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A B S T R A C T

Atmospheric cyclones with strong winds significantly impact ocean circulation, regional sea
surface temperature, and deep water formation across the global oceans. Thus they are expected
to play a key role in a variety of energy transport mechanisms. Even though wind-generated
internal gravity waves are thought to contribute significantly to the energy balance of the deep
ocean, their excitation mechanisms are only partly understood.

The present study investigates the generation of internal gravity waves during a geostrophic
adjustment process in a Boussinesq model with axisymmetric geometry. The atmospheric dis-
turbance is set by an idealized pulse of cyclonic wind stress with a Rankine vortex structure.
Strength, radius and duration of the forcing are varied. The effect upon wave generation of
stratification with variable mixed-layer depth is also examined.

Results indicate that internal gravity waves are generated after approximately one inertial
period. The outward radial energy flux is dominated by waves having structure close to vertical
mode-1 and with frequency close to the inertial frequency. Less energetic higher mode waves are
observed to be generated close to the sea floor underneath the storm. The total radiated energy
corresponds to approximately 0.02% of the wind input. Deeper mixed-layer conditions as well as
weaker stratification reduce this fraction.

The low energy transfer rates suggest that other processes that drive vertical motion like
surface heat fluxes, turbulent motion, mixed region collapse and storm translation are essential
for significant energy extraction by internal gravity waves to occur.

1. Introduction

Storms play a major role in the global distribution of the wind work to the ocean (e.g. Price, 1983; Gill, 1984; Alford, 2001;
Furuichi et al., 2008; Dippe et al., 2015) with the largest fraction of the transferred energy to the ocean leading to mixing and stirring
of the surface boundary layer (Wunsch and Ferrari, 2004; Ferrari and Wunsch, 2009). A smaller part leads to the generation of near-
inertial internal gravity waves that transfer this energy into the ocean interior (Leaman and Sanford, 1975; Leaman, 1976; Alford
et al., 2012; Rimac et al., 2016). The generated waves eventually dissipate and thus potentially cause mixing at depth (Fu, 1981;
Nagasawa et al., 2000; Alford and Whitmont, 2007; Danioux et al., 2008). Here we perform idealized simulations in order to gain
insight into the mechanisms by which wind stress excites near-inertial gravity waves. Aiming at the characterization of the generation
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of internal gravity waves by the cyclonic wind structure we consider an axisymmetric wind stress and keep its translation equal to
zero. By treating the wind stress disturbance stationary we isolate the effects of the rotational structure and the consequent gen-
eration of internal gravity waves independent of the advection by a vertically constant background flow equivalent to the translation
of the cyclone. Simulations are performed that solve the fully non-linear, Boussinesq Navier–Stokes equations in an axisymmetric
geometry. The action of the storm above the ocean is considered in a parameterization of the vertical momentum flux through the
surface. Assuming the ocean is initially at rest, this setup is closely related to the axisymmetric spin up of a stratified fluid during early
stages of the flow evolution (Duck and Foster, 2001; Moulin and Flór, 2004). At later times, the ocean evolution can be considered as
a geostrophic adjustment process towards an equilibrated vortex. A theoretical analysis of the geostrophic adjustment process related
to an axisymmetric vortex in the atmosphere was performed by Schubert et al. (1980). Simulations similar to the present approach
but considering moving storms in a Cartesian geometry have been performed by Price (1983), Niwa and Hibiya (1997). Price (1983)
focused on the description of the wake and the energetics of the flow which were compared to moored records. The wave–wave
interaction in the wake was analyzed in detail by Niwa and Hibiya (1997). Bulatov and Vladimirov (2018) performed a more
idealized study amenable to asymptotic analysis of internal waves generated by a translating point source.

Here we consider an ocean initially at rest and examine the spin up and the geostrophic adjustment due to a Rankine vortex type
wind causing a bulk wind stress on the ocean surface. Rather than studying the energetics and structure of the wake of a moving
storm (Price, 1983; Niwa and Hibiya, 1997), we focus on the excitation mechanisms of axisymmetric gravity waves of a non-
translating disturbance. The detailed flow structure during and after a transient forcing as well as the energetics of the system are
analyzed. Moreover, the linear and non-linear processes during the geostrophic adjustment are identified.

In Section 2 we introduce the model and its key parameters, derive analytic predictions for the model evolution and formulate an
energy balance equation. The model results are presented in Section 3. The structure of the flow, the geostrophic adjustment of the
ocean, the spectral structure of the radiated internal gravity waves and the energy balances are analyzed as the strength, radius, and
duration of the forcing are varied. Additionally, we analyze how the energetics depend on the mixed-layer depth. Our results are
summarized in Section 4.

2. Model description

2.1. Mathematical formulation

A non-linear, axisymmetric and Boussinesq model is used to simulate the ocean response to an axisymmetric wind stress acting on
the surface (Fig. 1). The code is adapted from that used by McMillan and Sutherland (2010) and Holdsworth and Sutherland (2013).
In particular, the axisymmetric Navier–Stokes equations are numerically solved for the perturbation density ρ, azimuthal vorticity
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Fig. 1. Schematic of the model setup. A cyclone with a Rankine vortex structure prescribes the surface boundary conditions (upper panel). The
stratification from Gill (1984) is used (left panel). The wind work ϕwind and the radiated energy flux ϕIW are estimated. Rr and Rc represent the radius
of maximum wind forcing and the integration radius for the energy diagnostics, respectively. Their values, Rr = 50 km, and, Rc=550 km, corre-
spond to the values used in the control run. Here a mixed-layer depth, Hm=500m, is used for visualization.
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in which u and w are the radial and vertical velocity, respectively, f is the constant Coriolis frequency, and g is the gravitational
constant. The background and reference densities are denoted by ρ z¯ ( ) and ρ0. Dn(α, X) is the dissipation operator with dissipation
constant α=(αr, αz) acting upon a field X. Explicitly,
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where n refers to the order of the Bessel function associated with the operator. The rate of diffusion of the azimuthal vorticity and
velocity depend on the turbulent viscosity ν=(νr, νz). Here we take νr=10m2/s and νz=0.03m2/s. The kinematic viscosities are
tuned so that the vortex formation and internal gravity wave radiation can be observed in reasonable computer simulation time while
keeping the dissipation of the radiated internal gravity waves negligibly small. νz is many orders of magnitude larger than abyssal
values but is taken to be representative of turbulent viscosity in the ocean below a storm. The turbulent diffusivity κ=(κr, κz)
determines the effective diffusion of heat and salt through changes to the density perturbation. Given that the flow is turbulent, we
assume ν= κ. Corresponding to the horizontal and vertical scales Lh and Lz respectively are the diffusion time scales Th= Lh2/νh and
Tz= Lz2/νz. For example, taking Lz=50m for the mixed-layer depth and taking Lh= Rr = 50 km for the radial scale of the forcing,
the characteristic damping time scales are Th=7.93 years and Tz=0.96 days. Here, Rr represents the radius of maximum forcing and
thus the expected radial scales of the induced flow (cf. Fig. 1). The horizontal time scale being several orders of magnitude larger than
the vertical time scale shows that vertical diffusion is dominant in this setup.

