in the frequency domain

has been considered by Ljung �	
��� through spectral characterization of the identi�cation

problem�
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Theorem �� �Ljung� ����� For an open�loop process shown in equation������� the

estimation of model parameters in the limit is given by the following optimization problem�

�M
M��� arg
min

Z �

��
#jT �ej��� �T �ej��j�)w��� � )v���$ 	

j �N �ej��j� d� �	��	��

where �M is the estimated model parameters� If the noise model �N is chosen as being

�xed such as �N � !N � then the second term on the right hand side of Equation �����	� is

constant� and the optimization problem simpli�es to

�M
M��� arg
min

Z �

��
jT �ej��� �T �ej��j�)w��� 	

j !N�ej��j� $d� �	��		�

These results clearly indicate that the bias distribution of jT �ej��� �T �ej��j in the frequency
domain is weighted by the dither spectrum� )w���� and the inverse of the noise spectrum�

i�e� 	�j �N �ej��j� �also regarded as a noise �lter�� or simply the signal to noise ratio �SNR��
)w����j �N �ej��j�� If a unity noise model is considered� i�e� !N � 	� then the identi�cation

algorithm can be characterized as the output error method �OEM� �Ljung� 	
��� which

does not depend on the noise spectrum�

�M
M��� arg
min

Z �

��
jT �ej��� �T �ej��j�)w���d� �	��	��

Theorem 	� can also be extended to the closed�loop case�

Corollary 	 �MacGregor and Fogal� ����� For the closed�loop process shown in

Figure ���� the estimation of model parameters in the limit is given by the following

optimization problem�

�M
M��� arg
min

Z �

��
#jT �ej��� �T �ej��j� jS�e

j��j�
j �N�ej��j�)w��� �

jS�ej��j�
j �S�ej��j�

jN�ej��j�
j �N�ej��j��

�
a$d�

�	��	��

where S is the sensitivity function and �S � �
��Q �T

�

Proof� See the proof in �MacGregor and Fogal� 	

���

If w is a su�ciently high order persistently exciting signal� and the set of �T contains T � the

set of �N contains N � then both estimates are consistent by using the direct identi�cation
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Table 	��	� Expressions of the asymptotic variance and bias errors

open�loop closed�loop

Variance n
M

�v���
�w���

n
M

�v���
�w���

�
jS�ej��j�

Bias
R �
��#jT �ej��� �T �ej��j� �w���

j �N�ej��j�
�

R �
��#jT �ej��� �T �ej��j� jS�ej��j�

j �N�ej��j�
)w����

distribution � �v���

j �N�ej��j�
$d� � jS�ej��j�

j �S�ej��j�
jN�ej��j�

j �N�ej��j�
��a$d�

method �Soderstrom and Stoica� 	
�
�� i�e�� �T
M��� T and �N

M��� N � When the model

set does not contain the process dynamics� which is generally the case and is of the interest

in this chapter� a bias in estimation results� which is weighted once again not only by the

SNR but also by the sensitivity function S� Thus the presence of the sensitivity function

is the key di�erence between open�loop and closed�loop identi�cation �cf Table 	��	�� To

summarize� the expressions for the asymptotic variance and bias errors under open�loop

and closed�loop conditions are listed in Table 	��	�

Remark � As pointed out by Schrama�	

�� � Gevers�	

�� and Hjalmarsson et

al��	

��� the �best� model for the joint identi�cation and control design is not necessarily

the �best� open�loop model� In fact the �best� model for such design should have

the bias error distribution weighted by the sensitivity function� But this sensitivity

function is precisely the sensitivity function that one wishes to �design� through the

choice of a suitable model�based controller once a suitable model is available� In terms

of identi�cation and control� this represents a �catch���� situation� since an optimal

controller cannot be designed if a control�compatible model is not available� and such

a model cannot be estimated via closed�loop identi�cation if its bias spectrum is not

weighted by the appropriate sensitivity function� This is the main justi�cation for

iterative identi�cation and control� However� in the majority of the design of model�

based controllers� the estimation will not have the appropriate sensitivity function as a

weighting term� Throughout this chapter� we do not assume that the feedback controller

under which the closed�loop data are collected is the intended or the ideal controller of
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choice� In such cases� the dependence on the sensitivity function in place� based on existing

control� should be decoupled in the �rst place� Therefore one can decouple the e�ect of

the current sensitivity function on the variance and bias errors and also shape the bias

distribution through the choice of appropriate data �lters and the spectrum of the signal

�for closed�loop identi�cation� or the input signal �for open�loop identi�cation�� In this

way a model obtained via open or closed�loop identi�cation can truly serve the purpose

of improved control law design� analysis or control�loop performance assessment�

���� Two�step closed�loop identication

An e�ective way to reduce variance of estimates is to increase sample size� but this

may not have the desired e�ect on the reduction of the bias error� Depending on the

application� smaller errors in some frequency range� e�g� around the cross�over frequency

may be desired� while larger errors at other frequencies may be tolerated� Data pre�ltering

can change the distribution of the bias error over the frequency range of interest �Ljung�

	
��" Bitmead et al�� 	

��� MacGregor and Fogal�	

�� have also shown that data

pre�lters and the noise model have signi�cant e�ect on the bias error and identi�ability

for closed�loop identi�cation� Under closed�loop conditions� the design of data �lter is

complicated by the presence of the sensitivity function� In this section� we propose a

two�step closed�loop identi�cation method which can asymptotically decouple closed�loop

parameter estimation from the e�ect of the undesired sensitivity function� In so doing�

this work provides a closed�loop identi�cation method which asymptotically retains the

accuracy of open�loop identi�cation� Thus many of the available open�loop experimental

design techniques and data pre�lters can be applied to closed�loop data� The most recent

two�step identi�cation algorithm proposed by Van den Hof and Schrama�	

��� which has

a similar procedure but has a di�erent objective� is also summarized and compared with

the two�step approach proposed here�
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Table 	���� Item to item correspondence between two equations

equation�	���� equation�	��	��

y x

w w

T S

N �SQN
v �SQNa

������ Estimation of the sensitivity function�Step �

For a closed�loop system shown in Figure 	���� the closed�loop response can be written

as

y � TSw �NSa �	��	��

and

x � Sw � SQNa �	��	��

The sensitivity function� S� can be estimated from equation �	��	��� i�e� equation �	��	��

presents a simple open�loop identi�cation problem where the correlation between w and

x yields �S� In order to apply Corollary � to analyze the variance error of the estimate� �S�

the corresponding terms between equation�	���� and equation�	��	�� should be identi�ed�

The one�to�one correspondence between di�erent terms in equations �	���� and �	��	�� is

summarized in Table 	����

Using Table 	���� the variance of the estimate of S can be found by applying Corollary �

to equation �	��	�� as

V ar# �S�ej��$ �
n

M

)a���jN�ej��j�
)w���

jS�ej��j�jQ�ej��j� � n

M

)v���

)w���
jS�ej��j�jQ�ej��j�

and its relative variance as

V ar# �S�ej��$

jS�ej��j� �
n

M

)v���

)w���
jQ�ej��j� �	��	��
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which depends on controller dynamics Q in addition to the sample size� the model order

and SNR� In subsequent applications we will show that only the relative accuracy of the

sensitivity function is important�

Using Table 	���� the bias distribution of the sensitivity function over the frequency

range can be found by applying Theorem 	� to equation �	��	��� This yields the bias

distribution in the frequency domain as

�SM
M��� arg
min

Z �

��
#jS�ej��� �S�ej��j�)w��� � jH�ej��j���a$

	

j �H�ej��j� d� �	��	��

where �H is the noise model with H � �SQN � Since the sensitivity function serves as
the �rst or intermediate result for subsequent identi�cation of the process dynamics� its

order can be selected to be fairly large� i�e� the model set �S� should then be able to

capture most of the dynamics of the actual sensitivity function� S� The total error �bias

plus variance� would then be dominated by the variance error �Guo and Ljung� 	

���

The variance error is then the main issue of concern here� To achieve this� PEM may be

used for estimation of the sensitivity function� which has asymptotic minimum variance�

However the distribution of the asymptotic minimum variance error over the frequency

range cannot be controlled by pre��ltering of the input�output data since both the process

model and the noise model �or �lter�� are jointly parametrized in the PEM algorithm to

yield asymptotic minimum variance estimates �Ljung� 	
���� Therefore the main �tuning

knob� or �control parameter� to adjust the relative variance of the sensitivity function �see

equation�	��	��� is the spectrum of the dither signal� which has to be designed carefully

in order to control the variance error over the frequency range of interest� However� the

variance error can also be reduced by increasing the number of data points� Since it is not

di�cult to collect a relatively large number of data points under closed�loop operation� a

relatively accurate estimate of the sensitivity function can be expected� In the following

discussion we therefore assume that �S � S�

������ Estimation of the process model�step �

Once the sensitivity function is available� the process dynamics can be estimated by

�ltering output data with the inverse of the sensitivity function�
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Proposition � If one �lters y by the inverse of the sensitivity function� and then

applies PEM �joint parameterization of process and noise models� to equation ��������

the asymptotic variance of the estimates is given by

V ar# �T �ej��$ �
n

M

)v���

)w���
�	��	��

and
V ar# �N�ej��$

jN�ej��j� �
n

M
�	��	
�

Thus the variance of �T and �N�N is independent of closed�loop dynamics� i�e� both

open�loop and closed�loop estimates have the same expression of accuracy with respect

to variance �see Corollary ���

Proof� Using 	�S to �lter y yields the following relationship between y and w from

equation �	��	���

y�S � yf � Tw �Na �	�����

Identi�cation of T from equation�	����� is an open�loop problem� This equation has the

same form as equation�	����� Using w as input data and yf as output data by applying

corollary �� the proposition follows�

The bias distribution of the estimate over frequency domain is also asymptotically

independent of the closed�loop dynamics as shown in the following proposition�

Proposition � From equation����	�� the asymptotic estimates of T and N by using the

�ltered data yf and w are given by the following optimization problem�

�M
M��� arg
min

Z �

��
#jT �ej��� �T �ej��j�)w��� � )v���$ 	

j �N �ej��j� d� �	���	�

Again this yields the same bias distribution as under the open�loop condition �see

Theorem ��� If both model sets� i�e� the process� �T � and the noise� �N � contain the

true process dynamics� and w is a su
ciently high�order persistently exciting signal� then

the parameter estimates as per equation ������ will converge to the true values�

Proof� Follows by applying Theorem 	� to equation�	������
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Remark �� In the proof of proposition � and � it is assumed that the true sensitivity

function S is used to �lter y� If this sensitivity function is substituted by its estimate� �S�

then equation����	� should be written as

y� �S � yf �
S
�S
Tw �

S
�S
Na

The validity of Propositions � and  will then depend on the relative accuracy of the

sensitivity function� S� �S� Therefore the relative accuracy of the estimated sensitivity is of

main concern in the �rst step� However� provided that �S is su
ciently close to S �there

is no model order or other structural limitations for the estimate of S�� this relative error

of the estimate of S should have a negligible e�ect on the estimate of T and N �

If only the process model T is to be estimated� then the output error method can be applied

in this two�step identi�cation approach� Estimation of both� the sensitivity function� S�

and the process model� T � are open�loop identi�cation problems� The consistency of

the estimates �S and �T is independent of the noise model� as long as the noise model is

�xed �Ljung� 	
��� as in the output error method�

Pre��ltering of data is important in identi�cation� In particular� the choice of the

data pre��lter can allow one to shape the spectral distribution or composition of the bias

errors� The choice of the shaping �lter should take into account the intended end�use of

the model� This topic overlaps with the area of joint identi�cation and control and has

received much attention in the literature� The design and application of shaping �lters for

control�loop performance assessment is the subject of a future study� The point is that the

sensitivity function decoupling �lter provides a good or fair starting point for the design

of the shaping �lter under closed�loop conditions� In the following proposition� we show

that the bias error under the two�step identi�cation strategy can be freely shaped�

Proposition � �Shaping Filter� For the two�step identi�cation� based on the output error

method� if output data y is �ltered by F � Gf�S� and the input data w is �ltered by Gf

only� where Gf is a shaping �lter� then the asymptotic bias distribution is given by

�M
M��� arg
min

Z �

��
#jT �ej��� �T �ej��j�)w���jGf �e

j��j�$d�
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Therefore the bias distribution in the limit is independent of the closed�loop sensitivity

function and can be shaped by the free �lter Gf to meet accuracy requirement over

frequencies of interest�

Proof� Using �lter F � Gf�S� the relationship between y and w from equation �	��	��

is now written as

yf � Twf �GfNa �	�����

where

yf �
Gf

S
y

wf � Gfw

Therefore

)wf � jGf �e
j��j�)w��� �	�����

By applying Theorem 	� with �xed noise model of unit value �i�e� !N � 	� as in OEM

yields

�M
M��� arg
min

Z �

��
jT �ej��� �T �ej��j�)wf ���d� �	�����

The proposition follows on substituting equation �	����� into �	������

The signi�cance of this result is that the estimate obtained under closed�loop conditions

can be shaped in the frequency domain if the model does not contain the true dynamics�

while the estimator still maintains the property of consistency should the plant model � �T

only� contain the true dynamics� The classic closed�loop direct identi�cation does not

have such a property� All available methods for the design of the shaping �lter for open�

loop identi�cation can therefore be applied in this closed�loop case� For example� Shook et

al��	

���s open�loop long range predictive identi�cation pre�lter and Rivera et al��	

���s

systematic design of the control�relevant shaping �lter can be applied� The choice of the

shaping �lter is analogous to selecting frequency weighting of the bias error function�

Tighter weighting at some frequencies would result in expected corresponding reduction

in bias errors at these frequencies but at the cost of perhaps larger bias errors at other

frequencies� The e�ect of the shaping �lter will be brie�y shown in the experimental study

of a pilot�scale process�
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Table 	���� The procedure for two�step identi�cation

	� Fit x to w by using the PEM or OEM� and obtain an estimate� �S� of the sensitivity

function� S�

�� Filter y by F � 	� �S and then �t yf to w by applying the PEM� Then obtain

estimates of T and N whose variance and bias expressions are asymptotically the

same as open�loop identi�cation�

The aforementioned two�step identi�cation algorithm is summarized in Table 	��� and

Table 	����

Remark �� If S contains non�minimum phase zeros� then 	�S cannot be used as an

unstable decoupling �lter� In this case� factorize S as

S �
N�N�

D

where the polynomial N� contains all non�minimum phase or unstable zeros� Let

polynomial N�� be the reciprocal polynomial of N�� Then all roots of N�� are inside

the unit circle� Instead of using 	�S as the sensitivity function decoupling �lter� 	�S�

should be used as the decoupling �lter to �lter yt� where S
� � �N��N���D� At the same

time� wt should be also �ltered by N
��N��� This will yield the same asymptotic properties

�variance and bias� as using 	�S to �lter yt� However� when S contains the unit�value

zeros� the decoupling �lter 	�S will have an integral term which in some cases may cause

numerical problems� In this case� the probing or excitation signal is preferably inserted at

the setpoint as discussed in the following sections�

Among many other two�step closed�loop indirect identi�cation strategies �Caines and

Chan� 	
��" Phadke and Wu� 	
��" Defalque et al�� 	
��" Soderstrom and Stoica� 	
�
��
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Table 	���� The procedure for two�step identi�cation plus shaping

	� Fit x to w by using the PEM or OEM� and obtain an estimate� �S� of the sensitivity

function S�

�� Filter y by F � Gf� �S and w by Gf and then �t y
f to wf by using the OEM�

Obtain an estimate of T whose bias is asymptotically independent of the closed�loop

sensitivity function and is shaped by the �lter Gf �

one of the most recent two�step identi�cation strategies with a di�erent objective has been

proposed by Van den Hof and Schrama�	

�� whose approach is summarized below�

Lemma � Assume that the consistent estimate of the sensitivity function� �S � S� is

obtained in the �rst step� If the input data w is �ltered by S� i�e� wf � Sw� before

applying OEM� then �T can be directly estimated from the �ltered data and is a consistent

estimate�

This is clearly seen from equation �	��	��� where

y � TSw �NSa � Twf �NSa �	�����

whereas the approach proposed in this chapter considers �ltering y by 	�S as follows�

y�S � Tw �Na

which is

yf � Tw �Na

For brevity� the approach proposed by Van den Hof and Schrama is denoted as w�

�ltering method� while the approach proposed in this chapter is denoted as y��ltering



��	

method� In Van den Hof and Schrama�	

��� �The sensitivity function is used to simulate

a noise free input signal for an open loop identi�cation of the plant to be identi�ed�

Using the output error method� an explicit approximation criterion can be formulated�

characterizing the bias of identi�ed models in the case of undermodelling��

Lemma 
 By using the OEM� the w��lter approach yields the asymptotic frequency bias

distribution as

�M
M��� arg
min

Z �

��
#jT �ej��� �T �ej��j�jS�ej��j�)w���d�

Thus the frequency weighting on the bias jT �ej�� � �T �ej��j� depends on the sensitivity

function� S� In the approach proposed in this chapter� the frequency weighting on the bias

is independent of the sensitivity function�

This can be proved by applying equation�	��	�� in Theorem 	� to equation�	������ It

should be pointed out that� under the framework of joint identi�cation and control� the

dependency of the bias error on the sensitivity function is not undesired provided that the

desired sensitivity function or the intended feedback controller is running during the data

collection�

Remark �� One of the main di�erences between the w��ltering approach and the y�

�ltering approach is whether w or y should be �ltered by the sensitivity function or the

inverse of the sensitivity function before carrying out the second step of identi�cation�

These two approaches result in di�erent identi�cation objectives� The y��ltering approach

as proposed in this chapter aims at �� achievement of the same �accuracy� expressions with

respect to bias and variance errors under closed�loop and open�loop conditions �including

consistency of the estimates if the model set contains the plant dynamics�� this result is

achieved by decoupling the closed�loop sensitivity function from closed�loop data� and �

obtaining explicit expressions for both asymptotic variance and bias errors� This approach

is obtained by comparison of the asymptotic variance and bias errors for open�loop and

closed�loop conditions� The w��ltering approach as proposed by Van den Hof and Schrama

provides �� a consistent estimate of the input�output transfer function if the model contains
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the plant dynamics� and � an explicit expression for the asymptotic bias distribution

only� The following illustrations show that these have important implications in closed�

loop identi�cation�

������ Other practical considerations

Until now we mainly consider the case where the dither signal is injected from w as

shown in Figure 	���� We will illustrate that the general result can be extended to the

case where the dither signal is injected from any point� for example via the setpoint r�

Figure 	��� shows an equivalent transformation of the block diagrams� The closed�loop

response is now written as

y � STQr � SNa

This can be transformed to
	

SQ
y � Tr �

N

Q
a

Therefore if y is �ltered by 	�SQ before applying the PEM or OEM� the relationship

between r and yf is

yf � Tr �
N

Q
a

It is clear that both variance and bias distribution of estimates by using the PEM or OEM

will be independent of the sensitivity function� Since it is again an open�loop identi�cation

problem� a shaping �lter Gf can also be cascaded to the decoupling �lter to shape the

bias distribution in the frequency domain as illustrated in the foregoing discussion�

In this case instead of estimating the sensitivity function S during the �rst step as in

the foregoing section� QS should be estimated jointly� This can be obtained by noticing

the following relationship between r and x�

x � QSr �NQSa

Identi�cation of QS using data r and x is an open�loop identi�cation problem� Therefore

it can be shown that the relative accuracy of the estimate of QS is independent of

the sensitivity function� Since the inverse of QS does not contain the unit�value zeros
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Figure 	���� Equivalent transformation of block diagrams�

introduced by integral control� it is the preferred sensitivity function decoupling �lter when

integral action exists in the controller�

���� Extension to MIMO systems

The two�step closed�loop identi�cation can be extended to MIMO systems�

Proposition � Under closed�loop condition� the transfer function matrix T can be

estimated via two steps� The sensitivity function is estimated from closed�loop data in

the �rst step� The transfer matrix T from the sensitivity��ltered closed�loop data is then

estimated in the second step�

Proof� From �gure 	���� we have

Yt � �I � TQ���Twt � �I � TQ���Nat

� STwt � SNat �	�����
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where S � �I � TQ��� is de�ned as the sensitivity matrix� Filtering both sides of

equation �	����� by the inverse sensitivity matrix S�� � �I�TQ� � �or the return di�erence

matrix �Bitmead et al�� 	

��� gives

Y f
t � S��Yt � Twt �Nat �	�����

This is clearly an open�loop identi�cation problem� We also have

xt � �I �QT ���wt � �I �QT ���QNa�t

� Sxwt � SxQNa�t �	�����

where Sx
�
� �I �QT ���� The sensitivity function S can be written as

S � Q���I �QT ���Q � Q��SxQ �	���
�

where the controller transfer function matrix Q either is known as a priori knowledge or

can be identi�ed from closed�loop data� Clearly� estimation of Sx via equation �	�����

is also an open�loop identi�cation problem� Therefore the two�step identi�cation can be

achieved by 	� estimation of the sensitivity function S via equations �	����� and �	���
��

and �� identi�cation of the transfer function matrix T via equation �	������

���� Simulation

Example �� Consider a second order ARMAX model with the transfer function given by

�	� �����
q�� � �����
q���yt � ������� � ����	�q���ut�� � �	� ���q�� � ��	�q���a�t�

A unity feedback control law is implemented in this simulation� The proposed y��ltering

approach is compared with the direct identi�cation method� The white noise at and the

white�noise dither signal wt are independent with V ar�at� � ���� and V ar�wt� � 	

respectively� The number of data points in the simulation is M � �����

In general� identi�ability under direct closed�loop identi�cation requires that both the

plant and disturbance dynamics lie in the set of plant and disturbance models �Soderstrom
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and Stoica� 	
�
�� However� the w��ltering and y��ltering approaches do not have such

a restriction in the choice of the noise model� The di�culty with the direct identi�cation

method is the choice �or tradeo�� of the plant model and the noise model� i�e� the plant

model and the noise model are strongly coupled� One may choose high order models for

both the plant and the noise� but this may violate the parsimony principle and also increase

the variance error of the estimates as discussed in the previous sections� Therefore� an

incorrect choice of the noise model may yield an erroneous plant model and vice versa�

In this example� we show that a �rst�order model� that is identi�ed using the direct

identi�cation method and passes all residual tests� gets deviates signi�cantly from the

true dynamics� On the other hand� the y��ltering approach transforms the closed�loop

identi�cation to an open�loop identi�cation problem and successfully detects the lack of

�t when the �rst�order plant model is used�

Both the direct identi�cation and y��ltering methods begin with a model of the �rst�

order plant and second�order disturbances� There is clearly a model�order mismatch for

such a choice of plant model� We will see which identi�cation method can detect such a

mismatch� Both methods use the Box�Jenkins model structure� i�e� BJ function in the

System Identi�cation toolbox in Matlab� Residual tests for the models identi�ed from

both methods �nd the correlation between residuals and inputs and thus indicate a lack

of �t or a model�plant mismatch� This indicates that one may either increase the order of

the noise model or increase the order of the plant model for the next trail�

To see the e�ect of the noise model� the noise models are increased to order three�

The residual test for the direct identi�cation is shown in Figure 	���� The upper part of

the �gure shows the autocorrelation of the residuals and clearly indicates �whiteness� of

the residuals� The lower part of the �gure is the cross correlation between residuals and

past inputs� i�e� E#�atut�� $���a�u for � � �� where � is the lag of the cross correlation

function� This cross correlation test clearly indicates su�ciently good �t of the data�

i�e� no regions outside the 

� con�dence intervals� Therefore� the model obtained

from direct identi�cation passes the residual test� but the Bode diagram of the model

shown in Figure 	��� clearly demonstrates lack of �t� On the other hand� the residual

test of the y��ltering identi�cation is shown in Figure 	���� The residuals also pass the
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�whiteness� test� but the cross correlation between the residuals and the inputs shows

�spikes� outside the 

� con�dence intervals and fails the test� Note that since the y�

�ltering approach transforms the closed�loop identi�cation problem into the open�loop

identi�cation problem� the cross correlation test has to be carried out for both positive

and negative legs �including the zero lag�� i�e� the cross correlations between the residuals

and all inputs �both past and future inputs� �Ljung� 	
��" Soderstrom and Stoica� 	
�
��

Now we try to further increase the order of the noise model to a higher order �e�g� �th

order� for the y��ltering method while keeping the �rst�order plant model� The residual

test is shown in Figure 	���� and the model again fails the cross correlation test� This

indicates that one has to increase the plant model order� Consequently� the plant model

is increased to second order� The residual test is shown in Figure 	���� and this model

clearly passes the residual test� Therefore� the y��ltering method is able to �nd the correct

model of the plant despite the error in the choice of the noise model and the Bode plot of

the �nal estimate is shown in Figure 	����

The asymptotic variance of the estimate V ar� �T � using the y��ltering approach is given

in equation �	��	��� This equation is valid when the exact sensitivity function S is used

as the decoupling �lter 	�S� The predicted variance is calculated from this equation and

represented by the dotted lines in Figure 	��
� To test validity of this predicted variance�

�� Monte�Carlo simulation runs are performed for this example� �T is calculated from the

two�step y��ltering approach using the exact sensitivity function as the decoupling �lter�

The variance of the estimate �T from �� runs is calculated and plotted in Figure 	��
 as

the dot�dashed lines� Two cases with di�erent data points for each simulation run are

considered� The result for �	� data points is shown in the left part of the �gure� and the

result for 	��� data points is shown in the right part of the �gure� Note that V ar� �T � is

de�ned by the variance of complex�valued random variables as �Ljung� 	
���

V ar� �T � � E� �T �E �T �� �T �E �T ��

where , means complex conjugate� From these results one can see that a good match

in the low frequency range is obtained in this example� but the mismatch in the high

frequency range is relatively large� If using the estimated sensitivity function �S as the
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Figure 	���� Residual test for the model identi�ed by using direct identi�cation method

��rst�order plant and third�order noise��

decoupling �lter 	� �S� then the predicted variance from equation �	��	�� is not valid and

will give larger mismatch depending on how good estimate of the sensitivity function�

Example �� Consider an example in Schrama������� The plant under consideration

consists of a transfer function� which is a discrete�time model of a laboratory set�up� and

some arti�cial noise contribution� The plant transfer function is given by

T �
	������
�q�� � 	��

q�� � 	���
q�� � ����q�
 � ����q�	�
	� ����q�� � ���
q�� � ����q�� � ����q�
 � ����q�	

In order to state a non�trivial case�study� according to Schrama������� noise contributions

are assumed to additively a�ect the input u and output y� The additive input noise is a

white noise with variance 	�
� The output noise is a white noise that is �ltered by

N �
���	����
 � 		�	�q�� � ����q���

	� ����q�� � ���	q�� � ��
�q��

A control law

Q �
���	 � ����q�� � ����q�� � 	���q�� � ���
q�

	� ����q�� � ��		q�� � 	���q�� � ���
q�
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Figure 	���� Residual test for the model identi�ed by using the y��ltering method

��rst�order plant and third�order noise��
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�second�order plant and second�order noise��



���

predicted variance    

Variance (Monte−Carlo)

10
−1

10
0

10
1

0

0.05

0.1

rad/s

V
ar

ia
nc

e

512 data points

predicted variance    

Variance (Monte−Carlo)

10
−1

10
0

10
1

0

0.02

0.04

rad/s

V
ar

ia
nc

e

1024 data points

Figure 	��
� Variance of the estimate calculated from Monte�Carlo simulation

�second�order plant and second�order noise��

is implemented in the plant� A dither signal with variance � is injected in the process in

order to perform closed�loop identi�cation� To demonstrate the e�ect of under�modeling�

a �th�order plant model �the original plant is �th�order� is used for the identi�cation�

The w��ltering approach and y��ltering approach are applied to the process and the results

presented in the Bode diagrams shown in Figure 	��	�� Since the interest in this example

is the plant model and the output error method is used for parameter estimation� the most

relevant model validation is the cross�correlation test between residuals and inputs �Ljung�

	
���� The cross�correlation tests are performed with results shown in Figure 	��		 and

	��	�� Since both w��ltering and y��ltering transform the closed�loop identi�cation to

open�loop identi�cation� the cross�correlation test should be conducted over the whole

graph �i�e� including both negative and positive legs�� Clearly� the models obtained under

w��ltering and y��ltering both pass the residual test�

Although both models have passed the time�domain test� the qualities of the models

are signi�cantly di�erent in the frequency domain� If we look at the estimated sensitivity
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Figure 	��	�� Comparison between y��ltering and w��ltering approaches�
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function shown in Figure 	��	�� we can see the smaller magnitude of the sensitivity

function in the medium frequency range with the minimum occurring around the frequency

