
RESEARCH ARTICLE

Three-dimensional schlieren measurements using inverse
tomography
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Abstract The ‘‘synthetic schlieren’’ method has been

used to measure the amplitude of internal waves that are

two-dimensional and axisymmetric. Here it is adapted to

reconstruct fully three-dimensional perturbations. This

non-intrusive technique, which uses inverse tomography

methods, shows accurate results when a sufficient number

of perspectives taken from the same experiment are pro-

vided to the inversion code. We demonstrate the

effectiveness of the wavefield reconstruction from three

idealized disturbances in the form of a Gaussian function, a

Gaussian multiplied in amplitude by a sine function and a

sinusoidal plane wave with an elliptical envelope. The

consequences of noisy data input are also investigated.

1 Introduction

Disturbances in density-stratified fluids can be observed in

laboratory experiments by taking advantage of the varia-

tions of refractive index they induce. Such visualization

techniques discovered 300 years ago by Hooke (1665)

include interferometry, shadowgraph and schlieren. A

review of these methods is presented in Merzkirch (1974)

and Settles (2001). The common physical principle behind

all these non-intrusive techniques is the variation of the

propagation speed and/or direction of light inferred by the

density perturbations.

Interferometry measures density variations. In this

method, parallel light is split into two beams, one is

undisturbed, the other passes through the disturbed density

field which results in a phase shift of its light rays. When

both beams are merged and projected on a screen, inter-

ferences that occur are visualized as dark and bright

fringes.

The shadowgraph method (Dvorak 1880) is sensitive to

the second derivatives of density. Initially parallel light

rays of a collimated beam are refracted when they

encounter a lateral change in the refractive index gradient.

The image obtained shows a pattern of dark or light regions

corresponding to the focused or defocused rays. This

method has a simple setup for qualitative measurements. It

is especially well suited to the study of shock waves or

turbulence in high-speed flows, but it is less sensitive to

phenomena involving gradual changes in the refractive

index.

Schlieren techniques are sensitive to density gradients

and have often been used to visualize internal waves in

continuously stratified fluids (Mowbray 1967; Stevenson

1969). The classical setup behind this method uses a colli-

mated light beam, focused with a lens or with mirrors. At

the focal point, a knife-edge is placed to block part of the

light source. When passing through a media with density

variations, the beam is distorted and focuses imperfectly.

The image projected onto a screen via another lens shows

brighter and darker regions due to positive and negative

density gradients. Toepler (1864) developed different

practical schlieren arrangements to observe various phe-

nomena in homogeneous media. Since then, numerous

improvements or adjustments were proposed such as the

Moiré-Fringe method (Schardin 1942; Weinberg 1963) or

color Schlieren (Elsinga et al. 2004), which enable quanti-

tative measurements. Classical schlieren and interferometry

however require precise optical systems which, though

sensitive, can be difficult to implement in a laboratory.
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Quantitative measurements of density gradient fields

have recently been obtained using the ‘‘synthetic schlie-

ren’’ method (Dalziel et al. 2000; Sutherland et al. 1999)

and using the ‘‘Background Oriented Schlieren’’ (BOS)

(Meier 2002; Raffel et al. 2000). In these particular tech-

niques, a camera looks through a disturbance at an object–

image typically composed of horizontal lines or random

dots. The image is distorted by the perturbations in the

density gradient field, which differentially bend the light

rays as they travel through the tank. The differences

between the two techniques lie in the algorithm used to

analyze the data and derive the density gradient field, and

in their applications (dynamics of internal gravity waves

and compressible flows respectively). Quantitative valida-

tions of BOS exist for two-dimensional flows (Elsinga

et al. 2004) and in the special three-dimensional axisym-

metric case (Venkatakrishnan and Meier 2004;

Venkatakrishnan 2005), though this tomography technique

could be used in any fully three-dimensional flows.

Synthetic schlieren has been successfully used in flows

with spanwise-uniform disturbances to measure the

amplitude of internal gravity waves generated by a verti-

cally oscillating cylinder in a stratified fluid (Sutherland

et al. 1999, 2000; Sutherland and Linden 2002). In these

experiments the wavefield is essentially two-dimensional

with isopycnal surfaces stretching and compressing uni-

formly along the width of the tank. A single camera aligned

with the cylinder axis is used to detect the apparent

deformation of the object–image and to deduce the corre-

sponding wavefield. For example, the camera can measure

the vertical displacement, Dz, of horizontal lines in the

object–image relative to the initial unperturbed object–

image. From this displacement, the vertical density gradi-

ent perturbation field can be reconstructed.

