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We compute transmission coefficients for internal waves propagating in a fluid with continuously
varying stratification and background shear. In stationary fluid the transmission is characterized by
the ratio of transmitted to incident energy. More generally, transmission across the shear is
appropriately characterized by the ratio of transmitted to incident pseudoenergy flux. First, we
examine the transmission and reflection of internal waves incident upon a weakly stratified layer in
stationary fluid focusing upon the opposing limits of piecewise-linear theory and a heuristic
application of Wentzel-Kramers-Brillouin �WKB� theory. We find the WKB prediction is reasonably
accurate if the distance of transition from strong to weak stratification is as small as one sixth the
vertical wavelength of the transmitted waves. In the limit of infinitesimally small transition
distances the prediction of piecewise-linear theory is reproduced. Second, we consider the
transmission of internal waves across a shear layer which initially is uniformly stratified. In
particular, we show that significant transmission is possible across critical layers if the minimum
gradient Richardson number is less than 1/4. Finally, we show that internal waves can partially
transmit across a mixed region that results from the evolution of an unstable shear layer.
Transmission across critical layers occurs for waves whose horizontal phase speed matches the
background flow speed at levels where the gradient Richardson number is less than 1/4.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2424791�

I. INTRODUCTION

Due to the restoring forces of buoyancy, internal waves
propagate through fluids having decreasing background den-
sity with height, �̄�z�. Internal waves vertically transport en-
ergy in such stably stratified fluids leading to drag and mix-
ing at levels where they break. Previous studies1,2 have
shown that internal waves have a significant effect on ocean
mixing. In particular, the “zonal countercurrents,” jets with
velocity as large as 25 cm s−1 observed at depths between
500 m and 3000 m within 2° of the equator,3 are believed to
be driven by internal gravity wave breaking. It has been hy-
pothesized that the waves originate at the base of the surface
mixed layer4–6 or are generated by shear instability of the
upper flank of the equatorial undercurrent.7 It is not well
understood how the waves propagate through the back-
ground shear and stratification particularly when the back-
ground variations are manifest on short scales compared with
the vertical wavelength of the waves. Shear instability also
results in localized mixing in the ocean. Internal waves may
still cross a mixed patch in the presence of a critical layer in
shear, but the problem has not been well studied.

Similarly, atmospheric internal waves propagate upward
through varying stratification and shear. Internal waves sig-
nificantly affect the general circulation of the atmosphere.8,9

But how they do so depends on how they propagate and
where they break. In a particular study near Darwin, Austra-
lia internal waves were observed in the ionosphere, where
they are visualized by OH airglow, presumably originating

from a convective storm beneath.10 Alexander et al.11 per-
formed ray tracing studies that linked internal wave observa-
tions at higher altitudes to convective sources in the tropo-
sphere. These waves propagated through the mesosphere
where they became evanescent. Snively and Pasko12 pro-
posed that nonlinear wave-wave interactions excited longer-
period nonevanescent waves that propagated through the me-
sosphere and broke in the ionosphere. Walterscheid et al.13

performed numerical simulations using observed background
stratification to show that without changing their frequency
wave packets were able to penetrate partially through the
evanescent region to reach the ionosphere. Generally it is not
well understood how internal waves transmit and reflect
from the mesosphere when the vertical scale of the waves is
comparable to the scale of the background variations.

The purpose of this study is to provide a means with
which to predict the transmission and reflection of internal
waves through arbitrary background states. In the work pre-
sented here, we restrict ourselves to the study of small-
amplitude waves in Boussinesq fluid. As such the study is
applicable to internal waves in the ocean and to atmospheric
waves provided they propagate over distances much smaller
than a density scale height. For waves to propagate verti-
cally, the Doppler-shifted frequency

�̄�z� � � − kŪ�z� �1�

must be less than the buoyancy frequency, N. Where �̄�N
the waves are said to be evanescent. Here � is the absolute

frequency, k is the horizontal wave number, and Ū�z� is the
background horizontal flow. In the Boussinesq approxima-a�Author to whom correspondence should be addressed.
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tion N2�−�g /�0�d�̄ /dz, in which g is the gravitational ac-
celeration and �0 is a characteristic density of the fluid. Here,
for convenience, N is given in terms of the background den-
sity gradient. Likewise, N can be defined in terms of back-
ground potential temperature gradient in a gas.

The calculation of energy and momentum transport for
propagating internal waves in media with relatively long ver-
tical variations compared with the vertical wavelength is
typically performed using “ray tracing,” which applies
Wentzel-Kramers-Brillouin �WKB� theory.14,15 Heuristic ar-
guments suggest that small amplitude waves will reflect from

a level where �̄=N and will asymptotically approach a criti-

cal level where �̄=0.
Applying WKB theory, Lindzen and Barker16 examined

the propagation of internal waves across a critical layer in
uniform shear. In their setup waves were generated in a re-
gion of high buoyancy frequency, large enough to allow the
wave-like propagation, and then propagated through a region
of low buoyancy frequency where the waves encountered a
critical layer. Beyond this region the buoyancy frequency
again became large. They found that the reflected waves
could have larger amplitude than the incident waves, sug-
gesting “over-reflection.” This study specifically examined
waves that resonated with unstable modes and was restricted
to hydrostatic waves.

Broutman et al.15 discuss several ray tracing techniques
and the limitations introduced by caustics, which occur when
rays intersect each other, typically near a reflection level.
Caustics may be avoided by making a uniform approxima-
tion using Airy functions. Other more advanced techniques
involve switching between spatial and wave number formu-
lations near a caustic to “step over” the singularity. Although
both these techniques can produce valid solutions, they are
limited by the WKB approximations. One purpose of our
study is to examine the propagation of waves with arbitrary
frequency and wave number.

Resonant energy transfer by internal waves between two
localized regions of enhanced stratification representative of
the main and seasonal thermocline was described by
Eckart.17 As opposed to theory that invokes the WKB ap-
proximation, this study was limited to the examination of
modes with vertical wavelength larger than the characteristic
height of the ducts and the separation distance between them.
Similarly, resonant energy transfer in the atmosphere be-
tween the stratosphere and ionosphere was considered by
Fritts and Yuan.18 This study included anelastic effects and
background shear. In both cases the modes periodically
transferred energy back and forth between the two ducts.

Our study poses no such restrictions; the vertical wave-
length of the incident and transmitted waves is arbitrary and
we focus upon the one-way transport of energy across an
arbitrarily specified background stratification and mean flow.

This work extends the results of Sutherland and
Yewchuk,19 who derived formulae that predicted the one-
way transport of energy by waves across a weakly stratified
layer. They termed this phenomena “internal wave tunnel-
ling.” In their study they generated waves in a stationary
flow with uniform stratification surrounding a finite-depth

region of lower or zero buoyancy frequency, a structure they
termed an “N2-barrier.” Heuristic arguments from WKB
theory suggest that waves would completely reflect upon
reaching the N2-barrier. However, this was not the case—
significant amounts of wave energy could penetrate the bar-
rier so long as the barrier depth was sufficiently small com-
pared to the wavelength of the internal waves.

These results were extended further by Brown and
Sutherland20 who considered the transmission of waves
across a critical layer in a piecewise-linear shear flow em-
bedded within a locally unstratified layer. They found that for
relatively strong shear it was possible for internal waves to
propagate through critical levels. As the flow was locally
unstratified, and the buoyancy frequency thus zero, the gra-
dient Richardson number at the critical level was zero. In the
current study, we extend the result of Brown and Sutherland
to include transmission across a critical layer where the gra-
dient Richardson number is nonzero.

Eltayeb and McKenzie21 also examined the transmission
of waves across a critical layer in piecewise-linear shear.
However, they introduced a hydrostatic approximation to ob-
tain their analytic solution.

Analytic solutions exist for nonpiecewise linear back-
ground density and flow profiles. Using hypergeometric
functions and neglecting the curvature of the background
flow, Van Duin and Kelder22 considered the transmission of
waves across a hyperbolic tangent shear layer with constant
buoyancy frequency for large Richardson number. Their
physical profiles are examined in Sec. IV and transmission
characteristics found using the complete linear wave equa-
tion for small Richardson number flows. In the current study
we develop a numerical technique that computes the trans-
mission and reflection of internal waves in an arbitrary back-
ground buoyancy frequency and shear profiles.

In Sec. II we discuss the theoretical background and nu-
merical methods used to compute internal wave propagation,
transmission, and reflection. In Sec. III we apply the code to
a continuously varying stratification where waves propagate
from a strongly stratified to weakly stratified region and we
compare the results with predictions of WKB and piecewise-
linear theory. In Sec. IV we examine the effects of a continu-
ously varying background shear in uniformly stratified flow.
In Sec. V we consider the same problem but first allow the
unstable background flow considered in Sec. IV to evolve
nonlinearly to a quasisteady state consisting of a broader
shear profile and locally reduced stratification resulting from
mixing. Conclusions are provided in Sec. VI.

II. NUMERICAL METHODS

We restrict our consideration to small-amplitude two-
dimensional internal waves propagating through a nonrotat-
ing inviscid Boussinesq fluid. We assume that incident waves
move upward from a vertical level z0 and can partially trans-
mit through the flow above this level with the outgoing wave
amplitude measured at z1�z0. Assuming the waves are
horizontally periodic with fixed absolute frequency, the wave
structure can be represented in terms of the real part of the
stream function given by �=��z�exp�i�kx−�t��. The
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corresponding horizontal and vertical velocity fields are
u=−�� /�z and w=�� /�x, respectively. The stream function
amplitude, �, is given by the solution of the Taylor-Goldstein
equation23

�� + k2� N2

�̄2
+

Ū�

k�̄
− 1�� = 0. �2�

Given values of � and �� at z0, it is possible to integrate Eq.
�2� and to determine � everywhere.

The equation is solved numerically using Stoermer’s

rule24 whenever �̄ is sufficiently large. Near a critical layer

�̄ is close to zero and the Stoermer method fails. Indeed, if
the gradient Richardson number,

Rig�z� �
N2�z�

�Ū��z��2
, �3�

exceeds 1/4 at the critical level, then according to ray theory
the waves asymptotically approach this level, neither reflect-
ing nor transmitting across it.14 Although a more rigorous
treatment of linear theory allows for transmission across a
critical layer with Rig�1/4, waves near the singularity de-
velop rapid vertical oscillations which lead to efficient wave
dissipation. Thus we only consider solutions in circum-
stances for which Rig is less than 1/4. Whenever the coeffi-
cient in parentheses that precedes the � term in Eq. �2� is
smaller in magnitude than 10−4 the numerical solver jumps
over the singularities using the approximate analytic solution
found by the method of Frobenius �see the Appendix�. The
solver then continues integrating using the Stoermer method.

We must still determine the values of ��z0� and ���z0�
that appropriately describe the transmission and reflection of
incident upward-propagating waves. The values of ��z0� and
���z0� are a superposition of the stream function amplitudes
of the incident and reflected waves. At z0 the value of � is
explicitly found as

�n�z0� = An exp�− im0z0� + Bn exp�im0z0� , �4�

where n=1,2 is an index for a particular guess of the �gen-
erally complex� amplitudes An and Bn of the incident and
reflected waves, respectively. In Eq. �4�, m0 is the vertical
wave number at z=z0 which, using Eq. �2� is given by

m0 = k�N2�z0�

�̄2�z0�
− 1. �5�

For arbitrary An and Bn the structure of � near the top of the
domain, at z=z1, is described by the superposition of upward
and downward propagating waves. Thus we can write

�n�z1� = Cn exp�− im1z1� + Dn exp�im1z1� , �6�

in which Cn and Dn are the �generally complex� amplitudes
of the upward and downward propagating waves, respec-
tively, and

m1 = k�N2�z1�

�̄2�z1�
− 1. �7�

As �4� and �6� are exact only when Ū and N are constant, the
profiles are extended beyond z0 and z1 to include regions of
constant m0 and m1. This is equivalent to our assumption that
the incident and reflected stream functions represent mono-
chromatic plane waves.

By causality only upward-propagating waves should oc-
cur. Thus we seek a choice of An and Bn that ensures Dn=0.
To determine this correct choice, a first guess is made for A1

and B1 and hence, using Eq. �4�, for �1�z0�. Equation �2� is
solved to find the resulting value of �1�z1� and hence C1 and
D1 �which is nonzero for our incorrect initial guesses A1 and
B1�. This is illustrated in Fig. 1�a�. The process is repeated by
making a new guess for the incident and reflected wave am-
plitudes A2 and B2, respectively, and integrating to determine
C2 and D2, as illustrated in Fig. 1�b�. Because the system is
linear, we may superimpose the two initial guesses so as to
eliminate D and thus remove downward propagating waves
at the top of the domain, this is illustrated in Fig. 1�c�. Ex-
plicitly, the appropriate choices for A and B are given by

A =
A1

D1
−

A2

D2
and B =

B1

D1
−

B2

D2
. �8�

For a prescribed incident amplitude, A, we thus deter-
mine the reflected and transmitted wave amplitudes B and C.
In the absence of shear, the transmission coefficient is de-
fined as the ratio of squares of the transmitted to incident
amplitude19

FIG. 1. Schematic illustration of how solutions are superimposed to gener-
ate transmission coefficients. �a� Incoming and reflected wave amplitudes A1

and B1 are arbitrarily selected, outgoing and returning wave amplitudes C1

and D1 are calculated. �b� Different arbitrary amplitudes A2 and B2 are
selected, and C2 and D2 are found. �c� By superimposing the first two solu-
tions, correct amplitudes A and B are calculated such that D=0 resulting in
transmitted amplitude C and no downward propagating wave incident from
above.
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T = 	C

A
	2

. �9�

This is equivalent to the ratio of transmitted to incident en-
ergy density associated with the waves,

E = �k2 + m2�
A�
2, �10�

for waves with stream function amplitude A�. Likewise the
reflection coefficient is defined by

R = 	B

A
	2

. �11�

By conservation of energy, T+R=1 must be satisfied.
In the presence of a mean horizontal background flow,

wave energy is not conserved due to interactions between the
Reynolds stress and the background shear.20 For small am-
plitude waves, the appropriate corresponding conserved
quantity is wave action,14,25 A=E /�. Equivalently, as de-
rived using the methods of Hamiltonian fluid mechanics, the

so-called pseudoenergy26,27 of internal waves E=�E /�̄
=�A is conserved. So that there is no gain or loss of pseu-
doenergy in the domain, the transmitted pseudoenergy flux
FE=Ecgz must equal the sum of the pseudoenergy flux of the
incident and reflected waves. Here cgz is the vertical group
velocity given by

cgz = −
�̄m

k2 + m2 . �12�

Thus we define the transmission coefficient in general to be

T =
F1

F0
= 	C

A
	2m1

m0
, �13�

and the reflection coefficient is defined as in Eq. �11�. In the
special case in which m1=m0, Eq. �13� reduces to Eq. �9�.

The code was tested by comparing numerically com-
puted transmission coefficients with analytic results for an N2

barrier in stationary fluid19 and in shear.20 Integrating over
1000 grid points, a typical desktop computer requires about
1 s of computation time to calculate the transmission coeffi-
cient for a single set of parameters. Examining transmission
for a large range of � -k space at high �300�300� resolution
takes about a day. Typical deviations between the two meth-
ods were negligible with maximum transmission coefficient
discrepancy less than 1% over a broad range of input � and
k except when critical layers were encountered in which case
deviations in the two results were as large as 5%. The larger
discrepancy can be explained by the approximations intro-
duced by the method of Frobenius. The error can be im-
proved by increasing the resolution of the numerical integra-
tion at the cost of computation time.

III. STATIONARY FLUID RESULTS

We first restrict our study of internal wave transmission
to a nonuniformly stratified but stationary fluid. The buoy-
ancy frequency profile is

N2�z� =
N1

2 − N0
2

2
tanh� z

L
� +

N0
2 + N1

2

2
, �14�

as illustrated in Fig. 2�a�. We consider internal waves origi-
nating from z0�0, where N�N0, and travelling upwards
past the step to z=z1	0, where N�N1.

WKB theory at leading order predicts perfect transmis-
sion if �
N1 and no transmission if ��N1. We calculate
the transmission coefficient for a range of nondimensional
frequencies �̃=� /N1 and nondimensional horizontal wave

numbers k̃=kL in circumstances for which ��N1
2 /N0

2=0.5
and 0.05. The corresponding computed transmission coeffi-
cients are plotted in Fig. 3. The transition between the WKB
and non-WKB regime is illustrated by lines of constant non-

FIG. 2. �a� Schematic illustration of the squared buoyancy frequency profile

used for analysis in Sec. III. Ū=0 in this case. �b� Schematic illustration of
the background horizontal flow used for analysis in Sec. IV. N2=N0

2 in this
case.

FIG. 3. �Color� Transmission coefficient, T, as a function of incoming wave
frequency scaled by incident buoyancy frequency, and wave number scaled
by characteristic transition length for �a� N1

2=0.5 and �b� N1
2=0.05. Right

plots show contours of T for a range of �̃ and k̃. Inset shows close-up of
transmission for large frequency and small wave number. Left plots show

the analytic solution as k̃ tends to zero.
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dimensional transmitted vertical wave number m̃1�m1L=1
and 1/8, as determined from the dispersion relation for in-
ternal waves:

�̃ =
k̃

�k̃2 + m̃1
2

. �15�

Consistent with the WKB approximation, near-perfect trans-
mission is observed for m̃1	1. Surprisingly, the approxima-
tion is satisfactory even for m̃1�1 corresponding to a tran-
sition depth, L, approximately 1/6 of the vertical wavelength
of the transmitted waves. Significant departure from the ap-
proximation occurs for m̃1�1/8.

In the limit as L→0 the smooth profile becomes a step at
z=0 and the transmission coefficient is found analytically
using matching conditions at the step:19,20,23

T = �1 +
1

4
��4 �1/�� − �̃2

1 − �̃2 −�4 1 − �̃2

�1/�� − �̃2�2
−1

. �16�

This is plotted in the left panels of Fig. 3. Comparing the

analytic results to those found numerically for k̃�0 we find
excellent agreement.

Comparing the transmission contour plots for �=0.5 and
0.05, there is a clear trend: decreasing � decreases the rela-
tive transmission for fixed m̃1. As � is reduced the contours
of constant T approach lines of constant m̃1 for sufficiently

large k̃. For example, Fig. 3�b� shows that the m̃1=1/8 con-

tour closely corresponds to T�0.5 for a range of k̃�0. Thus
wave propagation into weakly stratified fluid is strongly de-
pendent on the transmitted wave vertical wave number.

IV. SHEAR RESULTS

We now examine the effects of background shear in the
transmission of internal waves across a region of constant
density gradient. In this study the background shear is

Ū�z� = U0 tanh� z

L
� + U0, �17�

and the buoyancy frequency is constant: N2�z�=N0
2. The

background shear profile is drawn schematically in Fig. 2�b�.
The strength of the shear relative to the buoyancy frequency
is described by the bulk Richardson number,

Rib � �N0L

U0
�2

. �18�

We now nondimensionalize the frequency, �̃=� /N0; hori-

zontal wave number k̃=kL /�Rib; vertical wave number

m̃=mL; depth, z̃=z /L; background shear, Ũ= Ū /U0; buoy-

ancy frequency, Ñ=N /N0; and Doppler-shifted frequency,

�̃=� /N1.
Here we focus upon values of Rib lying in the range

0
Rib
1. In Sec. V, transmission coefficients that are com-
puted for background profiles resulting from the nonlinear
evolution of the unstable flow are similar to those computed

in this section. This suggests that the evolution of the shear
layer has negligible influence upon wave propagation across
the layer.

In each of the four cases considered �Rib=0.001, 0.01,
and 1� we set L=1 and U0=1. The resulting transmission
coefficients, over the range of all frequency and wave num-
ber that allow wave-like propagation, are illustrated in Fig. 4.
Requiring propagating waves at z̃0, we restrict �̃
1. The
plots are divided into four regions: to the left of the leftmost

dashed line �where �̃�z̃1�= �̃−2k̃=1� and to the right of the

rightmost dashed line �where �̃�z̃1�=−1� the Doppler-shifted
frequency exceeds the buoyancy frequency at z̃1	0, and so
propagation is not possible. The region between the leftmost

dashed line and the dashed-dotted line �where �̃�z̃1�=0� cor-
responds to wave number and frequency pairs that do not
encounter critical layers anywhere in the flow. The corre-
sponding horizontal phase speed is either negative �for

k̃
0� or greater than 2U0 �for k̃�0�. In the region to the
right of the dashed-dotted line the frequency and wave num-
ber of the internal waves are such that they encounter a criti-
cal layer. If Rig�1/4 at the critical level the waves exhibit a
rapidly oscillating vertical structure. Consistent with the pre-
dictions of ray theory, it is assumed that the waves dissipate
in this circumstance and so neither transmission nor reflec-
tion occurs.

The WKB approximation applies when m̃	1. The asso-
ciated range of frequencies and wave numbers lie in a small

region above the line �̃=2k̃, which corresponds to the
dashed-dotted line in the four plots of Fig. 4. Because the
WKB approximation is plausible over such a small region
this problem requires different techniques to completely de-
scribe wave propagation and is well-posed for our numerical
solver.

Figure 4�a� shows transmission coefficients for waves
incident upon a highly unstable shear flow for which

Rib=0.001. For k̃
0, despite being Doppler-shifted to fre-

FIG. 4. �Color� Transmission as a function of incoming wave frequency,
scaled by N0, and wave number, scaled by the root of the bulk Richardson
number, for �a� Rib=0.001, �b� Rib=0.010, �c� Rib=0.100, and �d� Rib

=1.000. To the left of the leftmost line and to the right of the rightmost
dashed line wave propagation is not possible at large depths. The center
dashed-dotted line marks the boundary between waves that do not encounter
a critical layer, to the left of the line, and waves that do encounter a critical
layer, to the right of the line.
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quencies close to N0, transmission is strong for a wide range

of �̃ and k̃. The transmission is lowest for small �̃, corre-
sponding to incident waves with vertical wavelengths that
are short compared to the horizontal wavelength but long
when compared with the gap depth. To the right of the
dashed-dotted line, corresponding to parameters for which
waves encounter a critical layer, there is weak but nonzero
transmission over nearly the entire region.

In Fig. 4�b�, the transmission coefficient is plotted for
Rib=0.01. Although the bulk Richardson number has in-
creased by an order of magnitude, N0 is two orders of mag-
nitude smaller than U0 /L so that shear effects still dominate.
As such, the transmission is largely unchanged in the non-
critical region. The most significant differences are apparent
near �̃=0, where the transition from poor transmission to
strong transmission occurs over a shorter range of �̃, and
also to the left of the dashed-dotted line that separates the
region between critical and noncritical transmission, where
the transition from weak transmission to strong transmission

occurs over a smaller range of k̃. In the critical region the
effect of increasing Rib is more significant. There is a smaller

region of �̃ and k̃ which have Ri
1/4 at the critical layer so
that the parameter range over which transmission occurs is

smaller. However, because �̄ approaches zero at a critical

layer, the N2 /�̄2 term dominates the Taylor-Goldstein equa-
tion. As such, increasing N0 by an order of magnitude
significantly affects the transmission in the region that
encounters a critical layer. Compared with the case where
Rig=0.001, there is a large increase �typically over 500%� in
the transmission coefficients in the critical region.

Figure 4�c� plots the transmission coefficient for
Rib=0.1. Because N0 is now only an order of magnitude
smaller than U /L the buoyancy frequency has significant in-
fluence on the transmission characteristics. Comparing the
noncritical transmission region to that in Figs. 4�a� and 4�b�,
it is apparent that the transition from relatively weak to

strong transmission near �̃=0 and the �̃�z�=0 line occurs
over a smaller range of frequencies—transmission coeffi-
cients are larger than 0.5 over nearly the entire domain. In
the critical region transmission is even stronger. For smaller

�̃ and k̃ the transmission coefficient is consistently as large
as 0.3 and above 0.15 over most of the range of parameters
with waves that encounter a critical level.

In Fig. 4�d� transmission is plotted for relatively stable
flow with Rib=1. In this case N0 is the same order of mag-
nitude as U /L and the shear has less impact upon the wave
propagation. In the limit as Rib approaches infinity perfect
transmission is expected throughout the non-critical region
and no transmission in the critical region. With Rib=1 the
transmission is already approaching this limit with transmis-
sion greater than 0.95 over nearly the entire range of param-
eters that allow wave propagation. In the critical region, to
the right of the dashed-dotted line, transmission is not pos-
sible. This is because Rig�1/4 over the entire critical region
so that waves may not propagate across the critical layer.

V. MIXED LAYER RESULTS

The background profiles examined in the previous sec-
tion are unstable for Rig
1/4. In this section we consider
wave transmission across a mixed layer resulting from taking
the initial conditions given by Eqs. �17� and �18� and solving
the Navier-Stokes equations so as to evolve the system until
it reaches a quasisteady state. Explicitly, the horizontally av-

eraged background N2 and Ū profiles are determined at time
t=100L /U0. The code used to perform this calculation is
described in detail by Sutherland and Peltier.28

Background shear and buoyancy frequency profiles,
as well as the gradient Richardson number in the central
mixed region, are plotted in the left panels of Fig. 5 for
Rib=0.001, 0.01, and 0.1. The circumstance with Rib=1,
studied in Sec. IV, is omitted as the flow is stable in this case.
The evolution of the flow involves the development of
Kelvin-Helmholtz billows that mix the region about z̃=0

both broadening the shear layer and locally reducing Ñ. The

resulting mean flow and horizontal averaged Ñ2 profiles are
similar to the piecewise-linear profile across which transmis-
sion was considered using an analytic formula by Brown and
Sutherland.20 Not only do incident waves encounter a shear
layer, but they also encounter a localized region of reduced

Ñ2 where the waves may be evanescent. If this region is
sufficiently narrow, it is nonetheless possible for waves to
tunnel through. The corresponding transmission coefficients
are given in the right panels of Figs. 5�a�–5�c�. These are
analogous to Figs. 4�a�–4�c�, respectively.

When the shear is relatively weak compared to the

FIG. 5. �Color� Background buoyancy frequency, shear, and gradient Rich-
ardson number profiles �left panels� for an evolving shear flow at t
=100L /U0 and corresponding transmission contour plots �right panels� for
�a� Rib=0.001, �b� Rib=0.010, and �c� Rib=0.100. The contour range and
bounding lines correspond to those in Figs. 4�a�–4�c�.
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strength of the buoyancy frequency the resulting transmis-
sion is similar to that of the nonevolved profiles in the non-
critical region. As in Sec. III we find that although there is a

reflection level near z̃=0 where Ñ2=0, almost perfect trans-

mission occurs for a wide range of �̃ and k̃. The similarities
between the transmission contours for the evolved and origi-
nal profiles suggests that internal waves transmit across the
mixed region throughout the mixing process.

In the region of the plot where a critical layer is encoun-
tered �to the right of the dashed-dotted line� there are more
significant differences between the transmission contours for
the original and evolved profiles. The mixing induces oppos-
ing effects in the gradient Richardson number: the broaden-

ing of the shear layer acts to reduce Ū�, thus increasing Rig,
while the mixing reduces N, thus decreasing Rig. Although
the effects are comparable in magnitude, Rig is typically
larger after the fluid has mixed suggesting that the mixing in
the gap is dominated by the broadening of the shear layer. As
such, wave transmission is possible for a smaller range of �̃

and k̃ and indeed the transmission coefficient is non-
negligible over a smaller parameter range.

For Rib=0.001 the shear and buoyancy frequency pro-
files are symmetric about z̃=0. This results from the fine-
scale convective instability which occurs when KH billows
transport dense fluid over light. In the mixed region

Rig
1/4 for 
z̃

2.81 and in this range 0.05
 Ũ
1.95. As
such, transmission is possible in the critical region for a very

broad range of �̃ and k̃. In comparing transmission for the
evolved and nonevolved profiles of Figs. 5�a� and 4�a�, re-
spectively, it is clear that in the critical region transmission

occurs over a comparable range of �̃ and k̃ and that trans-
mission is poor in both cases—the differences between the
two plots are almost indistinguishable.

For Rib=0.01 the differences between the original and
evolved profiles are more apparent. Comparing Figs. 4�b�
and 5�b� it is clear that there is generally stronger transmis-
sion of waves that do not encounter a critical level, particu-
larly for low frequency waves. A transmission “valley” oc-

curs for 0��̃�0.1 and −0.5
 k̃
0 when 0.1��̃ / k̃�0.5.
For these profiles, Rig
1/4 in the mixed region for


z̃

2.11 over which range 0.18
 Ũ
1.82. In the critical
region slightly stronger transmission occurs compared to that
computed for the original profiles, although non-negligible
transmission occurs over a smaller range of parameter space
for the evolved profiles.

For Rib=0.1, comparing the transmission contours in
Figs. 4�c� and 5�c� we see again that, in the noncritical re-
gion, transmission is generally stronger for the evolved plots
and that a transmission “valley” �though weak� occurs for

0.5��̃ / k̃�2.3 if �̃
0.3. In the critical region there is sig-
nificant deviation from the transmission contours obtained
from the original profiles. There are two small bands of �rela-
tively weak� transmission for the evolved profiles whereas
transmission was possible over a large range of parameters
for the original profiles. The lower frequency transmission
band coincides with waves encountering a critical level with

Rig
1/4 where −2.34
 z̃
−2.19 for which 0.42
 Ũ


0.47. There is a maximum in shear gradient at this level.
The higher transmission band occurs for waves encountering

a critical level where 1.02
 z̃
1.56 for which 1.11
 Ũ

1.31. This is coincident with a minimum in buoyancy fre-
quency. For the original profiles critical transmission was at
its greatest in this case.

VI. CONCLUSIONS

We have developed a method to calculate the transmis-
sion of internal waves through fluid with arbitrarily specified
density and shear profiles. We found that WKB theory accu-
rately predicts, within 98%, near perfect transmission into
unsheared, weakly stratified fluid if m̃1�1. For longer verti-
cal wavelengths, the calculated transmission is lower than
the WKB prediction. Wave transmission across a uniformly
stratified shear layer is found if waves do not encounter a
critical layer and if they encounter a critical level where
Rig
1/4. The quantitative behavior is similar for internal
waves propagating across a mixed region.

The method can be used in general to examine transmis-

sion through arbitrary N2 and Ū profiles and could prove
useful, in particular, in diagnosing transmission across the
equatorial undercurrent. In future work, we intend to extend
the method to include anelastic effects so that we may exam-
ine the transmission and reflection of internal waves origi-
nating in the troposphere and propagating through the meso-
sphere into the upper atmosphere.

APPENDIX: METHOD OF FROBENIUS

For internal waves encountering a critical layer, �̄�z*�
=0 for some z* in the domain of the flow. As �̄ appears in
the denominator of the � coefficient in the Taylor Goldstein
equation this results in a singularity. However, we may re-
write Eq. �2� as

�̄2�� + k2�N2 +
Ū��̄

k
− �̄2�� = 0, �A1�

and, when certain criteria are met, solve using the Frobenius
method.

To solve using the method of Frobenius, we must first fit
polynomials to the coefficients in Eq. �A1�. We make a linear

fit to �̄ near the singularity at z*:

�̄2�z� = a�z − z*�2, �A2�

and allow a parabolic fit to the � coefficient

k2N2�z� + k�̄U��z� − k2�̄2�z� = b�z − z*�2 + c�z − z*� + d ,

�A3�

so that we may rewrite Eq. �A1�

a�z − z*�2���z� + �b�z − z*�2 + c�z − z*� + d���z� = 0.

�A4�

Then, applying the method of Frobenius,29 we assume that
��z� has solutions of the form
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��z� = 
z − z*
r�
n=0

�

an�z − z*�n, �A5�

where r is found from the indicial equation,

r =
1

2
±�1

4
−

d

a
, �A6�

and, as r must be real, we require that d /a
1/4. This is
equivalent to the requirement that Eq. �3� be less than 1/4 at
the critical level for wave transmission to occur. We then find
the coefficients of the Frobenius expansion as

an =
ban−2 + can−1

a�n + r��n + r − 1� + d
. �A7�

Using this technique, two solutions are generated, one for
each r value. A superposition of these two results is chosen
such that the Frobenius solution will match the Stoermer
method solution at the last point of integration before the
critical layer.
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