� � ��	�rad�s� This shape of the sensitivity function is expected to a�ect the identi�cation

result� This is con�rmed in Figure 	��	�� The w��ltering approach gives a poor match

in the medium frequency range including the cross�over frequency� particularly around

the frequency � � ��	�rad�s� The y��ltering� on the other hand� matches the true plant

relatively well in the medium frequency range including the cross�over frequency� although

this improvement is at the cost of the high frequency mismatch�
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Example �
 The example used by Van den Hof and Schrama������ is considered in this

Monte Carlo simulation for comparison of di�erent approaches� The discrete plant �casual

but not strictly causal� is represented by transfer functions

T �
	

	� 	��q�� � ���
q��

Q � q�� � ���q��

N �
	� 	���q�� � 	����q�� � ������q��
	� ����q�� � ���
q�� � ������q��

The noise signal a and the dither signal w are independent unit variance zero mean

random signals� The number of data points for each run is chosen as M � ���� in

accordance with Van den Hof and Schrama������ and the simulation was run �� times

with di�erent random seeds� Although this is an unrealistic plant �without any time�delay��

mathematically this is a good simulation example to compare the sensitivity to the model

structure mismatch for di�erent identi�cation schemes�

To compare sensitivity of the w��ltering� y��ltering and the direct PEM closed�loop

identi�cation to model�plant mismatch� one step time�delay is considered in the model�

Without model�plant mismatch� all of these three methods should give consistent estimates

as discussed in the previous sections� A model of the following form is therefore assumed

�T �
�b� � b�q

���q��

	 � a�q�� � aq��

The estimated sensitivity function is shown in Figure 	��	�� The sensitivity at lower

frequency is smaller than at higher frequency� There is a valley with a minimummagnitude

at the frequency of ��	�� This shape of the sensitivity function reduces the accuracy

at lower frequency� and one would expect relatively large estimation errors around the

frequency of ��	�� if the w��ltering approach is used �see Lemma ��� The lower portion of

Figure 	��	� con�rms this� Compared to the w��ltering approach� the y��ltering method

clearly avoids the peak error with a slightly larger mismatch at high frequencies� The direct

closed�loop identi�cation does not work in this example due to the structure mismatch�

The comparison of the three approaches can also be clearly seen from the averaged Nyquist

plot shown in Figure 	��	��
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Figure 	��	�� The upper plot is the sensitivity function� The lower plot is the averaged

Bode magnitude graph of �T over �� runs�
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Figure 	��	�� The averaged Nyquist plot of the estimate over �� runs
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���� Experimental evaluation on a pilot�scale process

In real practical situations� it is di�cult to validate the model� �T � estimated under

closed�loop conditions with the real process� T � since the latter is unknown� For the

purpose of practical evaluation� in the following experimental study� separate identi�cation

tests under open�loop and closed�loop conditions are performed� The model estimated

under closed�loop condition can be considered a suitably adequate and validated model if

it matches the model estimated under carefully designed open�loop conditions�

Example �� The proposed algorithm is evaluated on a pilot�scale process shown in

�gure ������ Each tank is a double�walled glass tank �	 cm high with an inside diameter

of ���� cm� The level of the second tank is the output or controlled variable� The water

�ow to the �rst tank is manipulated in order to control the level of the second tank� A

PID controller �with Ts � 	sec� is implemented on the inner loop ��ow loop�� An IMC

controller �Ts � �sec� is implemented on the outer loop �level loop�� The block diagram

of the real�time Simulink Workshop implementation of the IMC controller is shown in

Figure ������ A second�order model was obtained from open�loop test� This model was

validated by checking it with a separate input�output data set� Closed�loop tests were then

conducted� Using the proposed method and other closed�loop identi�cation methods� several

process models were obtained� These models were compared with the model obtained from

the open�loop test�

Figure 	��	� shows the computer�generated random binary sequence as used in the

open�loop test� The step�type random binary sequence was smoothed by a second order

Butterworth �lter with the cuto� frequency signi�cantly larger than the bandwidth of the

process� The bandwidth of the process was estimated from previous open�loop tests� A

second�order model was estimated by using the prediction error method and found to be

�T �
������q��

	� 	�
�	�q�� � ��
���q��

where the two�step time delay is due to a zero order hold and an additional arti�cially

introduced unit�step time delay� The predicted versus actual data �using a separate
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Figure 	��	�� Schematic of the computer�interfaced pilot�scale process�
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Figure 	��	�� Block diagram for implementation of IMC control using the real�time

Simulink Workshop�
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Figure 	��	�� Excitation signal and response� The physical units are voltage in the plot

where ��V to ��V correspond to �� to 	����

validation or test data with di�erent setpoint excitation inputs� are shown in Figure 	��	
�

Clearly the open�loop model is a good representation of the real process�

Since there is integral action in the IMC control� it is preferable to insert an excitation

signal via the setpoint to avoid a pole on the unit circle in the sensitivity function

decoupling �lter� Figure 	���� shows the excitation signal and the output under the

closed�loop test� The y��ltering� w��ltering and direct closed�loop identi�cation methods

were used to estimate the process model� Second order models are identi�ed and the

resulting Nyquist plots are shown in Figure 	���	� If there is no model�plant mismatch�

all the Nyquist plots should converge to one plot when the sample size increases�

If a �rst order process model is assumed� then a model�plant mismatch is indeed

present� A larger bias error would be expected at lower frequencies if w��ltering or

direct closed�loop identi�cation is used� Nyquist plots of the identi�ed models shown

in Figure 	���� con�rm this� Since this is a over�damped second order plant� the model�

plant mismatch by using a �rst order to represent a second�order over�damped plant is

not severe� The direct identi�cation does not fail in this example� The e�ect of the
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Figure 	����� Excitation signal and response under the closed� loop condition� All

physical units are voltage in the plot where ��V to ��V correspond to

�� to 	���� The time scale is the sampling intervals�



��


from open−loop test
w−filtering        
y−filtering        
direct             

−0.5 0 0.5 1 1.5 2 2.5 3
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
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a second�order model is used�
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Figure 	����� Comparison of the identi�ed process models using di�erent methods when

a �rst�order model is used�
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Figure 	����� E�ect of the shaping �lter for the �rst�order model�

shaping �lter on the identi�cation is illustrated by using a �th order low�pass Butterworth

