EAS 475/587: Sample Final Exam

(All questions equal weight, though some questions may be longer than others.)
Give your answers in S.I. units unless otherwise specified.

1. The lower stratosphere has a constant temperature of $-80^{\circ} \mathrm{C}$ from $z_{1}=10 \mathrm{~km}$ to $z_{2}=$ 12 km height. The pressure changes according to $P=P_{1} e^{-\left(z-z_{1}\right) / H}$ where $P_{1}=250 \mathrm{mbar}$ and $H=5.7 \mathrm{~km}$.
(a) What is the potential temperature (in degrees Kelvin) of air at 12 km height?
(b) If a parcel of this air at 12 km height is brought adiabatically to 10 km , what is its temperature (in ${ }^{\circ} \mathrm{C}$)?
(c) What is the difference in density (in $\mathrm{kg} / \mathrm{m}^{3}$) between that of the air parcel brought adiabatically from 12 km to 10 km and that of the surrounding air at 10 km ? Will the displaced parcel feel an upward or downward buoyancy force?
2. (a) A parcel of ocean water at $20^{\circ} \mathrm{C}$ has 35 ppt salinity. Ignoring the influence of pressure, what is its density (in $\mathrm{kg} / \mathrm{m}^{3}$)?
(b) Where the Columbia River flows into the Pacific ocean, the salinity increases linearly from 0 ppt to 35 ppt from the ocean surface to 50 m depth. Assuming the temperature has a constant value of $20^{\circ} \mathrm{C}$ over this depth and again ignoring the influence of pressure, find the buoyancy frequency (in radians per second) and the corresponding buoyancy period (in seconds).
(c) A fluid parcel at $20^{\circ} \mathrm{C}$ with 35ppt salinity moves adiabatically from the ocean surface to great pressure at 4 km depth. What is its density at that depth (in $\mathrm{kg} / \mathrm{m}^{3}$)?
3. The wind stress acting on the ocean surface is given by $\vec{\tau}=C_{D} \rho_{a}|\vec{u}| \vec{u}$ with ρ_{a} the density of air and $C_{D}=10^{-3}$ the drag coefficient. Eastward winds decrease linearly in speed from $10 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ going from $40^{\circ} \mathrm{N}$ to $60^{\circ} \mathrm{N}$.
(a) Estimate the Ekman velocity, w_{E} (in m / s). Is this upward or downward?
(b) Estimate the average vertically integrated meridional flow \mathcal{V}_{E} (in $\mathrm{m}^{2} / \mathrm{s}$) resulting from Sverdrup balance. Is this flow northward or southward?
4. A 200 km wavelength coastal Kelvin wave in a 4 km deep ocean moves northward past San Diego, which is situated at $33^{\circ} \mathrm{N}$. Its amplitude (maximum vertical surface displacement) at the coast is 10 cm .
(a) What are the maximum zonal and meridional velocities (in m / s) at the coast?
(b) What is the maximum vertical surface displacement (in cm) at a distance 1000 km west of the coast?
5. A storm launches a 60 km wavelength interfacial, northward-propagating Poincaré wave on a 100 m deep thermocline at $45^{\circ} \mathrm{N}$ in the mid-Atlantic. The density across the thermocline, which can be treated as a thin interface, increases from $1028 \mathrm{~kg} / \mathrm{m}^{3}$ above to $1029 \mathrm{~kg} / \mathrm{m}^{3}$ below.
(a) What is the (internal) Rossby deformation radius (in km)?
(b) What is the frequency (in s^{-1}) of the waves?
(c) What are the phase and group velocities (in m / s) of the wave?
(d) What is the meridional transport of zonal momentum due to these waves?

Handy Constants

Thermodynamics

$$
0^{\circ} \mathrm{C}=273 \mathrm{~K}
$$

for air	$R_{a}=287 \mathrm{~J} /(\mathrm{kg} \mathrm{K}), C_{v}=718 \mathrm{~J} /(\mathrm{kg} \mathrm{K}), C_{p}=1005 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$
	$H_{\rho} \simeq R_{a} T_{0} / g \quad$ (for isothermal atmosphere)
for water	$\beta_{T}=2.1 \times 10^{-4} \mathrm{~K}^{-1}, \beta_{S}=7.4 \times 10^{-4} \mathrm{ppt}^{-1}, \beta_{p}=4.1 \times 10^{-10} \mathrm{~Pa}^{-1}$
	$H_{\rho} \simeq 200 \mathrm{~km}, H_{T} \simeq 2000 \mathrm{~km}$

Density of dry air at $20^{\circ} \mathrm{C}$ and standard pressure

$$
\rho_{a}=1.29 \mathrm{~kg} / \mathrm{m}^{3}
$$

Density of fresh water at $20^{\circ} \mathrm{C}$ and standard pressure

$$
\rho_{w}=998 \mathrm{~kg} / \mathrm{m}^{3}
$$

Constants for the Earth
angular frequency
$\Omega_{e}=7.3 \times 10^{-5} \mathrm{~s}^{-1}$
f_{0} at midlatitudes
$f_{0}=10^{-4} \mathrm{~s}^{-1}$
β at equator
$\beta=2 \times 10^{-11}(\mathrm{~ms})^{-1}$
standard pressure
$P_{0}=101 \mathrm{kPa}$
gravity
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Earth's radius
$R_{e}=6.4 \times 10^{6} \mathrm{~m}$
1^{o} latitude is 111 km