The stream function ψ(r, z) is defined implicitly from the velocity field such that
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It is determined by inverting the vorticity equation
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with Δ= r−1∂/∂r(r∂/∂r)+ ∂2/∂z2 being the scalar Laplacian operator in axisymmetric cylindrical coordinates.
The consideration of the azimuthal vorticity leads to a set of equations independent of the pressure p. Pressure itself is found from

the diagnostic equation derived from the divergence of the radial and vertical velocity components of the momentum equations as
well as the condition for incompressibility:
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The governing equations are discretized and solved on a staggered grid with a second-order finite-difference scheme. While the
vertical coordinate spans the interval −H=−3000m≤ z≤ 0 with a resolution of δz=23.44m, the radius is confined to the
domain 0≤ r≤ R=1000 km using a resolution of δr=976.56m. The prognostic equations are advanced with a leap-frog time-
stepping scheme in which time-splitting errors are minimized by performing an Euler backstep at regular intervals (McMillan and
Sutherland, 2010). The time step is equal to δt=18 s.

Explicitly, Eqs. (6) and (7) are solved using a discrete Fourier sine transform in the vertical and a discrete Bessel transform in the
radial direction. Given a function of radius f(r) the Bessel transform is
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Here, Jn denotes the Bessel function of the first kind of order n, rm=mδr and kj= αj/R where αj is the jth zero of the Bessel function of
order n. Hence Jn(Rkj)= 0. The transform is computed for f between 1 and nz. Inverting the vorticity equation (Eq. (6)) requires
setting n=1 whereas the pressure equation (Eq. (7)) is solved by setting n=0. Differentiation of the stream function ψ yields the
vertical and radial velocity according to Eq. (5). A fourth-order exponential wave number cutoff filter suppresses ringing in the
transforms, as described in Appendix A.

2.2. Boundary conditions and background state

On the inner radial and bottom boundaries free-slip, no normal-flow conditions are imposed. Explicitly, this is done by setting
ψ=0 on the corresponding boundaries. A 10-point flow relaxation scheme at the outer radial boundary inhibits the reflection of
internal waves back into the domain (Jensen, 1998). The radial wind stress τr and azimuthal wind stress τθ are coupled to the ocean
surface velocities by the relation
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The wind stress is computed from the wind at 10m height with the bulk formulation
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in which ρa is the density of air and the constant drag coefficient, C10, is fixed at a value 10−3. The stress then scales with the square
of the velocity difference between the wind at 10m height u v( , )10 10 and the surface velocity of the model ocean =u v( , )|z 0. For
simplicity the radial wind component is zero at all times (u10≡ 0). Combined with the vertically discretized representation of Eq. (9),
this yields a coupled system of equations for =u v( , )|z 0. It is solved analytically to obtain the wind stress and the surface velocity while
maintaining a rigid-lid condition at the surface: ==w| 0z 0 . The surface boundary condition for the azimuthal vorticity is therefore
given by ζ|z=0= τr(νzρ0)−1.

An idealized storm is simulated by imposing a time-dependent radial profile of azimuthal wind above the surface. For simplicity, a
Rankine vortex is chosen so that the wind has a constant vertical vorticity within a radius Rr and zero vorticity beyond (Fig. 1). In
particular, the wind magnitude increases linearly from zero at the origin to its maximum at Rr and beyond decreases with an inverse
radial dependence. For a storm of duration ΔTs the time evolution of the azimuthal wind, v10, is set by linearly increasing its
magnitude from zero to its maximum for quarter the storm duration, ΔTs/4, keeping it constant for ΔTs/2 and linearly decreasing its
magnitude to zero for ΔTs/4. In the control run, the storm duration is set to ΔTs = 48 h, the radius to Rr = 50 km and the wind
velocity to =v 3010 m s−1. Note that at zero wind conditions following the model storm there is a slight drag slowing down the
surface currents. However, because the surface currents remain slow the effect is negligible and the wind stress is approximately zero.
For comparison, a wind pulse with double the duration of ΔTs is examined. The influence of the vortex radius, Rr, and the maximum
value of the azimuthal wind, v10, are also examined by doubling their value.

The background density profile ρ z¯ ( ) is defined so that the buoyancy frequency, N, corresponds to the form used by Gill (1984):
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with s=N0(z0− zref). Here, Hm is the mixed-layer depth, which is set to 50m in most simulations. Thus the buoyancy frequency is
equal to N0 at the reference height zref =−Hm=−50m. We set the scaling height z0= 150m and the depth of the domain to be
H=3000m. Results are computed as they depend upon Hm as well as the maximum wind speed, v10, the vortex radius, Rr, and the
storm duration, ΔTs. All model-related constants and reference parameters are summarized in Table 1.

2.3. A geostrophic adjustment process

In order to characterize the adjustment to a geostrophically balanced flow, we consider the linearized frictionless form of the

Table 1
Model setup related parameters. The radial wind profile has a Rankine vortex shape with critical radius Rr, where the
wind is strongest. Wind speeds refer to the wind at 10m height. The reference values for varying parameters are given
in parenthesis.

Parameter Value Comment

Parameters fixed in all simulations
ρ0 1027 kgm−3 Reference density of sea water
ρa 1.2 kg m−3 Density of air
f 10−4 rad s−1 Coriolis frequency
N0 10−2 rad s−1 Reference buoyancy frequency
νr 10m2 s−1 Radial kinematic viscosity
νz 0.03m2 s−1 Vertical kinematic viscosity
Pr 1 Prandtl number
C10 10−3 Drag coefficient
rmax 1000 km Maximum radius
nr 1024 Number of radial grid points
δr 976.56m Radial resolution
H 3000m Depth of domain
nz 128 Number of vertical grid points
δz 23.44m Vertical resolution
tend 40 days Duration of simulations
δt 18 s Time step
nt 20 # of Time steps between Euler backsteps
Rc 550 km Integration radius for energy diagnostics

Parameters varied in different simulations
Rr 50–100 (50) km Critical radius of Rankine vortex

=v r R( )10 r 30–60 (30) m s−1 Maximum wind velocity
Hm 25–1000 (50) m Mixed-layer depth
ΔTs 48–96 (48) h Storm duration
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governing equations for small perturbations from the initially stationary basic state:
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in which primes denote perturbed quantities. In this set of equations we neglect the horizontal diffusion terms as the vertical
momentum diffusion is dominant in this setup. After some algebra and assuming N2(z)≠ 0 the coupled linear equations are com-
bined into a single equation:
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Note that the first term on the left-hand side is the vertical component of the vorticity; the second term represents the spin-up by
vortex stretching. Thus, in the absence of friction, Eq. (18) is a local potential vorticity conservation law. The final state at t=∞ is
characterized by = =∞ ∞u w 0 and
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in which the subscript ∞ denotes the stationary state as time approaches infinity. We differentiate (Eq. (18)) in radius and integrate
in depth and time to get
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Here, 〈 〉∞v denotes the depth-averaged terminal azimuthal velocity, H is the depth of the domain and = ∂ ′ ∂ ==F r t ν v z τ ρ( , ) / | /z z θ0 0 is
the wind forcing on the surface. Note that we have used the free-slip condition on the bottom on the right-hand side and Eq. (19) to
reformulate the second term on the left-hand side. The initial state was assumed to be stationary. Due to a forcing in which there is
negligible stress on the surface after a finite time and a free-slip condition at the bottom of the domain, we can assume zero friction at
those boundaries, as t→∞. Consequently the second term on the left-hand side vanishes. The resulting equation is integrated in r to
obtain
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The condition on the integration constant with respect to z, c(r), is set so that ∂/∂r[r−1∂/∂r(r c)] vanishes. This is true for any linear
combination of functions proportional to r−1 and r. Requiring a bounded solution for zero and infinite radius leads to the conclusion
that c(r)≡ 0. Given a wind stress pulse resulting from the sudden manifestation of a Rankine vortex in the atmosphere and assuming
the wind is much faster than the ocean surface velocity we have from Eq. (21)
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The above relation predicts the depth-averaged terminal azimuthal velocity with linear theory and horizontal internal stresses only.
This analysis reveals some fundamental properties of the flow. Most importantly, with a rigid-lid approximation in place, the hor-
izontal Reynolds stress, τ, is the only mechanism that initially transports momentum into the ocean interior. The structure of the
terminal velocity is determined by the depth of the domain and the structure of the forcing only.

2.4. Energetics of the system

The energetics of the system are described in terms of the wind work Φwind, the energy radiated laterally by internal waves ΦIW,
the energy transferred to the vortex underlying the model storm Ev, and the dissipated energy D. Assuming an energetically isolated
system, the energy balance is set up so that
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= − −E DΦ Φ .wind v IW (23)

The wind work, the mechanical energy of the central vortex, as well as the radiated energy fluxes due to waves are calculated from
the model results.

A general formula for the integrated wind power over a radius r and time interval of length ΔT, i.e. the wind work, is

∫ ∫ ∫= − = ′ ′τ ur T T T r dθΦ ( , Δ ) · dr dt,
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in which τ · u is the product of the wind stress and the ocean surface velocity. Given a forcing time ΔTs = 2 days and the characteristic
scales of wind stress τ∼ 1 N/m2, azimuthal velocity of the ocean in response to the wind stress ∼v 0.1 m/s and radial length scale
r∼ 50 km, the magnitude of the wind power can be estimated. It yields a value of the order Φwind∼ 100 TJ. Considering that this
energy is imparted over a circle with a radius r=50 km and a time span of 2 days, it is equivalent to the normalized wind work per
area of the order 10−2 MJm−2 and the average wind power per area of the order or 10−2 Wm−2. This agrees well with observations
of hurricanes (Sanford et al., 2011) and is one order of magnitude larger than modeled climatological energy fluxes in mid-latitude
regions (Alford, 2001; Furuichi et al., 2008).

The energy associated with internal gravity waves leaving a cylinder with radius r in a time interval of length ΔT can be estimated
using the average radial energy flux 〈up〉:
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As a first order estimate of the radial energy transport we consider the propagation of a pulse of mode-1 internal gravity waves as
described in Appendix B. In particular, for a frequency ω we have an average energy flux
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in which Au denotes the real amplitude of the radial velocity. In general Au describes the amplitude as constant in time; however we
consider a transiently excited quasi-monochromatic wave packet whose amplitude is non-zero for a time ΔT only. Integrating (Eq.
(26)) over ΔT and over the cylinder with the radius r yields an expression for the total radiated energy:
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For a rough estimate we take a typical amplitude of |Au|= 0.01m/s, a radial wave number kr= π/Rr, the time scales from the
forcing, i.e. a frequency ω=2π/12 h−1 and ΔT=2 days, and assume a normalized vertical structure of the radial velocity so that
∫ =−

∂
∂( )ψ̂ dz 1H z

0 m. The resulting prediction is then ΦIW∼ 64 GJ and thus corresponds to an approximate energy transfer of 0.06%.
This estimate assumes that the primary mechanism transferring energy to internal gravity waves is the excitation of vertical mode-1
waves through forced motion in the stratified water column. In the previous section we concluded that the dominant forcing on the
stratified region is the vertical momentum transfer through horizontal stresses. Buoyancy production through heat exchange between
the ocean surface and the atmosphere as well as turbulent motion in the mixed region are strong drivers for vertical velocities (Bars
et al., 2015; Lecoanet et al., 2015). Consequently, the sole consideration of wind induced surface stress, as employed in our model,
may lead to small vertical velocities and little energy transfer to internal gravity waves.

The energy transferred to the central vortex is obtained by integrating the mechanical energy density within a cylinder of radius
Rc enclosing the vortex.
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This is done at a late time t so that excited internal gravity waves are radiated away and the result isolates the energy of the vortex.
Note that the mechanical energy density is expanded in kinetic and available potential energy density. The former is given by
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The latter is estimated using the relation (Kang and Fringer, 2010)
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A prediction for the energy stored in the geostrophic vortex at late times can be obtained by using the late-time azimuthal velocity
〈 〉∞v (Eq. (22)), spatially integrated so that
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Evaluating Eq. (31) leads to an estimate of approximately Ev∼ 1 TJ.
In summary, we predict an energy transfer from the wind input to internal gravity waves and a geostrophically balanced vortex of

the order 0.01% and 1% relative to the wind work, respectively. This leads to a predicted dissipation of up to 99% of the wind work.
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For this estimate we neglected surface heat fluxes, heat induced convection, vertical turbulent motion and consequent mixing such
that the vertical energy transfer is based on the vertical momentum flux only.

3. Results and discussion

3.1. Description of the control run

All simulations performed show qualitatively the same wave and vortex generation mechanisms. These are discussed here with
regard to a control run in which the mixed-layer depth is Hm=50m and the critical radius of the Rankine vortex radial wind profile
is Rr = 50 km. The associated maximal wind speed at 10m height is =v 30 m/s10 . The time evolution of the wind is set by linearly
increasing its magnitude from zero to its maximum for quarter the storm duration ΔTs/4, keeping it constant for ΔTs/2 and linearly
decreasing its magnitude to zero over another ΔTs/4. In the control run, the storm duration is set to ΔTs = 48 h. For the qualitative
visualization of the flow we use the scaled stream function, r ψ

1
2 , with ψ as defined in Eq. (5). The scaling with the inverse square root

of the radius is chosen to compensate the decreasing amplitude of the radiating gravity waves as they propagate radially outward.
During the first phase of the forcing the azimuthal surface velocity is accelerated due to the surface stress of the growing model

storm. Consequently, the centripetal and the Coriolis force accelerate the fluid radially outward and drive an overturning motion with
a maximum stream function near the Rankine radius, Rr (Fig. 2a). Upwelling and downwelling are induced respectively at radii
smaller and larger than Rr. This motion forms immediately after the stress starts acting on the surface and leads to velocities with
amplitudes up to 3m/s within 12 h. The forced overturning leads to a density anomaly which in turn causes a bottom-intensified

Fig. 2. Snapshots of scaled stream function for the control run at model time (a) 12 h, (b) 22.5 h, (c) 50 h and (d) 135.5 h. The last time is
approximately ten inertial periods after the end of the forcing at 48 h. For scaling reasons the stream function was multiplied by the square root of
the radius. This corresponds to the asymptotic behavior of the Bessel function of first kind for large radii.

Fig. 3. (a) Snapshot of the pressure anomaly in the control run at time t=48 h and (b) corresponding time evolution of the pressure anomaly on the
bottom close to the radius of the Rankine vortex Rr = 50 km. Note that the magnitude of the pressure anomaly increases with depth.
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positive pressure anomaly at radii smaller than Rr and a negative pressure anomaly at larger radii (Fig. 3a). During the constant phase
(Fig. 2b) and the decrease of the wind stress forcing the Coriolis effect starts to counteract the described motion. The inertial
oscillations reverse the flow and cause vertical motion with largest amplitudes close to Rr. The vertical motion extends throughout the
whole water column including the stratified region below the mixed-layer depth. This inertial pumping corresponds to the generation
mechanism for internal gravity waves suggested in the previous section. Induced dominant mode-1 internal gravity waves are ob-
served to emanate radially away from the storm region (Fig 2 c). A second generation mechanism arises from the bottom pressure
anomaly close to Rr. Being forced by the return flow of the surface inertial oscillation it oscillates with the Coriolis frequency and
generates upward propagating internal gravity waves with higher vertical mode numbers (Figs. 2d and 3b).

The inertial period corresponding to the inertial frequency f=10−4 rad s−1 is approximately 0.73 days. In comparison, the
duration of the pulse is ΔTs = 2 days. However, the ramp-up and ramp-down phases, each of which is 0.5 days, correspond to linear
changes in the wind and thus, quadratic changes in the wind stress amplitude. The effective forcing time is approximately twice the
inertial period. Thus, the near inertial oscillations are most strongly excited.

3.1.1. Geostrophic adjustment of the vortex
The observed geostrophic adjustment occurs in three different phases. The first phase is the development of a geostrophically

unbalanced azimuthal vortex while the wind stress acts on the surface. During this phase the surface and consequently the subsurface
layers are accelerated in the azimuthal direction. The centripetal acceleration acts in a radially outward direction and consequently
accelerates the radial and vertical velocity according to the (incompressible) continuity equation so that an overturning flow is
excited (Fig. 2a). The forced horizontal and vertical velocities cause a change in the density anomaly profile as water with higher and
lower density is heaved and pumped down at radii smaller and larger than Rr, respectively. Consequently a bottom-intensified
pressure anomaly, as described above, develops.

The second phase is characterized by the inertial pumping, the advection of the azimuthal velocity through the mixed layer and
the generation of internal gravity waves. This phase starts after one inertial period and quickly ends after ramping down the surface
forcing as the inertial oscillation damps out. It therefore acts on a time scale of two inertial periods which is comparable to the
duration of the forcing. A detailed description of the generation and propagation of internal gravity waves can be found in Section
3.1.

Overlapping the second adjustment phase, the decay of the mechanical energy of the vortex towards the geostrophic balance
starts right after the end of the forcing (at time t=48 h). This decay can be related to two separate processes. The first is the diffusion
of the radially equilibrated azimuthal vortex in depth. The second is the adjustment of the bottom-intensified pressure structure. The
radial gradient of the pressure anomaly accelerates the radial velocity outward and thus decelerates the azimuthal velocity through
the Coriolis force throughout the whole water column. This deceleration is aligned with the diffusion process in the upper water
column and counteracting it in the lower water column. Consequently the time scale for the adjustment is larger or smaller than the
diffusion timescale when the vortex is shallow or deep, respectively. Comparing the energy decay in the control run to the evolution
of the analytic solution to the diffusion problem with given initial conditions from the simulation shows that the observed time scale
is approximately four times larger than the diffusion time scale.

In summary, there are three overlapping stages of adjustment in the simulations, each with a distinct time scale. The first is the
spin-up of the vortex with the forcing time scale. In the second stage, the inertial oscillation decays until it reaches a horizontal
geostrophic balance within less than ten inertial periods. This process is associated with the radiation of internal gravity waves. At the
end the vortex diffuses in the vertical until a vertically uniform vortex is established. At the same time the adjustment of the bottom-
intensified pressure dipole decelerates the central vortex. Depending on the vertical extent of the excited azimuthal vortex at the end
of the forcing the timescale of this adjustment phase can be longer or shorter than the given vertical diffusion time scale. A quan-
titative analysis of the time scale of the last phase is done in Section 3.2.2.

3.1.2. Generation and propagation of waves
Whereas at radii close to the Rankine vortex radius, Rr, the inertial oscillation dominates the flow, it is characterized by radially

outward propagating internal gravity wave packets with distinct radial group velocities in the far field (Fig. 2c and d). These are
generated by two different mechanisms. The first and more dominant is the generation by inertial pumping. The inertial oscillation
associated with the spin-up of the vortex beneath the wind forcing induce a return flow in the interior and a corresponding upwelling
and downwelling at radii smaller and larger than the radius of the vortex, Rr. This vertical oscillation stretches throughout all the
water column and induces near-inertial vertical mode-1 internal gravity waves. The second generation mechanism is related to a
bottom-intensified pressure anomaly associated to the spin-up of the vortex (Fig. 3a). It oscillates with the inertial oscillation and
locally generates upward propagating internal gravity waves with higher vertical mode structure (Fig. 2d and 3 b). Both generation
mechanisms are associated to the second adjustment phase described above. The wave packets have distinct group velocities in the
far field where higher vertical mode wave packets have lower radial group velocity. Depicting the maximal value in depth of the
radial energy flux the wave packets appear as beams (Fig. 4). The visible group velocities can be described using the analytic solution
of the vertical mode decomposition. In particular, the radial group velocity, cg, is given by
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where kr is the radial wave number, qs is the discrete vertical wave number obeying the discretization criterion (Eq. (B.8)) and
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s=N0(z0+Hm), where N0 is the maximum value of the buoyancy frequency profile (Eq. (12)). A detailed derivation can be found in
Appendix B. For estimating the group velocities in Fig. 4 the radial wave number is set to kr= π/Rr corresponding to twice the radius
of the Rankine vortex while qs corresponds to the first three positive solutions of the discretization equation (Eq. (B.8)). Note that
higher vertical modes are generated not only in the forcing region but are also separating from the lower mode wave packet (Fig. (4)).
They may be generated through non-linear wave–wave interactions within the packet.

The spectral structure of the induced internal gravity waves is analyzed in terms of the radial wave number-frequency spectrum
for the vertical velocity at the mixed-layer depth, z=−Hm, (Fig. 5a). Note that the cylindrical symmetry of the radiating waves
requires a Fourier–Bessel transform (Eq. (8)) in the radial direction. The spectrum is characterized by distinct lines with largest
amplitudes close to the inertial frequency. The structure of these lines resembles the dispersion relation (Eq. (B.10)) associated with
vertical normal modes in the present stratification (Fig. 5b). The analytical dispersion relation overestimates the frequency of the
spectrum as the scaled radial wave number krRr approaches the cut off wave number at krRr/2π=5 (cf. Appendix A). This effect
might be associated to numerical attenuation. High spectral densities at low wave numbers and frequencies equal to f correspond to
the inertial oscillation of the vortex.

3.2. Parameter dependencies of the flow structure

Here we present a qualitative analysis of the flow structure depending on the varied parameters with respect to the control run.

Fig. 4. Radial time series plot of the azimuthally integrated radial energy flux ∫ ϕ r dθπ
0

2
IW as a function of time and radius for control (Hm=50m)

run with the reference parameters listed in Table 1. The maximal value in depth is shown. The characteristic beams are wave packets with distinct
vertical modes and group velocities which correspond to the group velocities predicted by the vertical mode decomposition (black overlay). A radial
wave number kr= π/Rr is assumed; mode numbers are indicated.

Fig. 5. (a) Wave number-frequency spectrum of the vertical velocity (scaled as power spectral density, PSD) from the control run at the mixed-layer
depth. In accordance with the symmetry, a Fourier-Bessel transform was used in radial direction (Eq. (8)). The vertical velocity was multiplied with
a 2-dimensional Hanning window to avoid ringing in the spectrum. (b) Like (a) with overlaid analytic dispersion relation for the first five vertical
normal modes (Eq. (B.10)). The x-axes were limited to the radial cut off wave number to account for numerical attenuation (cf. Appendix A).
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For visualization we show the stream function of the model runs 10 inertial periods after the end of the forcing (Figs. 6 and 7).

3.2.1. Surface forcing parameters
For the evaluation of the effect of the surface forcing parameters on the flow structure, three runs with twice the value of one of

the parameters were performed. In particular, the duration of the wind forcing, ΔTs, the radius of the Rankine vortex, Rr, and the
maximum wind speed, v10, were varied.

In the first experiment the duration of the forcing in all phases was doubled so that ΔTs = 96 h. The longer pulse acts over a time
of approximately 3.5 inertial periods. Therefore, the wind stress is effectively out of phase with the inertial oscillation at the end of
the pulse. It is observed that the wind forcing counteracts the inertial oscillation of the formed vortex, and therefore reduces the
radial and vertical velocities. The amplitude of the inertial oscillation and radiated internal gravity waves is visibly smaller compared
to the control run (Figs. 2d and 6a). Correspondingly, the radiation of columnar internal gravity waves is less pronounced. Thus the
time scales of the wind pulse are important to the wave generation mechanism.

Doubling the Rankine vortex radius with respect to the control run, i.e. Rr = 100 km, influences the flow structure close to the
azimuthal vortex but leaves the radiated internal gravity waves approximately unchanged. In particular, the linear increase of the
wind at radii smaller than Rr and the inverse drop beyond Rr of the wind profile lead to an increase in amplitude by about 40% and

Fig. 6. Snapshots of the stream function 10 inertial periods after the forcing stops for different surface forcing parameters. The stream function is
scaled with the square root of the radius to account for the decay of the internal wave amplitude with radius. The varied parameters are (a)
ΔTs= 96 h, (b) Rr = 100 km and (c) =v 6010 m s−1. A separate color scale was set for (c) to account for the approximately 4 times larger velocities
associated to two times stronger winds.

Fig. 7. Same as Fig. 6 but with varied mixed-layer depths. The stream function is scaled with the square root of the radius to account for the decay of
the internal wave amplitude with radius. The mixed-layer depths are (a) Hm=25m, (b) Hm=50m (control run), (c) Hm=100m, (d) Hm=200m,
(e) Hm=500m, (f) Hm=1000m and (g) Hm=H=3000m.
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the radial length scales of the flow close to Rr are visibly larger (Fig. 6b). The radiated waves shift radially outward with the
generation region equal to 50 km (Fig. 6b). However, the group velocities and wavelengths of the radiated waves do not change. Thus
the radial length scale of the gravity waves is set by the forcing frequency and the dispersion relation (Eq. (32)) rather than the length
scale of the forcing. It is approximately 100 km which corresponds to twice the Rankine vortex radius of the control experiment, even
if it is not related to that parameter.

An increase of the wind speed by a factor 2 so that =v 6010 m s−1 changes neither the structure of the generated vortex nor the
properties of the radiated internal gravity waves with respect to the control run (Fig. 6c). The amplitude, however, changes by a
factor 4, which is related to the square dependency of the wind stress on the wind speed (Eq. (10)).

To evaluate the effect of the surface forcing parameters on the geostrophic adjustment, in particular the vertical extension of the
azimuthal vortex through the water column, we consider the kinetic energy density of the vortex integrated in depth and within a
radius r≈ 250 km. An effective damping time scale,Tz

eff , is then found through a least-square fit of the analytic solution of the vertical
diffusion initial value problem to the evolution of the kinetic energy in the simulation. Comparing the effective damping time scale to
the diffusion time scale, Tz= Lz2/νz, given by the model viscosity is then a measure of whether the vortex adjusts faster or slower than
the predicted vertical diffusion time. The reason for the deviation is the overlay of two distinct adjustment processes (cf. Section
3.1.1). In particular, the effective adjustment timescale is mostly related to the mixed-layer depth, as discussed in the following
section. For the control run the last phase of the adjustment is about four times slower than diffusion only (Table 2). Changing the
surface parameters ΔTs, Rr and v10 then leads to even slower adjustment with relative time scales between 5.17 and 6.52 (Table 2).

3.2.2. Mixed-layer depth
Geostrophic adjustment of the vortex. As introduced in the previous section, the third phase of the geostrophic adjustment process

can be characterized by the evolution of the kinetic energy of the excited azimuthal vortex underneath the wind forcing. By com-
paring the decay to the analytic solution of the vertical diffusion initial value problem we derived an effective damping time scale
relative to the diffusion time scale given by the model viscosity, Tz= Lz2/νz (Table 2). We find that deeper mixed layers generally lead
to smaller relative effective damping time scales (Table 2). In particular, mixed layers shallower than Hm=500m lead to a slower
damping and deeper mixed layers lead to a faster damping than predicted by the solution to the vertical diffusion initial value
problem.

During this stage of the geostrophic adjustment there are two distinct processes leading to an approach of the geostrophic
equilibrium (Section 3.1.1). The vertical diffusion of the azimuthal velocity leads to a deceleration above the depth of the vortex and
an acceleration below. However, the bottom-intensified pressure anomaly drives a radially outward current which feeds back into the
azimuthal component via the Coriolis effect and decelerates the vortex throughout the whole water column. The latter effect is
aligned with the diffusion above the depth of the vortex and counteracts it below. As the vertical extent of the azimuthal vortex after
the end of the forcing is similar to mixed-layer depth (Fig. 7) the diffusion is accelerated in simulations with shallower mixed layers
and decelerated in simulations with deep mixed layers.

Generation and propagation of waves. Deeper mixed layers are generally associated to weaker stratification and thus to smaller
amplitudes as well as reduced radial group velocities (Fig. 7a–f). Correspondingly, we observe waves propagating with reduced radial
group velocities, here shown for the simulation with Hm=500m (Fig. 8). The forcing frequency, and thus the radial length scale,
remain unchanged as the predicted group velocities approximately describe the propagation of the wave packets (gray lines in Fig. 8).
As a consequence of the slower group velocities the wave packets with different vertical mode structure or slightly different frequency

Table 2
Table of relative damping time scales of the kinetic
energy within a radius r≈ 250 km. The effective
damping time scales were found using a least
squares fit of the analytic solution of the diffusion
problem to the data. It was then compared to the
solution with a diffusion time scale given by the
model viscosity Tz= Lz2/νz. The last three rows
refer to the simulations with double wind pulse
duration, ΔTs, double radius of the storm, Rr, and
double wind speed, v10.

Hm (m) T T/z z
eff

25 4.41
50 (control run) 4.11
100 3.16
200 1.82
500 0.72
1000 0.33
3000 0.13

ΔTs = 96 h 5.17
Rr = 100 km 5.56

=v 6010 m s−1 6.52
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separate at smaller radii and pass through the radius r=250 km as separate wave packets. Moreover, continually generated higher
mode wave packets at later times superimpose when the radial extent of the packets is larger than the radial distance between two
successively generated wave packets (Fig. 8).

Naturally, zero stratification does not allow for the generation of internal gravity waves (Fig. 7g). Instead, the inertial oscillation
is maintained over a longer time as it does not damp out by wave generation.

3.3. Energetics

3.3.1. Energetics of the control run
The energetics of the model reflect the above-described adjustment processes. The wind work is equal to the integral of the

product of the wind shear stress exerted on the surface with the surface velocity itself. In the control simulation, it is approximately
Φwind≈ 401 TJ (Table 4). This corresponds to the predicted order of magnitude (Eq. (24)). The mechanical energy stored in the
vortex below the forcing region by the end of control run is approximately Ev≈ 40 TJ. As discussed in Section 3.1.1, this energy
depends on the vertical extent of the vortex at the time it is observed. Its magnitude by the end of the simulation time represents the
state of adjustment and diffusion rather than the terminal value. The measured mechanical energy is an order of magnitude higher
than predicted (Eq. (31)) but also subject to further dissipation. The total energy radiated as internal gravity waves in the control run
is approximately ΦIW≈ 60 GJ. That result corresponds to the predicted order of magnitude (Eq. (27)) and is controlled by the excited
angular frequency ω, the radial wave number kr and the magnitude of the radial velocity Au. Based on these results and the energy
balance (Eq. (23)), the residual dissipation is about D≈ 361 TJ, or equivalently D/Φwind≈ 90% of the wind energy input.

The energy transferred to internal gravity waves being only about 0.02% is several orders of magnitude smaller than reported
previously. In similar studies using forcing with comparable structure but translating in the horizontal in 3-dimensional models found
that a fraction of ∼25% is transferred to internal gravity waves (Price, 1983; Niwa and Hibiya, 1997). However, both formulations
implement the wind forcing with a bulk formulation driving a surface slab rather than being treated as a surface friction. Here we do
not assume a profile of vertical momentum transport associated to the wind. The resulting stress profile leads to highest values of
dissipation close to the surface which is consistent with high energy losses in the mixed layer. The modeled wind power is comparable
to the literature but the transport of momentum through the mixed layer may be less efficient when being mostly driven by horizontal
friction.

Typical findings in observations and general circulation models range between 9% and 30% (e.g. D’Asaro et al., 1995; Alford
et al., 2012; Rimac et al., 2016). Elevated values are particularly associated with the wake of hurricanes, i.e. strong storms (Price,
1983; Gill, 1984; D’Asaro et al., 1995). This study excludes effects based on the lateral movement of the storm, 3-dimensional
instabilities and surface heat fluxes. This includes strong drivers of vertical motion like heat driven mixed-layer convection, mixed
region collapse or turbulent motion in general. We therefore interpret that these processes may be essential for the efficient gen-
eration of internal gravity waves below storms.

3.3.2. The wind amplitude, radial length scale and forcing time scale
Forcing with a twice as long wind pulse (ΔTs = 4 days) leads to a wind work of Φwind≈ 911 TJ (Table 3). Compared to the control

run with Φwind= 401 TJ, this increase corresponds to the longer forcing time. However, the out-of phase excitation of the inertial
oscillation (cf. Section 3.2.1) halves the energy radiated as internal gravity waves compared to the control run, so that ΦIW≈ 33 GJ.
Instead, a significantly larger portion is imparted into the vortex. The increase of the corresponding energy relative to the wind work,
Ev/Φwind, from 10% in the control run to 17% is not associated to the stage of the geostrophic adjustment, i.e. to the vertical diffusion

Fig. 8. Same as Fig. 4 but with Hm=500m. The radiated wave packets are characterized by weaker stratification and thus smaller group velocities.
The associated energy fluxes are an order of magnitude smaller. Consequently the wave packets separate over shorter time scales. Due to the
decreased radial group velocity a superposition of higher mode internal gravity waves occurs. Predicted group velocities from the vertical mode
decomposition are shown as black overlays with indicated mode number. The radial wave number is assumed to be kr= π/Rr.
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of the vortex, but to a correspondingly raised azimuthal velocity.
Increasing the critical radius of the Rankine vortex from that in the control run by a factor 2, so that Rr = 100 km, leads to a larger

area on which the wind stress acts. Correspondingly, the wind work is increased to Φwind≈ 1417 TJ (Table 3). The proportion of
energy radiated as internal gravity waves relative to the wind work is only slightly increased (from 0.015% to 0.02%). Thus the
length scale of the forcing has little influence on the excitation mechanisms for internal gravity waves which is consistent with the
observation of very similar structures of the far field (cf. Section 3.2.1).

Here we recall that the surface velocity scales with the wind stress, which scales with the square of the wind velocity (Eqs. (10)
and (24)). Hence, the wind power which is the product of the wind stress and the surface velocity, scales with the fourth power of the
wind velocity. Doubling the wind speed therefore leads to significantly larger wind work. In simulations with =v 6010 m s−1 the
measured work is Φwind≈ 5666 TJ, an increase by a factor of approximately 14 from the control run. The excited inertial oscillation
has a larger amplitude and therefore takes a longer time to damp out. Even though the internal gravity waves do not change in
structure (cf. Section 3.2.1) the radiated energy fluxes are larger by a factor 24, radiating an energy ΦIW≈ 1438 GJ (Table 3). Thus
the radiated energy is not proportional to the wind work at increased wind speeds.

3.3.3. The role of the mixed-layer depth
It is observed that with increasing mixed-layer depth (and consequently decreasing maximum stratification), the energy trans-

ferred to the system decreases from 410 TJ at Hm=25m to 345 TJ in the run with Hm=3000m (Table (4)). At the same time, higher
azimuthal vorticities (Eq. (1)) are observed. We interpret that a deeper mixed layer allows for a faster spin-up of the center vortex and
the associated vertical velocity due to the reduced buoyancy. However, the increased positive radial velocity acts as a negative
feedback on the azimuthal velocity via the Coriolis effect. Consequently, the azimuthal velocities are generally smaller and less
energy is transferred through the ocean surface (Eq. (24)).

The mechanical energy stored in the vortex at the end of the model run (t=40 days) is observed to decrease from Ev= 46 TJ (at
Hm=25m) to Ev= 11 TJ (at Hm=3000m) (Table 4). However, this value depends on the state of the geostrophic adjustment as
described above. A deeper mixed layer and a correspondingly reduced stratification below the mixed-layer base is associated with
increased azimuthal vorticity or equivalently larger radial and vertical velocities. Hence, the vertical advection of the azimuthal
velocity is stronger for deeper mixed layers and the vortex expands in depth on shorter time scales (Fig. 7). Consequently, the vertical
extent of the center vortex at the end of the model run depends on the mixed-layer depth of the run. Thus, the mechanical energy
stored in the center vortex at a fixed model time, e.g. t=40 days, does not represent the energy the vortex will contain in the
geostrophic equilibrium.

A reduced stratification has a positive feedback on the vertical velocities and thus on the inertial pumping amplitude as described
above. However, we find that the total energy radiated reduces from ΦIW= 64 GJ in simulations with Hm=25m to ΦIW= 12 GJ in
simulations with Hm=1000m. This decrease is associated with the decreased stratification as the mixed-layer depth increases.
Naturally there is no generation of internal gravity waves in the zero stratification environment (cf. Table 4 and Fig. 7g).

Dissipation is implemented using a Laplacian diffusion operator (Eq. (4)). Therefore, it depends solely on the internal shear
stresses. These are largest close to the surface where the wind stress imparts a strong shear. Therefore, most of the dissipation is

Table 3
Energetics of model runs with the same mixed-layer depth Hm but double the wind speed v10, double the critical radius of the Rankine vortex wind
profile Rr or double the duration of the pulse from the control run. The dissipation D is the residual of all other terms (Eq. (23)). The first line is the
control run with reference parameters Hm=50m, Rr = 50 km and =v 3010 m s−1. The energies are measured at time t=40 days.

Hm

(m)
Φwind

(TJ)
Ev/Φwind

(%)
ΦIW/Φwind

(%)
D/Φwind

(%)
Varied parameter

50 401 10 −0.015 −90 Control run
50 911 17 −0.004 −83 ΔTs = 4 days
50 1417 8 −0.02 −92 Rr = 100 km
50 5666 9 −0.025 −91 =v 6010 m s−1

Table 4
Energetics of model runs with different Hm. The dissipation D is the residual of all other terms (Eq. (23)). Values in parenthesis are relative to the
wind work in the second column. The last row indicates a run with zero stratification throughout the water column.

Hm Φwind Ev (Ev/Φwind) ΦIW (ΦIW/Φwind) D (D/Φwind)
(m) (TJ) (TJ) (%) (GJ) (%) (TJ) (%)

25 410 46 (11) −64 (−0.016) −364 (−89)
50 401 40 (10) −60 (−0.015) −361 (−90)
100 387 32 (8) −51 (−0.013) −355 (−92)
200 371 23 (6) −37 (−0.01) −347 (−94)
500 355 15 (4) −21 (−0.006) −339 (−96)
1000 348 12 (4) −12 (−0.004) −336 (−96)
3000 345 11 (3) 0 −334 (−97)
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associated with shallow depth (z≥−60m) and depends little upon the mixed-layer depth. The absolute value of the dissipated
energy for all simulations decreases moderately from D=364 TJ to D=334 TJ as the mixed-layer depth increases (Table 4). Note
that this value depends, like the energy stored in the center vortex, on the state of adjustment and increases with time. This increase
may be larger for shallower mixed-layer depths.

In order to quantify the scaling of the different components of the energy balance (Φwind, Ev, ΦIW, and D) with the stratification at
the mixed-layer depth, an asymptotic fit to the energies was found assuming the form
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Here, E and Ec represent any of the above named energies and its value in the control run, respectively. The stratification is nor-
malized with its reference value N0= 10−2 rad/s (cf. Eq. (12) and Table 1). The parameters A, B and C are obtained by performing a
non-linear least-squares fit. In such a scenario C directly determines the scaling behavior with respect to the maximum buoyancy
frequency of the water column N(Hm). While the parameter A represents the asymptotic behavior associated to zero stratification, B is
the scale of variation of the respective energy relative to the control run. Note that the fit of the radiated energy, ΦIW, is forced
through A≡ 0.

We find that the wind work, Φwind, varies by approximately (15± 1)% with an exponent of 1.17 ± 0.22 (Fig. 9a). It is thus
largely independent of the stratification with a moderate variability attributed to a Coriolis feedback mechanism described in Section
3.3.3. Even though the fit suggests a super-linear scaling, the confidence interval includes a linear relationship. In the case of the
radiated energy, ΦIW, the offset A is set to zero and ΦIW must depend fully on the stratification (Fig. 9b). It shows a sub-linear scaling
with an exponent of 0.85 ± 0.10. The non-linear fit of the energy stored in the vortex Ev suggests a variability of approximately
(77± 4)% but is also subject to both further geostrophic adjustment and dissipation for shallower mixed layers as discussed in
Sections 3.2.2 and 3.3.3 (Fig. 9c). Thus, the two effects, the reduced gravity wave radiation and the faster geostrophic adjustment (cf.
Table 2), superimpose and the fit is difficult to interpret. Finally, the dissipation, D, has a variability of about (8± 1)% with an
exponent of 0.97 ± 0.33 (Fig. 9d). Since the evolution of the center vortex after the simulation end may lead to more dissipated
energy for shallower mixed layers the variability may be overestimated here. The fraction of dissipated energy is thus mostly in-
dependent of the stratification. All fit results are summarized in Table 5.

Fig. 9. Energy input (a), energy radiated as internal waves (b), energy transferred to the vortex (c), and energy dissipated (d) normalized with the
corresponding value of the control run as function of mixed-layer depth. The energy dissipated is calculated as the residual of the energy balance
(Eq. (23)). Scaling laws from non-linear least square fits following Eq. (33) are indicated. White shadings depict the 95% confidence intervals of the
fits. For a list of all fit parameters see Table 5.

Table 5
Parameter results and base values from scaling fits (Eq. (33)). The last column corresponds to the zero stratification run. Errors are given by 95%
confidence intervals from the non-linear fit. The fit of the radiated energy, ΦIW, is simplified by setting A≡ 0.

Ec (TJ) A (1) B (1) C (1)

Φwind 401.45 0.85 ± 0.02 0.15 ± 0.01 1.17 ± 0.22
ΦIW 0.06 0 0.98 ± 0.04 0.85 ± 0.10
Ev 40.34 0.23 ± 0.04 0.77 ± 0.04 1.35 ± 0.14
D 361.04 0.91 ± 0.02 0.08 ± 0.01 0.97 ± 0.33
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4. Summary and conclusion

We examined the generation of internal gravity waves by a stationary cyclonic wind stress pulse in a non-linear, axisymmetric and
Boussinesq model. The wind pulse with a duration of ΔTs = 2 days is characterized by the Rankine vortex structure with a critical
radius Rr = 50 km, a maximum wind speed of =v 3010 m/s. Stratification profiles with decreasing buoyancy frequency with depth, N
(z)= s/(z0− z), following Gill (1984) are used. The mixed-layer depth varies between Hm=50m and Hm=1000m.

In general the evolution of the flow can be considered in three overlapping phases. During the linear increase of the wind velocity
from zero to its maximum at time t=12 h and the subsequent period of constant wind, the ocean surface is accelerated in the
azimuthal and consequently in the radially outward direction. A radial flow and a corresponding return flow in the interior evolves
immediately. The second phase, occurring after approximately one inertial period is characterized by the oscillation of the radial
motion with the inertial frequency and the associated vertical velocity – the inertial pumping. Low vertical mode internal gravity
waves are excited by the corresponding vertical motion through the stratified water column. Additionally, the oscillation of a bottom-
intensified pressure anomaly dipole associated to the excited vortex excites upward propagating higher mode waves. The inertial
oscillation damps out as internal gravity wave packets are radiated radially outward and the vortex reaches an approximate geos-
trophic balance. The third adjustment phase starts right after the end of the wind forcing at t=48 h. It is characterized by the
diffusion of the vortex in the vertical and the adjustment of the bottom-intensified pressure dipole until it eventually reaches the
geostrophic equilibrium. The equilibrium was not observed within the model run time of 40 days.

The wave number-frequency spectrum at the mixed-layer base reveals that the generated wave packets follow distinct dispersion
relations similar to the analytically derived relation associated to the vertical normal modes. The structure of the generated waves is
controlled by the forcing time scale as well as the stratification rather than the horizontal length scale in the forcing.

Around 90% of the energy incurred by the wind is dissipated close to the surface. This is due to the vertical momentum transfer
through internal stresses only. Around 10% of the wind energy stays within the vortex and only about 0.01% of the energy is radiated
from the vortex as internal gravity waves. Increasing the mixed-layer depth while keeping the assumed stratification profile in the
deep ocean constant (i.e. N0, z0 and zref≡ const ., cf. Eq. (12) and Table 1) decreases the maximum stratification occurring at the base
of the mixed layer. This mimics the mixing of the ocean above the mixed-layer depth without influencing the stratification below.
Consequently an increased mixed-layer depth leads to a reduction of the energy radiated as internal gravity waves and stored in the
vortex. However, the latter is subject to further adjustment towards the geostrophic equilibrium at the end of the model time.

The energy radiated as internal gravity waves relative to the wind power is several orders of magnitude lower than 10–30%, as
typically observed in the ocean and general circulation models (D’Asaro et al., 1995; Alford et al., 2012; Rimac et al., 2016). We
interpret that other processes that drive vertical motion like surface heat fluxes, turbulent motion, mixed region collapse and storm
translation are essential for significant energy extraction by internal gravity waves to occur. In particular the wake behind a laterally
translating storm was reported to contain elevated internal gravity wave energy levels with transfer rates ∼25% in similar but 3-
dimensional setups (Price, 1983; Niwa and Hibiya, 1997).

The wind driven inertial pumping is a well known source of internal gravity waves that has been frequently investigated (e.g. Gill,
1984; Moehlis and Smith, 1999; Tsai et al., 2008). However, the commonly observed excitation mechanism differs from the me-
chanisms considered here, specifically by the depth of the inertial pumping. While the inertial oscillations in the present simulations
spread through the whole water column, observations of moving storms suggest the forcing of near-surface oscillations by the wind
and a subsequent excitation of vertically propagating near-inertial gravity waves (e.g. Price et al., 1991; Dohan and Davis, 2011;
Forryan et al., 2015). To the authors’ knowledge there has been no description of the excitation of higher mode waves through the
inertial oscillation of a bottom pressure anomaly to date. This has potential impact on the parametrization of unresolved internal
gravity waves in general circulation models, their corresponding energy distribution, and eventual ocean mixing. However, the low
energy transfer rates observed in this study are posing questions on the importance of the mechanisms described here which require
further investigation to be answered.
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Appendix A. A 4th order wave number cutoff filter

The relation between the azimuthal vorticity ζ and the stream function ψ in the radius-depth plane is given by Eq. (6). In
particular,

− = −ψ
ψ
r

ζΔr 2 (A.1)
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with the Laplace operator in radial coordinates = ∂ ∂ ∂ ∂ + ∂ ∂−r rΔ / ( / ) /r r r z
1 2 2. Note that this is the Poisson equation in cylindrical

coordinates. The no-normal flow conditions on the top and the bottom boundary of the domain imply that the stream function is zero
at both boundaries. Moreover, the stream function is zero at the inner boundary, i.e. at r=0, due to the symmetry. Hence, the above
equation can be solved using a Fourier-sine-transform in the vertical and a Bessel-transform of order n=1 (Eq. (8)) in the radial
direction. However, strong gradients in the azimuthal vorticity may induce ringing in the discretized radial transform on a bounded
interval. To suppress noise, a 4th order exponential cutoff filter, adapted from LaCasce (1996), is introduced.

Consider the azimuthal vorticity ζ and its Fourier–Bessel transform

� � ∫ ∫= =
−

∞
k k ζ r z k z k r ζ r z( , ) ( ( , )) sin( )rJ ( ) ( , )dr dz,r z H z rSFB

0

0 1 (A.2)

in which J1 is the Bessel function of the first kind of order n=1, H is the depth of the domain, kr is the radial and kz the vertical wave
number. Due to the bounded domain and the no-normal flow boundary conditions, the vertical wave number is discretized so that
kz= lπ/H with ∈l ℕ. It is worth mentioning that the sine expansion in depth represents an orthonormal set of functions but is not
equal to the vertical mode expansion in the present stratification. With �= ψΨ ( )SFB , Eq. (6) is solved by �= +k kΨ /( )r z

2 2 and the
corresponding inverse transform. In the code, these are discretized transforms so that both the radial and the vertical wave number
are discrete and have a maximum wave number corresponding to the Nyquist wave number – analogous to the Nyquist frequency.
Suppose, a discrete transformed vorticity �n and maximal mode number nNy of the Fourier–Bessel series. The filter function is set up
so that

�
�

�
= ⎧

⎨⎩

< ≤
− − − < ≤−

n n
n n n n n n n

˜ , 0
·exp( 36.8( ) ( ) ),n

n

n

co

co
4

Ny co
4

co Ny (A.3)

is the filtered coefficient of the azimuthal vorticity in the Fourier–Bessel space. The mode number nco is equivalent to a radial cut-off
length scale equal to 10 km. The factor−36.8 (ln(10−16)) is determined by the double precision machine accuracy and the exponent,
4, is chosen so that the filter is smooth enough and does not cause ringing itself. This filter acts like a low pass for radial structures
larger than the cut-off length scale.

Appendix B. The vertical mode decomposition in axisymmetric coordinates

Based on the linearized and frictionless equations of motion in azimuthal symmetry the stream function ψ can be separated
according to

=ψ r z t A ψ z J k r iωt( , , ) ˆ ( ) ( )exp( )ψ r1 (B.1)

where Aψ is the amplitude, ψ̂ is the vertical component, J1 the Bessel function of the first kind of order 1 and ω is the angular
frequency of the internal gravity wave. Note that ψ̂ has the unit m. The ordinary differential equation for the vertical structure, i.e. ψ̂,
reads then

= + −
−

d ψ k N z ω
ω f

ψ0
dz

ˆ ( ) ˆ.r
2

2
2

2 2

2 2 (B.2)

As usual, kr is the radial wave number and f is the Coriolis frequency. The buoyancy frequency is given by (compare Eq. (12))

= ⎧
⎨⎩

> > −
− ≥ > −

−
N z

z H
H z H( )

0 0
s

z z

m

m
0 (B.3)

Within the mixed layer we can define the mixed-layer vertical wave number qm2= kr2ω2/(ω2− f2) and solve Eq. (B.2) for the mixed-
layer stream function ψ̂m, obeying the rigid-lid condition. Ultimately we get

=ψ z A q zˆ ( ) sinh( ).m m (B.4)

Note that Eq. (B.4) can be approximated as a linear function for small qmz. To find the solution within the stratified region we define
the scaled vertical coordinate ζ with s dζ=N dz so that =ψ ζ ψ zˆ ( ) ˆ ( )s with

= + +
−

−
d

dζ
ψ d

dζ
ψ k s

ω f
ψ0 ˆ ˆ

1
ˆ .r

ω
N

s

2

2 s
2 2

2 2 s

2
2

(B.5)

We solve Eq. (B.5) by approximating N2≫ω2 so that

⎜ ⎟= ⎛
⎝

− ⎞
⎠

=
−

ψ ζ B
ζ

q ζ q k s
ω f

ˆ ( ) exp
2

sin( ) with .r
s s s

2
2 2

2 2 (B.6)

Matching the two solutions at the mixed-layer depth and requiring continuity gives the scaling condition

=
−

−
( )A

B

q ζ

q H

exp sin( )

sinh( )
,

ζ
2 s m

m m
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(B.7)
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and the discretization condition

⎡
⎣

− ⎤
⎦

= −N
s

q q ζ q q Hcot( ) 1
2

coth( ),m
s s m m m m (B.8)

where ζm and Nm are the scaled vertical coordinate and the mixed-layer stratification at the mixed-layer depth, respectively. The
relation between the vertical wave numbers is obtained requiring the radial wave number to be equal within and below the mixed
layer. In particular

= −q
q s

ω
1
4

.s
2 m

2 2

2 (B.9)

Eq. (B.8) can then be solved numerically. Moreover we require that the radial group velocities in the mixed layer and the stratified
region are the same. The latter conditions lead then to the dispersion relation

⎜ ⎟= ⎛
⎝

− ⎞
⎠

−

ω f k
q

1 .r2 2
2

m
2

2

(B.10)

Comparing the definition of the mixed-layer vertical wave number, qm, and Eq. (B.10) then gives the long wave condition

≫q k .rm
2 2 (B.11)
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