�lter cascaded to the decoupling �lter� A shown by the results displayed in Figure 	�����

Clear improvement of the estimate at low to middle frequencies is obtained by cascading

the shaping �lter to the decoupling �lter� Depending on the application� di�erent shaping

�lters at di�erent frequencies can be designed for the control algorithm of choice�

���� Conclusions

The accuracy aspects of closed�loop identi�cation have been discussed� It has been

shown that the key di�erence between closed�loop and open�loop identi�cation is the

sensitivity function� The sensitivity function inversely a�ects the variance and bias

errors of the estimate under closed�loop conditions� A two�step closed�loop identi�cation

has been proposed� which yields identical asymptotic properties as under open�loop

identi�cation� The proposed algorithm has been evaluated by simulated examples as

well as by pilot�scale experiments� These results a�rm the strategy� that a suitable

model commensurate with its intended end use can always be identi�ed under closed�

loop conditions through the choice of appropriate data pre�lters�



Chapter ��

Conclusions and

Recommendations

���� Concluding remarks

The main contributions of this thesis are development of the theory and computational

algorithms for control loop performance assessment using multivariate statistical methods�

and experimental evaluation of these techniques on computer�interfaced pilot�scale

processes and actual industrial processes� Speci�c theoretical and computational

contributions include�

	� Extension of the unitary interactor matrix into the weightedgeneralized unitary

interactor matrices�

�� Application of the unitary� weighted unitary and generalized unitary interactor

matrices to solve multivariable minimum variance control problem� the benchmark

for multivariate control loop performance assessment�

�� Proof of the equivalence of the minimum variance control law�Goodwin and

Sin� 	
��� and the singular LQ control law �a special solution in Harris and

MacGregor�	
���� by using the weighted unitary interactor matrix�

��	
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�� Development of an algorithm for estimation of the unitary interactor matrix under

both open�loop and closed�loop conditions�

�� Derivation of the explicit expression for the feedback control invariant portion of

process variance�

�� Development of an e�cient algorithm for performance assessment of multivariable

processes� which is denoted as the FCOR algorithm �for Filtering and CORrelation

analysis��

�� Development of the multivariate feedforward � feedback control loop performance

assessment technique�

�� Development of the technique for feedback control performance assessment of

nonminimum�phase multivariate systems�


� Proposal of a uni�ed approach for performance assessment of both regulatory control

and setpoint tracking for both stochastic and deterministic systems under the H�

framework�

	�� Development of performance assessment schemes with practical considerations such

as a user�de�ned benchmark�

		� Development of a performance assessment scheme which takes control e�ect into

account�

	�� Development of a two�step closed�loop identi�cation scheme� which asymptotically

yields the same variance and bias expressions as open�loop identi�cation�

	�� Evaluation of the proposed algorithms using simulated� pilot�scale processes and

actual industrial processes�

Computer codes for simulations� pilot�scale experiments and industrial applications in this

thesis are written in Matlab and directed to each examples� Some of these codes which

have been programmed in the general format are available upon request�
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���� Recommendations for future work

Control loop performance assessment is a relatively new and active area of research�

The results presented in this thesis address some of the fundamental issues in this theory�

As stated in this thesis� there are many limitations on the achievable control performance�

Higher level assessment generally requires more a priori knowledge of the processes which

is typically unavailable in industry� This in itself poses a stumbling block in the application

of these ideas in industry� The emphasis in new and ongoing research must be to develop

tests� tools and techniques that are plant�friendly and conceptually simple to understand

and apply� Future development in this and related areas should therefore dwell on these

issues and consider the following class of problems�

	� LQG is a good benchmark for performance assessment of DMC controllers� To

obtain such a benchmark� a suitable model should be identi�ed under closed�loop

conditions� Although it cannot be directly applied� the control relevant identi�cation

technique is recommended for such a solution�

�� The con�dence intervals for performance assessment results are desired for on�line

performance monitoring� since the number of data points in such an environment

is often limited and the uncertainty can be severe� This typically requires analysis

based on asymptotic statistical theory and is a challenging theoretical problem�

�� Robustness performance should be taken into account in higher�level control loop

performance assessment� This could require frequency domain analysis of the

sensitivity or complementary sensitivity functions�

�� Hard constraints should also be taken into account in practical control loop

performance assessment� This would require an optimization procedure� The convex

optimization is one possible technique in the resolution of this problem�

�� Control loop performance assessment of a linear plant with a non�linear controller

such as constrained DMC or adaptive controller is worthy of further investigation�

The solution to this problem would have great industrial appeal�
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�� Control loop performance assessment with recommendation for controller tuning�

Ideally� the solution to this problem should be obtained by using routine operating

data only� The recommended tool for such a solution could be spectral analysis of

both input and output data�

�� Multivariate statistical analysis should be further explored in control loop

performance assessment� ANOVA analysis can give insight into the internal

relationship of di�erent control loops� Hypothesis tests can tell whether the

monitored process variables deviate from the target values�

�� Control loop performance assessment is naturally related to process fault detection�

another important research area yet to be explored�


� Control loop performance assessment can be integrated with quality control� loop

maintenance� and fault detection to form a highly integrated expert system�

	�� It is of interest to generalize all Matlab codes in this thesis to form a toolbox for

control loop performance assessment�
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Appendix A