The initial background density profile �qðzÞ establishes

the initial squared buoyancy frequency:

N2
o ¼ �

g

qo

d�q
dz
; ð1Þ

where g is the acceleration of gravity and qo the charac-

teristic density of water. No represents the natural

frequency of vertical oscillations of displaced fluid. In a

perturbed system, we assume that the squared buoyancy

frequency can be decomposed into a steady state and per-

turbation term, N2 = No
2 + DN2, where DN2 � � g

qo

oq
oz is

the change in the squared buoyancy frequency given in

terms of vertical gradients of the perturbation density field

q.

If the wave is uniform across the tank in the direction of

visualization (say the y-axis), then DN2 is a constant along

that direction. At a particular height z, the vertical dis-

placement of the object–image is then given in terms of

DN2 by (Sutherland et al. 1999)

Dzðx; zÞ ¼ c
nw

na

LsLþ
1

2
L2

� �� �
DN2ðx; zÞ ð2Þ

where c ¼ 1
g

qo

nw

Dn
Dq ’ 1:878� 10�4 s2=cm; na ¼ 1 and

nw = 1.333 are the refractive indices for air and water

respectively. Here we assume a linear relationship between

the change in density of salt water Dq and the refractive

index Dn (Weast 1981). The light ray travels a distance Ls

in the air from the object–image to the tank and a distance

L through the tank itself. The initial perturbation field

DN2(x,z) that generated the observed displacement of the

lines in the object–image is retrieved by inverting Eq. (2),

through simple scalar division of the term in square

brackets. Measurements of frequency and wavenumber can

then be used together with linear theory to estimate such

fields as velocity and vertical displacement.

Instead of using horizontal lines to obtain measurements

of the vertical density gradient, an initial object–image

made of randomly positioned dots gives information about

both horizontal and vertical fluctuations (Dalziel et al.

2000). This method employs a pattern-matching algorithm

and has likewise been successfully tested with oscillating

cylinder experiments.

Quantitative synthetic schlieren has been extended to the

case of three-dimensional axisymmetric disturbances (Onu

et al. 2003) and was used to measure the amplitude of

waves generated by an oscillating sphere in a uniformly

stratified fluid (Flynn et al. 2003). Making use of the

symmetry of this problem, the perturbation field DN2 is a

function of height z and of the radial distance R from the

vertical axis. The vertical displacement of the object–

image is given in terms of DN2 by (Onu et al. 2003)

Dzðx;zÞ¼ c
nw

na

Ls

ZL

0

DN2ðR;zÞdyþ
ZL

0

Zy

0

DN2ðR;zÞdŷdy

8<
:

9=
;;
ð3Þ

in which R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: To retrieve the initial perturbation

field, the right-hand side of Eq. (3) was discretized in polar

coordinates to form a matrix system of equations. An LU-

decomposition scheme was then used to invert the matrix

and the amplitude of the wavefield DN2(R,z), was deter-

mined. Yick et al. (2007) made some recent modifications

of this method to study microscale disturbances for which

horizontal density gradient perturbations are predominant.

A modified synthetic Schlieren technique was developed

by Scase and Dalziel (2006) to measure the ‘‘breadth-

averaged’’ density gradients created by a fully three-

dimensional perturbation. They applied this method to

study internal waves generated by towing a sphere through

a density stratified fluid. Good results compared to theo-

retical prediction were obtained. However this method did

not procure three-dimensional information on the flow.
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If the disturbance is fully three-dimensional, the rela-

tionship between the displacement of the horizontal lines

and the change in density is more complicated. It is gen-

erally not possible to invert it exactly because the system is

ill-posed: there is less information than data points. How-

ever, approximate solutions can be found using inverse

tomography. At each level z, the two-dimensional distur-

bance DN2 can be reconstructed from the Dz profiles

obtained from visualizations at different angles of per-

spective. Among the reconstruction methods that exist,

some uses the Fourier domain such as convolution back-

projection. These are commonly used in X-ray imaging for

example, but are less accurate when few perspectives are

performed. Another approach, which is used in the present

paper, is to reformulate the problem as a set of linear

algebraic equations (Kak and Slaney 1988; Muralidhar

2002).

In Sect. 2, we briefly describe how the wave amplitudes

are computed and determined from the displacement of

initially horizontal lines visualized from different per-

spectives through the experiment. The inverse tomography

program is tested on two idealized displacement fields

generated either from a Gaussian perturbation of the

squared buoyancy frequency field, or from a Gaussian

perturbation multiplied in amplitude by a sine function.

Results are presented and discussed in Sect. 3 and the

effectiveness of the density wavefield reconstruction is

summarized in Sect. 4.

2 Theory

2.1 Synthetic schlieren method

The inverse tomography program described in this paper is

tested on idealized numerical experiments. Eventually,

though not in the present paper, it will be applied to real

laboratory data from experiments using the synthetic

schlieren method. In such experiments, a camera or a series

of cameras will be used to measure the apparent defor-

mation of an object–image made of horizontal lines from

one or many perspectives.

We assume that the distortions occur due to disturbances

in a square tank measuring L by L in the horizontal.

Multiple perspectives can be obtained in two distinct ways:

we can use up to four cameras to observe the same

experiment from the four sides of the square tank or we can

use a single camera looking from one side of the tank and

repeat the experiment several times, turning the orientation

of the experiment within the tank with respect to the line of

sight of the camera. For example, if the perturbations of the

density gradient are generated by towing an object across

the tank, the experiment can be repeated with the object

towed at different angles compared to the fixed direction of

the camera.

The displacement of the horizontal lines seen by the

camera results from the vertical deflection of the light rays

traveling through this tank where fluctuations of the index

of refraction exist. These come from perturbations of the

background density gradient field measured in terms of

DN2, which is generally a function of three-dimensional

space and time.

Here we consider the disturbance at a fixed time and at a

fixed vertical level z. The challenge is to reconstruct

DN2(x,y) given general measurements of Dz(v), in which

v : x for a disturbance field recorded by a camera looking

parallel to the y-axis; v : y for a camera looking parallel to

the x-axis; and generally, v : x sin/ + y cos/ for a

camera looking at an angle / counterclockwise from the x-

axis.

The relation between DN2 and the displacement Dz of

the light ray is found by applying Snell’s law along the ray

path:

DzðvÞ ¼ c
nw

na

Ls

ZL

0

DN2ðv?; vÞdv?

8<
:

þ
ZL

0

Zv?
0

DN2ðbv?; vÞdbv?dv?

9=
;; ð4Þ

where v? ¼ �x cos /þ y sin / is the direction of the ray

(or line of sight of the camera), perpendicular to v. For

example, if the ray is parallel to the y-axis

ð/ ¼ 90�; v � x; v? � yÞ;

DzðxÞ ¼ c
nw

na

Ls

ZL

0

DN2ðx; yÞdyþ
ZL

0

Zy

0

DN2ðx; ŷÞdŷdy

8<
:

9=
;
ð5Þ

If DN2 is constant in the x-direction, the perturbation is

two-dimensional and the special case of Eq. (2) is retrieved

(Sutherland et al. 1999). Similarly the axisymmetric case

corresponds to DN2 depending on the radial distance only.

To reconstruct the initial perturbation field DN2 from

multiple perspectives, equations of the form (4) are com-

bined, discretized and numerically inverted. The DN2 field

can then be used to estimate the amplitude of the waves,

and its evolution in time provides an estimate of the

velocity and density perturbation fields (Sutherland et al.

1999) to get the complete structure of the wavefield.

2.2 Discretization of the problem

A single camera measures a discrete set of values Dz(vi)

during an experiment. These are determined at equally
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spaced intervals corresponding to the midpoint of each

pixel i = 1,..., nv, in which nv is the horizontal resolution of

the camera:

Dz ¼ Dzðv1Þ;Dzðv2Þ; . . .;Dzðvnv
Þ

� �
: ð6Þ

The right hand side of (4) can be discretized by repre-

senting DN2 in Cartesian coordinates DN2 � DN2ðxi; yjÞ
� 	

or polar coordinates DN2 � DN2ðRi; hjÞ
� 	

as illustrated in

Fig. 1.

For simplicity, we consider the case of a camera

pointing parallel to the positive y-direction, for which

v : x and v? � y: The inversion methods used for each

discretization are discussed below.

2.2.1 Cartesian discretization

When using Cartesian coordinates, the tank is divided into

nx 9 ny cells in the x and y directions (Fig. 1a), which gives

a vector of length nx ny for the DN2 field, defined as

DN2 ¼ DN2ðx1; y1Þ;DN2ðx1; y2Þ; . . .;DN2ðx1; yny
Þ;

�
DN2ðx2; y1Þ; . . .;DN2ðx2; yny

Þ; . . .;DN2ðxnx
; yny
Þ
	
:

ð7Þ

In the case of only one perspective, with the camera

pointing parallel to the y-axis, we consider each path of the

nx equally spaced rays xi that traverse through cells of

constant size Dyij. The relationship (5) between the vertical

displacement and the perturbation squared buoyancy field

can be discretized to a matrix equation

Dz ¼ GDN2 ¼ c Ls
nw

na

G1 þG2

� �
DN2: ð8Þ

The matrix G contains informations on the geometric

properties of the system. The matrices G1 and G2 are

defined for the ray xi by a finite series expansion technique

(Censor 1983) as

ZL

0

DN2dy ’
Xny

j¼1

DN2ðxi; yjÞDyij � G1DN2 ð9Þ

and

ZL

0

Zy

0

DN2dŷdy ’
Xny

k¼1

Dyik

Xk

j¼1

DyijDN2 xi; yj

� 	

� G2DN2:

ð10Þ

In this case, the matrix G has dimensions nx 9 nxny.

Likewise, the line of sight of the camera can be oriented

along the x-axis (v : -x) to observe the displacement

Dz(yi). Then G has dimensions ny 9 nx ny. Generally, the

camera can be oriented along a line of sight at any angle /
from the x-axis. Assuming that the horizontal resolution of

the camera does not change, it is convenient to choose

nx = ny: nv. The Dz profiles observed through the dif-

ferent perspectives are generated by the same DN2 field and

the contribution of each perspective are gathered together

to write a single matrix equation (8). Thus, if the number nv

of rays considered in each direction is the same, perform-

ing np perspectives of the same experiment (typically four

perpendicular views) increases the size of the G-matrix to

npnv 9 nv
2. The system is better constrained since more

equations are involved, but the number of unknowns

a)

b)

Fig. 1 Horizontal cross-section showing the grid and notations used

to discretize Eq. (4) in a Cartesian coordinates and b polar

coordinates
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remains equal, and the precision of the result of the

inversion significantly improves as we shall see in Sect. 3.

2.2.2 Polar discretization

The perturbation DN2 field can be discretized using polar

coordinates as shown in Fig. 1b. The domain is divided

into nr equally spaced circles of width DR and nh radial

lines intersecting at the center of the tank, which define nh

sectors of equal area. The DN2 field is then an (nrnh)

component vector

DN2 ¼ DN2ðr1; h1Þ;DN2ðr1; h2Þ; . . .;DN2ðr1; hnhÞ;
�
DN2ðr2; h1Þ; . . .;DN2ðrnr

; hnhÞ
	 ð11Þ

where ri ¼ ðiþ 1
2
ÞDR refers to the average of the inner and

outer radii of the ith ring and hj = 2p(j + 1)/nh refers to

the sectors such that they are never in line with the camera.

No particular assumption is made on the outermost ring.

However in typical laboratory experiments, disturbances at

side walls are insignificant and we can assume DN2 = 0

outside the largest ring.

In polar coordinates, the size Dyij and the number of the

cells traversed by a light ray are no longer constant and

have to be calculated (Fig. 1b). These depend on which

circles and which sectors the light ray passes through and

are determined algorithmically. When the position of the

ray considered is close to the middle of the tank, more cells

are traversed than for a light ray near the tank edges.

Besides this, the matrix G is computed in a similar way as

in Cartesian coordinates, using sectors and circles instead

of x and y positions. Its size is nv 9 nrnh.

Adding other perspectives is simply achieved numeri-

cally by rotating the grid (i.e. the radial lines and sectors)

of an angle corresponding to the direction of the new

perspective, with the camera still pointing in the positive y-

direction. If the angle of rotation is not a multiple of 90�,

the size of the cells changes.

2.3 Inversion methods

During an experiment, discrete values of Dz are measured

and values of the squared buoyancy field DN2 can be

deduced by inverting the matrix G. The discretized version

of the disturbance field reconstruction problem (8) is a

linear algebraic system of equation that can be solved by

various inversion techniques. However, G is a sparse

matrix having on the order of npnv
2 non-zero elements out

of the npnv
3 entries of G in Cartesian coordinates. The

degree of sparsity of G is similar for the polar coordinates

grid. It is singular even when the resolution in the x and y

direction is chosen to be the same as the number of data

points in the displacement profile Dz (equal to the resolu-

tion of the camera).

In our approach, G can be inverted by a pseudo-inverse

technique. It uses a preconditioning parameter to modify

the ill-conditioned system of equations into a solvable

problem (Zhdanov 2002). The eigenvalues of the sym-

metric matrix GTG are shifted by the regularization

parameter l to enable inversion of the well-conditioned

system ðGTGþ lIÞDN2 ¼ GTDz: The inversion uses the

standard LU-decomposition scheme, which entails O(nv
6)

steps.

A better inversion process uses a Bi-Conjugate Gradient

(CG) method (Golub and Van Loan 1996). Results

obtained are similar to the pseudo-inverse technique, with

the advantage that it takes only a fraction of the time to run

computationally. The iterative CG scheme efficiently cal-

culates the solution of large sparse systems, by evaluating

successive approximation of the solution. The residuals

corresponding to the iterates are minimized with a least

square algorithm. This process is much less time consum-

ing for computation since no matrix inverse has to be

calculated. Instead, several matrix multiplication opera-

tions are performed, making the method more efficient for

sparse matrices. These are stored in a compressed row-

index format (which is not feasible for LU-decomposition)

yielding to significant saving in memory usage. For com-

parison, the total computational time to solve the inverse

problem on a SGI machine for nv = 40 is about 20 min

using LU-decomposition but only a few seconds using the

CG scheme. This second method was retained for the

inverse tomography program described here.

To increase the rate of convergence of this method, one

could use a preconditioning parameter. Weighting is also

available to apply to the input data Dz or to the final DN2

field obtained either by multiplying the resultant field with

a Gaussian or multiplying and running the CG scheme a

second time, or by including the weight within the CG

algorithm. The disadvantage of weighting is that it implies

an a-priori knowledge of the shape of the DN2 field. This

program has also the option to add smoothing of the

resulting DN2 field through first, second derivatives or a

Laplacian. None of the above weighting methods are used

in the idealized examples presented here. However, these

options could be useful in practical applications when the

recorded experimental data are noisy (see Sect. 3.4).

3 Results

The three dimensional inverse program was tested using

three different idealized squared buoyancy fields DN2: In

the axisymmetric case, a Gaussian disturbance was centered
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at the middle of a square domain of width and

breadth L = 20 cm: DN2 ¼ A exp � x2 þ y2ð Þ=ð2r2Þ½ �; with

A = 1 s-2 and r = 3 cm. In the fully three-dimensional

case, the disturbance was a Gaussian multiplied by a sine

function: DN2 ¼ A sin kxxþ kyy

 �

exp � x2 þ y2ð Þ=ð2r2Þ½ �;
with kx = ky = 1/3 cm-1. The corresponding displacement

Dz is computed by the forward problem Eq. (8) for any

number of perspectives. The displacement profiles are then

input to the inverse tomography code and the results are

compared with the original DN2 field.

Since experimental data are often noisy, we tested the

ability of the program to reconstruct the same DN2 field from

Dz profiles altered by white noise. A third test case with no

underlying azimuthal symmetry was produced, simulating a

plane wave packet. The disturbance is a sinusoidal plane

wave in the y-direction with an elliptical Gaussian envelope

DN2 ¼ A sin kyy

 �

exp �x2=ð2r2
xÞ


 �
exp �y2=ð2r2

yÞ
h i

; with

A = 1 s-2, ky = 1 cm-1, rx = 4 cm and ry = 3 cm.

3.1 Gaussian disturbance

The Gaussian DN2 field is shown in Fig. 2a. The initial

resolution for the DN2 field is nx 9 ny = 512 9 512. The

corresponding displacement profile Dz obtained by solving

the forward problem is shown in Fig. 2b. This profile

corresponds to the displacement seen by a camera heading

in either the x or y direction due to the symmetry of the

disturbance, with nx = ny = 512 points.

Figure 3 shows results for the DN2 field obtained from

the Dz profile shown in Fig. 2b by the inverse tomography

program using Cartesian coordinates. In Fig. 3a, only one

perspective is taken and the line of sight of the camera is

aligned with the y-axis, pointing in the positive direction

(as represented). The inverse tomography process con-

verges to a solution where most of the perturbation arises in

the vicinity of the wall closer to the camera, with little

variations along the y-axis. Having only one camera using

Cartesian discretization of the domain is not sufficient to

reconstruct the correct initial perturbation field DN2:

In Fig. 3b an additional perspective is obtained using a

camera oriented along the positive x-axis. The maximum

perturbation is now located at the center of the domain with

an amplitude approaching the initial Gaussian DN2 field.

Increasing the number of perspectives (Fig. 3b–d) clearly

improves the accuracy of the reconstructed DN2 field.

However, the cross-pattern that emerges persists even with

three and four perspectives (Fig. 3c, d respectively) and the

amplitude of the center part of the disturbance is under-

estimated (Amax = 0.6 A).

A much better result is found by performing the inver-

sion in polar rather than Cartesian coordinates. More

accurate DN2 profiles can be reconstructed even at low

resolution.

Results obtained using 4 perspectives, 40 rings and no

sectors are presented in Fig. 4a. The cross-pattern does not

appear and contour levels show very good agreement with

the initial DN2 field of Fig. 2a. The maximum amplitude

difference between the resulting DN2 field and the original

Gaussian field do not exceed 5%. Since this maximum

amplitude difference can be locally high for a given pixel,

we chose to present accuracy of the results using the

standard error rE defined as

rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

DN2
meas: � DN2

orig:

� �2

s
; ð12Þ

where n is the number of cells in the domain. In this case

with no sectors, the standard error rE is less than 1.3%.

This inversion program with no sectors can thus be used to

a)

b)

Fig. 2 a Initial Gaussian shape for the DN2 perturbation field. Gray-

scale contours in (s-2). b Corresponding displacement field Dz
obtained by the forward solution, as seen by a camera with its line of

sight in both the x and y directions. By symmetry these two

perspectives give the same Dz observations
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determine the structure and evolution of axisymmetric fluid

dynamics problems using the synthetic schlieren technique

(Onu et al. 2003).

Adding 17 sectors (Fig. 4b) reduces even further the

differences. However, when the number of sectors is fur-

ther increased, the Gaussian shape is maintained but local

discrepancies occur and the accuracy of the results is lost

(rE = 4.8% for 33 sectors for example). In this case, the

resolution and thus the number of values for DN2 to be

calculated increases, the system of equations to be solved is

close to becoming under-constrained and the inverse

method has more difficulty converging towards the

solution.

For good inversion at low resolution, the number of

sectors should not be proportional to the number of per-

spectives (e.g. using 16 sectors with 4 perspectives). In that

case, the symmetry in the discretization leads to a matrix G

having redundant rows due to repeated structure with each

perspective and so provides no additional information.

Since the results obtained are more accurate in polar

coordinates than using Cartesian coordinates, and since

adding multiple perspectives is more easily achieved, we

will use the polar discretization thereafter.

3.2 Sine Gaussian disturbance

Here we examine a Gaussian disturbance multiplied in

amplitude by a sinusoid. This is shown in Fig. 5a, with a

resolution of nx 9 ny = 512 9 512. Solving the forward

problem gives the corresponding displacement Dz that one

would observe using synthetic schlieren (Fig. 5b). The

distortions of the horizontal lines and thus the Dz profiles

are not the same when the object–image is observed from

a) b)

c) d)

Fig. 3 DN2 field obtained from the inverse tomography in Cartesian

coordinates for the initial Gaussian hump displacement field Dz
(nv = 512) shown in Fig. 2, using a a single perspective with the

camera aligned with the y-axis, pointing in the positive direction (as

sketched), b two perspectives by adding a camera along the positive

x-axis (as sketched), c three perspectives with an additional view

along the negative y-axis and d four perspectives with an additional

view along the negative x-axis
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different perspectives since the symmetry is broken in this

problem. The Dz profiles observed with a camera posi-

tioned along the positive y-axis (black line, DzðxÞ) and

along the positive x-axis (dashed line, DzðL� yÞ) are given

in Fig. 5b. These profiles are of opposite sign since the

wavenumbers of the sine function in the x and y direction

are equal in our example (kx = ky). Thus the dashed line in

Fig. 5b is also the Dz profile that one would observe from

the negative y-direction, and the black line the displace-

ment observed from the negative x-direction. Perspectives

made at other angles generate different Dz profiles. Using

these profiles as input for the inverse tomography program

in polar coordinates give the DN2 fields presented in Fig. 6

for nr = 40 circles and nv = 512.

We are able to retrieve the initial perturbation field with

very good accuracy. Figure 6a, b show that increasing the

number of sectors improve the precision of the results. For

17 sectors, the standard error rE between the resulting DN2

field and Fig. 5a is less than 4.4%. This error reduces to

3.0% when 33 sectors are used.

However, one limitation of the inversion procedure

arises when the number of sectors increases further (45

sectors in Fig. 6c). Spurious effects appear and the DN2

field looses accuracy. In the example of Fig. 6c, rE

increases to 6.6%. When the resolution of the reconstructed

disturbance is too high for fixed input Dz; the method used

for the inverse tomography fails to converge to the correct

solution. In general, the accuracy goes from better to worse

when nrnh [ 0.87 npnv.

Nevertheless, results can be further improved by having

multiple perspectives with no significant calculation cost.

When 6 perspectives and 33 sectors are used (Fig. 6d), the

difference with the initial DN2 field is negligible (rE \
2.5%). Adding more perspectives also enhances the reso-

lution of the reconstructed field: when np nv increases, a

a) b)Fig. 4 DN2 field obtained after

inversion of the ‘‘Gaussian

hump’’ Dz profile in polar

coordinates, using nv = 512

points, 40 circles, 4 perspectives

and a no sector, or b 17 sectors

a)

b)

Fig. 5 a Initial DN2 field is a Gaussian hump modulated by a sine

function (nv = 512). b Corresponding Dz obtained by the forward

solution for a perspective along the positive y-direction (line) and

along the positive x-direction (dashed line)
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larger number of sectors can be considered before spurious

effects occur.

3.3 Plane wave packet

A third test case was examined to validate the use of polar

discretization in an experimental situation with no under-

lying azimuthal symmetry. The disturbance generated by a

plane wave packet is shown in Fig. 7a with a resolution of

nx 9 ny = 512 9 512 in Cartesian coordinates and the

corresponding displacement, Dz; observed from a per-

spective viewed along the y (line) and x (dashed line)

directions are plotted on Fig. 7d.

This initial DN2 field is discretized in a polar coordi-

nates system using 17 sectors and 40 circles (Fig. 7b). The

standard error re resulting from this coarse resolution is

10%. The corresponding Dz profile derived by solving the

forward problem shown in Fig. 7e is similar to that

determined from the Cartesian coordinate system (Fig. 7d),

with the differences again attributed to the coarse resolu-

tion used in the former case. Profiles of Dz determined

from four perspectives taken from the polar representation

of DN2 were used as input for the inverse tomography

program in polar coordinates. The reconstructed DN2 field,

shown in Fig. 7c, is well reproduced with a standard error

re \ 1% determined by comparing Figs. 7b and c, though

the comparison may not appear qualitatively as good due to

the gray scale chosen to represent the fields.

This example demonstrates the effectiveness of recon-

structing a non-axisymmetric field under coarse resolution.

A better representation of the original analytic waveform

would be possible if a higher resolution polar grid was

used. But in general, this requires either a camera with a

higher spatial resolution (larger nv) or more perspectives

(as explained in Sect. 3.2). The latter aproach may be time

consuming depending on the experimental setup, but

involves little additional computational time in processing

a) b)

c) d)

Fig. 6 DN2 fields obtained by inversion in polar coordinates of Dz corresponding to the initial sine modulated Gaussian disturbance shown in

Fig. 5a, using 40 circles and a 4 perspectives, 17 sectors, b 4 perspectives, 33 sectors, c 4 perspectives, 45 sectors, or d 6 perspectives, 33 sectors
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data (see Sect. 2.3) and would fully depict the complexity

of a three-dimensional perturbation field. But even in the

scenario of a very coarse resolution illustrated in Fig. 7, we

still capture the main quantitative aspects of the perturba-

tion field.

3.4 Noisy data

In this last case, we test the sensitivity of the method when

noisy data are entered. We introduce 10% of random noise

in the Dz profiles corresponding to the previous sine

Gaussian disturbance (Fig. 5). The result of the inverse

tomography program used in polar coordinates with 4

perspectives, nr = 40 circles and nh = 17 sectors is shown

on Fig. 8a. The standard error between this DN2 field and

the original is rE = 25%, which is large compared to the

rE = 4.4% obtained with the equivalent reconstructed DN2

field using idealized Dz profiles as presented on Fig. 6a

with the same discretization (see Sect. 3.2).

However, the program offers the possibility to add

smoothing to the resulting DN2 field. When a basic second

derivative filter with a trade off parameter of 1% is used

(Fig. 8b) the standard error decreases to rE = 8.3%, which

is a reasonably good agreement with the expected result.

The accuracy of the reconstructed field can be further

improved by increasing the number of perspectives.

Though at the time of writing, real experimental results are

not available, this tomography method is reliable, even

with noisy data input.

4 Discussion and conclusions

We have adapted the synthetic schlieren technique to

measure the amplitude of waves arising from fully three-

dimensional perturbations. This requires multiple per-

spectives of the wavefield and implementation of an

inverse tomography method. A Bi-Conjugate Gradient

method is used as a computationally efficient method to

invert the vertical displacement profiles of a simple object–

image into the corresponding squared buoyancy DN2 per-

turbation field.

Applied to three idealized circumstances, accurate

results were obtained using polar rather than Cartesian

coordinates. Generally, the resolution nr nh desired for the

DN2 field should not be larger than the number of data

points npnv in the system Dz ¼ GDN2 so that it is not

under-constrained. The most accurate results from the

inverse tomography are obtained when nrnh \ 0.87 npnv.

Increasing the number of perspectives improves the pre-

cision of the reconstructed wavefield. Spurious effects also

arise when the number of sectors is proportional to the

number of perspectives. Some regularization parameter for

smoothing of the reconstructed field is required to obtain a

reliable solution in the presence of noise in the input data,

and the tomography method remains equally efficient.

In practice, the Dz profiles are measured at a number of

vertical heights zs, given by the vertical resolution of the

camera. Repeating the inverse tomography process itera-

tively for these heights allows a complete three-dimensional

reconstruction of the initial perturbation field DN2:

a) b) c)

e)d)

Fig. 7 Initial plane wave with an elliptical Gaussian envelope for the

DN2 perturbation field a in Cartesian coordinates with a resolution of

nx 9 ny = 512 9 512, b discretized in polar coordinates with 17

sectors and 40 circles. Corresponding Dz profiles obtained by the

forward solution for a perspective along the positive y-direction (line)

and along the positive x-direction (dashed-line) for d the Cartesian

discretization (as in a) and for e the polar discretization (as in b). c
DN2 field obtained by inversion of Dz in polar coordinates shown in e,

using 4 perspectives, 17 sectors and 40 circles
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Two types of experiments are now feasible, either using

simultaneous perspectives at right angles with two cameras

recording the experiment, or having a single camera

recording the experiment repeated several times at different

angles with respect to the camera to simulate the different

perspectives. These involve simple axis rotations in the

polar coordinate system, but involve performing the same

laboratory experiment several times.

This advance in the synthetic schlieren technique will

provide a powerful new tool for analyzing disturbances in

stratified fluids and, in particular, for examining the

amplitude of internal waves generated by complex topog-

raphy, towed objects, plumes and turbulent wakes.

Laboratory experiments will help to determine more

accurately the role of internal waves in energy transport.

This study is limited to Dz determined from images of

horizontal lines. Using a dot pattern to obtain information

on both horizontal and vertical fluctuations is more difficult

to compute and will be the next enhancement of the syn-

thetic schlieren method.
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Dvorak V (1880) Über eine neue einfache Art der Schlierenbeobach-

tung. Ann Phys Chem 9:502–512

Elsinga GE, Van Oudheusen BW, Scarano F, Watt D (2004)

Assessment and application of quantitative schlieren methods:

calibrated color schlieren and background oriented schlieren.

Exp Fluids 36:309–325

Flynn MR, Onu K, Sutherland BR (2003) Internal wave generation by

a vertically oscillating sphere. J Fluid Mech 494:65–93

Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The

Johns Hopkins University Press, London

Hooke R (1665) Micrographia. J. Martyn and J. Allestry, London

Kak AC, Slaney M (1988) Principles of computerized tomographic

imaging. Institute of Electrical and Electronics Engineers, New

York

Meier GEA (2002) Computerized background-oriented schlieren. Exp

Fluids 33:181–187

Merzkirch W (1974) Flow visualization. Academic, London

Mowbray DE (1967) The use of schlieren and shadowgraph

techniques in the study of flow patterns in density stratified

liquids. J Fluid Mech 27:595–608

Muralidhar K (2002) Temperature field measurement in buoyancy

driven flows using interferometric tomography. Ann Rev Heat

12:265–375

Onu K, Flynn MR, Sutherland BR (2003) Schlieren measurement of

axisymmetric internal wave amplitudes. Exp Fluids 35:24–31

Raffel M, Richard H, Meier GEA (2000) On the applicability of

background oriented optical tomography for large scale aerody-

namic investigation. Exp Fluids 28:477–481

Scase MM, Dalziel SB (2006) Internal wave fields generated by a

translating body in a stratified fluid:an experimental comparison.

J Fluid Mech 564:305–331

Schardin H (1942) Die schlierenverfahren und ihre anwendungen.

Ergebnisse der Exakten Naturwissenschaften 20:303–439

Settles GS (2001) Schlieren and shadowgraph techniques: visualizing

phenomena in transparent media. Springer, Berlin

Stevenson TN (1969) Axisymmetric internal waves generated by a

travelling oscillating body. J Fluid Mech 35:219–224

Sutherland BR, Linden PF (2002) Internal wave excitation by a

vertically oscillating elliptical cylinder. Phys Fluids 14:721–731

Sutherland BR, Dalziel SB, Hughes GO, Linden PF (1999) Visual-

isation and measurement of internal waves by ‘‘synthetic

schlieren’’. Part 1: vertically oscillating cylinder. J Fluid Mech

390:93–126

a) b)

Fig. 8 DN2 field obtained after inversion of the ‘‘sine Gaussian hump’’ Dz profile in polar coordinates in which 10% of white noise has been

added, using nv = 512 points, 17 sectors, 40 circles, 4 perspectives, a without smoothing, b with a second derivative smoothing

Exp Fluids

123



Sutherland BR, Hughes GO, Dalziel SB, Linden PF (2000) Internal

waves revisited. Dyn Atmos Oceans 31:209–232

Toepler A (1864) Beobachtungen nach einer neuen optischen

methode. Max Cohen u. Sohn, Bonn

Venkatakrishnan L (2005) Density measurements in an axisymmetric

underexpanded jet by background-oriented schlieren technique.

AIAA J 43(7):1574–1579

Venkatakrishnan L, Meier GEA (2004) Density measurements using

the background oriented schlieren technique. Exp Fluids 37:237–

247

Weast RC (1981) Handbook of Chemistry and Physics, 62nd edn.

CRC, Boca Raton

Weinberg FJ (1963) Optics of flames: including methods for the study

of refractive index fields in combustion and aerodynamics.

Butterworths

Yick KY, Stocker R, Peacock T (2007) Microscale synthetic

schlieren. Exp Fluids 42:41–48

Zhdanov M (2002) Geophysical inverse theory and regularization

problems. Elsevier, Amsterdam

Exp Fluids

123


	Three-dimensional schlieren measurements using inverse tomography
	Abstract
	Introduction
	Theory
	Synthetic schlieren method
	Discretization of the problem
	Cartesian discretization
	Polar discretization

	Inversion methods

	Results
	Gaussian disturbance
	Sine Gaussian disturbance
	Plane wave packet
	Noisy data

	Discussion and conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