The algorithm for the calculation

of a unitary interactor matrix

The following algorithm is from Rogozinski et al� �Rogozinski et al�� 	
��� and Peng

and Kinnaert �Peng and Kinnaert� 	

���

De�nition � The n � n �rst degree polynomial matrix U�q� will be called a row shift

polynomial matrix �r�s�p�m� of order ki� where

U�q� � U�q � U� �

�
�� � Ir

qIki �

�
��

The matrices U� and U� are de�ned through the matrix of coe
cients

U �

�
�� U�

U�

�
�� �

�
�����
�r

In

�ki

�
����� � n � r � ki

in which U�� U� are of dimension n�n� In is the n�n identity matrix� and �r is a r�row

matrix of zeros�

From RMF �right matrix fraction� description of T �q��� � N�q�R���q�� where

N�q� � N�q
p �N�q

p�� � � � ��Np �A�	�

���



���

a block matrix of coe�cients is formed as

* �

�
�����
N�

���

Np

�
�����

The unitary interactor matrix D�q� can be factored out from equation �A�	� �or the block

matrix of coe�cients� by the following theorem�

Theorem �� �Rogozinski et al�� ����� For a transfer matrix T �q� satisfying

Assumption ��� and �� there exists a unitary interactor matrix consisting of �nite �t�

factors�

D�q� � S�t��q�S�t����q� � � � S����q� �A���

where

S�i��q� � U �i��q�Q�i� �A���

and U �i��q� is a r�s�p�m� of order ki and Q�i� is a non�singular n � n real matrix �an

orthogonal matrix for the factorization of the unitary interactor��

The algorithm is as follows�

Set i � �� N ����q� � N�q�� *��� � *� and D��� � In to start the algorithm� Consider

the ith iteration in the evaluation of D�q�

Step ��

If ri � rank�N
�i���
� � � min�n�m�� the algorithm terminates and the unitary interactor

matrix is D�q� � D�i����q�� set t � i� 	"

If ri � min�n�m�� factorize N
�i���
� by QR factorization into

N
�i���
� � �Q�i����

�
�� �i

N
�i�
�D

�
�� � i�e�� Q�i�N

�i���
� �

�
�� �i

N
�i�
�D

�
�� �A���

where Q�i� is an n�n unitary �orthogonal� real matrix� ki � n� ri and �i is a ki�row zero

matrix�

Step ��



���

Pre�multiplying N �i����q� by matrix Q�i�

!N�q� � Q�i�N �i����q� �A���

#the leading coe�cient of !N�q� is now equal to the right�hand side of �A���$�

Step ��

Pre�multiplying !N�q� by the r�s�p�m� of order ki

N �i��q� � U �i��q� !N �q� �A���

#this multiplication shifts the matrix of coe�cients of !N�q�� *�i�� upwards by ki rows of

zeros� Update the matrix

D�i��q� � S�i��q�D�i����q� �A���

This ends the ith iteration� Combining equations �A��� to �A���� the ith iteration of the

algorithm results in

N �i��q� � U �i��q�Q�i�N �i����q� � S�i��q�N �i����q� � D�i��q�N�q�

where S�i��q� and D�i��q� are de�ned by equations �A��� and �A����

The �nal iteration �t � i� 	� yields

N �t��q� � D�q�N�q� �A���

where D�q� � D�t��q� is the unitary interactor matrix�



Appendix B

Examples of the diagonal�general

interactor matrices

The diagonal interactor matrix is relatively easy to obtain� For processes with

diagonal interactor matrices� the smallest delay in each row is associated with the

diagonal element of the matrix� i�e�� each element� di� of the diagonal interactor matrix�

D � diagfqd� � � � � � qdng� is actually the minimum delay in the ith row of the transfer

function matrix� In other words� the diagonal interactor matrix solely depends on the

minimum delay of each row of the transfer function matrix� Most interactor matrices of

the actual multivariable process are either diagonal or general matrices �Goodwin and Sin�

	
��" Walgama� 	
��" Wolovich and Elliott� 	
���� The non�diagonal interactor matrix

occurs when certain linear dependencies exist among the rows of the transfer function

matrix �as q�� � �� after the minimum delay of each row is factored out� For example�

consider a �� � process

T �

�
��

��	q��

����q��
q�����
����q���

�����q��

����q��

����	q��

�q��

����q��

�
�� �B�	�

The minimum time delay of the �rst row is q��� and the second row q��� After factoring

out these minimum time delays from each row � this is equivalent to pre�multiplying T by

���



���

a diagonal matrix diag�q�� q���� we have the transfer function matrix

�T �

�
��

��	
����q��

q�����
����q���
�����q��

����
����	q��


�
����q��

�
��

Thus

lim
q����

�T �

�
�� ��� �

	��� ���

�
��

which is of full rank� Therefore the interactor matrix is a diagonal matrix� i�e�� D �

diag�q�� q��� However� if the element T��� of the transfer function matrix in equation �B�	�

happens to be q�����������q���
�����q�� � then using the same diagonal factorization yields

lim
q����

�T �

�
�� ��� 	�
	

	��� ���

�
��

which is rank defective� and a non�diagonal interactor matrix is then expected� In real

processes� the exact linear dependency as in this illustration rarely occurs� Another special

case happens when the time delays associated with a particular input are larger than delays

associated with other inputs� For example� if the transfer function of equation �B�	� is

changed to

T �

�
��

��	q��

����q��
���
����q���q��

�����q��

����q��

����	q��

�q�	

����q��

�
��

then the delays associated with second input are larger than the delays associated with

the �rst input� Thus using only the diagonal factorization will yield

lim
q����

�T �

�
�� ��� �

	��� �

�
��

which is rank defective� and a non�diagonal interactor matrix is therefore expected� The

existence of a general �non�diagonal� interactor matrix is generally due to this latter case�

In many multivariable processes under multiloop control� it is implicitly assumed that

the input�output paring is such that the diagonal elements have smaller delays� This leads

to the observations that the occurrence of a diagonal interactor matrix is not rare� More

generally� even if a multivariable process has the minimum�delay pairing structure but

is not paired in such a way in the actual multiloop design� the interactor matrix is still

diagonal�


