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Abstract

We describe a new laboratory technique that has been developed to examine the

structure and amplitude of internal waves. As well as being relatively inexpensive to

set up, the technique is sensitive to small density uctuations: heat rising from a hand

can easily be seen. If the internal wave �eld is uniform across the span of the tank,

then the density gradient �eld can be measured non-intrusively everywhere in space and

time. We use this technique to measure the amplitude of internal waves generated by a

circular cylinder that oscillates at an angle with the vertical, and we examine how the

amplitude and phase of the waves changes as a function of the angle of oscillation. The

experimental results are compared with analytic theory. Generally, the theory agrees

well with experimental results although some consistent discrepancies exist which in

part we attribute to the e�ects of a viscous boundary layer surrounding the cylinder.

1 Introduction

Internal waves propagate due to buoyancy restoring forces acting in a density
strati�ed medium. Nastrom and Fritts (1992) have demonstrated by analysis of
aircraft records of atmospheric turbulence that the most signi�cant source of inter-
nal waves in the atmosphere are in mountainous regions. The waves are generated
by the ow of wind over mountains which force the strati�ed air upward and down-
ward (e.g. see Lilly (1971), Wurtele et al (1996)). Likewise, in the ocean internal
waves have been observed to be generated near the continental shelf edge (e.g. see
Wunsch (1975), Huthnance (1989)), over sills such as the Strait of Gibraltar (e.g.
see Brandt et al (1996)), and by ow over deep ocean ridges (e.g. see Konyaev
et al (1995)). The linear theory for internal waves generated by small amplitude
forcing is well established for isolated (Long, 1955) and periodic (Gill (1982) x6) to-
pography. In numerical models of large-scale atmospheric and oceanic ows, linear
theory is often employed to model the generation of internal waves. However, if the
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horizontal and vertical scales of the topography are comparable, the applicability
of linear theory is drawn into question.

We have begun a program of research to evaluate the e�ectiveness of lin-
ear theory in predicting the structure and amplitude of internal waves generated
by a localised source. We use a new experimental technique called \synthetic
schlieren" that allows us for the �rst time to measure non-intrusively the ampli-
tude of spanwise-uniform internal waves everywhere in space and time. If the waves
are not spanwise-uniform, the technique nonetheless provides an average measure
of their spanwise properties. In the work presented here, we examine the internal
wave �eld produced by a circular cylinder oscillating at a range of angles to the ver-
tical. Although not directly applicable to the study of mountain waves, this simple
geometry provides an historically precedented starting point. We compare our re-
sults with classic experiments performed originally by Mowbray and Rarity (1967),
and we compare the observed amplitude of the waves with the amplitude predicted
theoretically by Hurley and Keady (1997). In particular, by determining where dis-
crepancies occur between theory and the experimentally measured structure and
amplitude of the waves as a function of the amplitude and angle of oscillation of
the source, we are able to assess where models of the coupling between the uid
response and the source may be improved.

Mowbray and Rarity (1967) examined internal waves generated by a vertically
oscillating circular cylinder in uniformly strati�ed uid. Using a classical schlieren
technique, they showed that internal waves generated by an oscillating cylinder
emanate along four beams forming the pattern of a \St. Andrew's Cross" with the
cylinder at the centre. Each beam is inclined at an angle � to the vertical, this
angle being determined by the frequency, !, of the oscillations and the background
buoyancy frequency, N (z). For a strati�ed Boussinesq uid, the squared buoyancy
frequency N2 is given by

N2(z) = �
g

�0

d�

dz
; (1)

in which g is the gravitational acceleration, �0 is a reference value of density, and
�(z) is the vertical pro�le of the background density as a function of height z. From
the linear dispersion relation for internal waves (e.g. see Lighthill (1978)), it can be
shown that if ! < N , then

� = cos�1(!=N ): (2)

A variety of studies have employed linear theory to predict the structure and
amplitude of the internal wave-beams generated by an oscillating source. For a
vibrating point source in inviscid uid, Makarov et al (1990) showed that wave
motion is aligned along beams of in�nitesimal width, the shear across the beam
being in�nite. In a theory including the e�ects of viscosity, this unphysical sin-
gularity does not occur. Viscosity acts to attenuate and broaden the beam with
distance from the source. Thomas and Stevenson (1972) found a similarity solution
for the beam attenuation, showing that the beam width increases as r1=3 and the
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uid displacement decreases as r�1 with distance r from the cylinder. These re-
sults were con�rmed experimentally by Peters (1985). For a �nite-sized source, the
width of the beams has been found to be comparable with the source size (Appleby
and Crighton, 1986; Appleby and Crighton, 1987; Voisin, 1991; Hurley and Keady,
1997), however the qualitative structure of the beams varies depending on the ratio
of the source size d compared with the viscous length scale

`� =
(g�)1=3

N
; (3)

where � is the kinematic viscosity. If `� � d, then the beams are bimodal; that
is, they consist of two bands which emanate from the tangential extremities of
the source (Makarov, Neklyudov and Chashechkin, 1990; Kistovich, Neklyudov
and Chashechkin, 1990). If `� � d, then the beams are unimodal: the maximum
amplitude is along the centre of each beam. If the viscous length scale is relatively
small so that the beams close to the cylinder are bimodal, then Makarov et al (1990)
predicted that wave-beams would be attenuated by viscosity and have a unimodal
structure for r > R�, where

R� =
g

N2
R3=`�

3 =
NR3

�
; (4)

in which R is the radius of the cylinder. For large r=R, however, the assumptions
used to derive (4) may not be valid, and it is possible for the transition from
bimodal to unimodal wave-beam structures to occur over a much shorter distance
thanR� . Indeed, in their experiments of a vertically oscillating cylinder, Sutherland
et al (1999) have shown that R� signi�cantly overestimates this transition distance.

Recently, analytic solutions have been derived from linear theory of internal
waves generated by a cylinder that oscillates about a range of angles to the vertical
in uniformly strati�ed, inviscid (Hurley, 1997) and viscous (Hurley and Keady,
1997) uid. A summary of the latter is given in Section 2. This theory employs
the \boundary layer approximation" of Thomas and Stevenson (1972), in which it
is assumed that along-beam motions dominate over across-beam motions. Their
solutions qualitatively reproduce the transition from near-cylinder bimodal to far
�eld unimodal beams. However, the \boundary layer approximation" is inapplica-
ble near the source where viscous boundary layers surround the cylinder. With the
synthetic schlieren technique it is now possible to examine the range of accuracy
of the theory when applied to �nite-amplitude waves with a �nite-sized boundary
layer surrounding the cylinder. In experiments using the technique we measure the
amplitude and structure of the waves generated by an oscillating cylinder, and we
compare our results with theory to evaluate the e�ect of the boundary layer upon
the far �eld evolution of the waves. This work, in particular, examines how the
structure and amplitude of the waves change when a circular cylinder oscillates at
di�erent angles to the vertical.

In Section 3 we give a brief historical review of schlieren and interferometric
techniques and we describe how synthetic schlieren may be used to measure quanti-
tatively the amplitude of a spanwise uniform internal wave �eld everywhere in space
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Fig. 1. A schematic showing the (�; r) co-ordinate system for the down and right-
ward wave beam propagating at an angle � with the vertical.

and time. Section 4 describes the experimental results, and these are compared
with theory in Section 5. A summary is given in Section 6.

2 Theory

Here we review the linear theory of internal waves generated by an oscillat-
ing cylinder in viscous uid, the analytic solutions for which have been found by
Hurley and Keady (1997). We consider a cylinder oscillating with frequency ! in
a uniformly strati�ed uid with buoyancy frequency N . The displacement of the
cylinder in time t is given by (Ax; Az) exp(�{!t), in which Ax is the horizontal and
Az the vertical component of the displacement vector. It is convenient to write
the amplitude (Ax; Az) = A(� sin �; cos�), in which � is the angle of oscillation
measured anti-clockwise from the vertical as shown in Fig. 1. It is assumed that
the resulting two-dimensional wave �eld is oscillatory with frequency ! and may
be represented in terms of the streamfunction  (x; z) exp(�{!t). The Boussinesq
approximation is employed and the waves are assumed to be of small amplitude so
that linear theory applies. Under these assumptions it can easily be shown that
 (x; z) satis�es

N2@
2 

@x2
� !2r2 + {!�r4 = 0: (5)

The solution of this equation is found for  along the internal wave beam
propagating downward and to the right of the cylinder. Equation (5) is re-expressed
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in an orthogonal co-ordinate system with axes in the along-beam (r) and across-
beam (�) directions, as shown schematically in Fig. 1. The relationship between
(r; �) and (x; z) is given by

� = x cos� + z sin�; r = x sin� � z cos �; (6)

in which � is the angle the r-axis makes with the vertical. In the (r; �) co-ordinate
system, (5) is further simpli�ed by applying the \boundary-layer approximation"
(Thomas and Stevenson, 1972) which assumes that gradients in the across-beam
direction are much larger than those in the along-beam direction. Thus we obtain

�
@2 

@�@r
+

{�

2! tan�

@4 

@�4
= 0: (7)

The solution to (7) for the right and downward propagating wave beam is given
by

 =
AR!

2
e{(���)

Z
1

0

J1(K)

K
exp

�
�K3�

r

R
+ {K

�

R

�
dK; r > 0; (8)

in which � = �
2R2! tan�

and J1 is the �rst order Bessel function of the �rst kind
(Hurley and Keady, 1997). E�ectively  is determined from an integral over the
non-dimensional across-beam wavenumber K.

For comparison with experiments, we wish to �nd the solution in terms of the
change in the squared buoyancy frequency, which is related to the vertical gradient
of the perturbation density �eld, �(x; z), by �N2 = �(g=�0)d�=dz. Using linear

theory, we �nd that �N2 = �{
!
N2 @

2 
@x@z

. Hence

�N2 = �{
2 ARN

2e{(���)
�Z

1

0

�
�
1

2
(�2k4R4 + 1)k2 sin 2�� {�k4R2 cos 2�

�
J1(Rk)

k
exp(�R2k3�r + {k�) dk

�
; (9)

where we have de�ned the dimensional across-beam wavenumber k = K=R (Suther-
land et al., 1999). For �xed values of r, this integral is solved using a discrete fast
Fourier transform algorithm (Press et al (1993) x12.2).

3 Experimental method

Synthetic schlieren is a new technique that is relatively inexpensive to set up,
and which provides a robust method for visualising and measuring small amplitude,
two-dimensional internal waves. Below we briey review other schlieren techniques,
we describe the set-up for the experiments reported here, and we explain how the
amplitude of internal waves is measured using synthetic schlieren. A detailed review
of schlieren, interferometric and similar techniques and a more general discussion
of synthetic schlieren is given by Sutherland et al (1999) and Dalziel et al (1999).
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3.1 Review of schlieren techniques

Schlieren techniques (Toepler, 1864; Mowbray and Rarity, 1967; Thomas and
Stevenson, 1972) have often been used to visualise the �eld of internal waves pro-
duced by an oscillating cylinder in salt-strati�ed water. The methods take advan-
tage of the fact that the index of refraction n of salt water varies as a function of
salinity, and that light rays passing through strati�ed uid at angles close to the
horizontal are deected as they propagate through uid of varying refractive index.
The degree to which they are deected depends upon the density gradient. An in-
ternal wave acts to stretch and compress isopycnal surfaces and thereby change
the local density gradient. The path followed by light rays is thereby deected to
a greater or lesser degree.

In the classical schlieren technique, a light source reects o� a large parabolic
mirror to create parallel beams of light that pass through a test section of the tank
�lled with salt-strati�ed water. A second parabolic mirror refocusses the beam,
and a knife edge at the focus removes parts of the beam that are deected from
their parallel path when passing through the tank. The parabolic mirrors required
to focus the beams are expensive, di�cult to set up, and allow a relatively small
�eld of view.

The Moir�e fringe method (Sakai, 1990) operates in a similar manner to classical
schlieren, but replaces the pair of parabolic mirrors and knife edge by a pair of
accurately aligned masks. These masks consist of a set of parallel lines and are
normally aligned so that 50% of the light passing through the �rst mask on one
side of the test section is stopped by the second \analysing" mask on the other side
of the test section. Due to camera parallax, the lines on the mask in front of the
tank are more closely spaced than those to the rear of the tank. The Moir�e fringe
method is cheaper to implement and may be scaled up to cover larger domains
more readily than classical schlieren. The main di�culty is that the alignment
between the apparent position of the mask behind the tank and the analysing-
mask in front of the tank is critical and non-trivial, especially if light entering the
camera is not approximately parallel or if the strati�cation is non-uniform so that
the line spacings are not related by a simple scale factor.

The synthetic schlieren method overcomes this di�culty by eliminating the need
for the analysing-mask used in the Moir�e fringe method. It does so by creating a
\virtual" mask that is generated digitally. Thus synthetic schlieren is not only more
robust, but also capable of quantitatively measuring wave amplitudes. Details of
how the method works and how quantitative measurements are made are given in
the following subsection.

3.2 Set-up of experiment and synthetic schlieren

Figure 2 shows the typical set-up (not to scale) of an experiment using synthetic
schlieren to visualise internal waves. Light rays, which emanate from an image
back-illuminated by a rack of uorescent tubes, pass at angles close to the horizontal
through a tank �lled with salt strati�ed water. The deected rays then enter



B. R. Sutherland et al./Dynamics of Atmospheres and Oceans 7

Fig. 2. Schematic showing the set-up used for synthetic schlieren. The three solid
lines from the light source to the camera represent light rays which pass through
a tank of salt-strati�ed water. The small dashed lines departing from the centre
ray represents the deected ray path taken if the density gradient (and hence the
squared buoyancy frequency) changes due to internal gravity waves.

a CCD camera, and the resulting signal is either recorded directly to tape or is
digitally processed through a frame-grabber card and stored on hard-disk using
\DigImage", an image processing software package (Dalziel, 1992). The digitised
intensities are assigned integer values between 0 and 255. In these experiments,
the illuminated image is a grid of horizontal black and white lines from which it
is possible to determine changes in the vertical density gradient of the uid. An
image of a random pattern of dots may also be used, in which case it is possible
to measure simultaneously the horizontal and vertical density gradients (Dalziel,
Hughes and Sutherland, 1999). The camera is placed as far from the tank as
practical, typically about 350 cm away, so as to minimise the angle with which
the light ray enters the camera. For these experiments, the angle is less than
approximately 2�. An initial digitised image is recorded to calibrate the light
source. During an experiment departures from the initial intensities are recorded
and used to visualise and measure the wave amplitudes.

Experiments are performed in a tank with test section 20 cm wide by 40 cm
tall. The length of the test section is over 200 cm long so that end e�ects are
negligible. Using a double bucket system, an approximately uniform strati�cation
is established with N2 ' 1�0:1 s�2 over 35 cm depth. A circular cylinder of radius
R = 1:67 cm is suspended with its centre approximately 25:7 cm above the bottom
of the tank and is oriented so that its horizontal axis spans the width of the tank.
The cylinder is constructed from a PVC tube with removable ends which allow it to
be partially �lled with water in order to reduce its e�ective weight when suspended
underwater. The cylinder is supported by a thin metal rod attached to its centre.
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The other end of the rod is attached 45 cm along a sinusoidally oscillating arm
by a hinge, and the rod itself is con�ned to pass through a rigid guide so that
the cylinder undergoes approximately sinusoidal oscillations along a line. When
oscillating vertically, the peak to peak displacement of the cylinder is 0:64 cm,
approximately 20 percent of the cylinder diameter. The amplitude A is de�ned to
be the maximum displacement of the cylinder from its equilibrium position. For a
vertically oscillating cylinder, A = 0:32 cm, and for a cylinder that oscillates along
an axis at an angle � to the vertical, the amplitude is A = 0:32(cos�) cm. The
ow about the cylinder is laminar for all oscillation frequencies and amplitudes
examined. Time series constructed from images of the moving cylinder con�rm
that it moves sinusoidally; power spectra exhibit negligible amplitude outside a
narrow range about the oscillation frequency.

The results of a typical experiment are shown in Fig. 3. Here the cylinder oscil-
lates vertically with frequency ! ' 0:35 s�1. Figure 3a shows the digitised image
taken by the camera before the cylinder begins oscillating. The image shows the
end view of the cylinder, the suspending rod and the illuminated grid of horizontal
lines behind the tank. Figure 3b shows the image taken after the cylinder has
completed four oscillations and is moving downward through its equilibrium posi-
tion. Although Figs. 3a and b are similar, minute displacements of the lines near
the cylinder are clearly visible. Indeed, although not visible to the naked eye, the
lines far from the cylinder are displaced due to the wave �eld. The discrepancy
between Figs. 3a and b is made apparent by determining the absolute value of the
di�erence between the intensities of each pixel in the two diagrams. Figure 3c is
produced by performing this operation over the entire �eld and multiplying the
result by a scaling factor of 20. The image shows the internal wave �eld consisting
of four beams. The �gure shows that the amplitude of the waves near the cylinder
is largest along tangents to the cylinder parallel to the direction of the beam and is
small along a line through the centre of each beam. The viscosity length-scale given
by (3) is `� ' 10 cm in this experiment, which is much larger than the cylinder
diameter 2R ' 3:3 cm. Thus, on the basis of Makarov et al (1990), the beam near
the cylinder is expected to be bimodal, a result consistent with experiments. The
arithmetic operations used to determine this image may be performed in real time
thus allowing continuous visualisation of the internal wave �eld during the course
of an experiment.

Although qualitative information (e.g. the frequency and angle of the wave-
beams) may be derived from an image such as that in Fig. 3c, the image does not
directly reveal any quantitative information about the amplitude of the waves. As
shown in the next section, however, it is possible to relate the intensity change of
a pixel to the deection of a light ray, and from this calculate the density gradient
�eld. Figure 3d shows the result of this calculation determined from the images in
Figs. 3a and b. The �gure shows the change in the squared buoyancy frequency
�eld �N2(x; z). The �eld is shown as a gray-scale for values ranging from �0:15
(black) to 0:15s�2 (white). Inspection of this �eld shows, for example, that the
density gradient changes by as much as 10% close to the cylinder. The details of
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Fig. 3. Internal waves generated by a vertically oscillating cylinder visualised by
synthetic schlieren. The side view of the cylinder and background grid lines is
shown a) before the cylinder starts moving and b) after it has oscillated 4 times.
Image c) is produced by subtracting and scaling the intensities of the images shown
in a) and b). In d), the �N2 �eld is shown as calculated from the images shown in
a) and b). The values corresponding to the gray scale range from �0:15 s�2 (black)
to 0:15s�2 (white). See the text for more details.

how the �N2 �eld is calculated are given below.

3.3 Quantitative measurement of internal wave amplitudes

Consider the path followed by a light ray passing from the camera through
the tank to the image, as shown in Fig. 2. The (x; y; z) co-ordinate system is
oriented with z vertical, y horizontal across the span of the tank toward the image,
and x horizontal in the along-tank direction to the right facing the image. It
is assumed that the variations of refractive index in the y-direction through the
tank are negligible. This assumption is reasonable due to the geometry of the
experimental set-up. The only spanwise variations that do, in fact, occur are within
the boundary layers at the side walls of the tank. From boundary layer theory, the
total thickness of the two layers is approximately 2mm, or about 1 percent of the
tank width. Although such research has not yet been performed in detail, it is
worth noting that synthetic schlieren could also be used to visualise internal waves
that are not spanwise uniform, such as those generated by an oscillating sphere. In
this case the deected light ray would yield some measure of the average variation
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of n across the span of the tank. A detailed discussion of this circumstance is
beyond the scope of the present paper.

In order to simplify this discussion for the oscillating cylinder, as well as assum-
ing the refractive index is independent of y, it is assumed that the path of the light
ray lies in the y � z plane. A more general treatment, including deections in the
x direction is given by Sutherland et al (1999). If the ray passes through the tank
with a small positive angle to the horizontal, then as it propagates upward into
less dense uid the index of refraction is smaller, and the ray is refracted towards
the horizontal. Speci�cally, the path taken by the ray satis�es Snell's Law,

n cos' = constant; (10)

in which n = n(z) is the index of refraction and ' = '(y; z) is the angle the ray
makes with the horizontal. The angle is given in terms of the slope of the ray with
the horizontal by

dz

dy
= tan': (11)

Combining these gives a di�erential equation for z in terms of y. Explicitly, taking
the y-derivative of (10) and using (11) it is found that

@'

@y
=
n0(z)

n(z)
: (12)

Then taking the y-derivative of (11) and using (12) and the fact that j'j < 2�, the
equations simplify to

d2z

dy2
=
n0(z)

n(z)
; (13)

the solution of which describes the path taken by the light ray through the tank
(Sutherland et al., 1999).

In the absence of strong mixing or layering, it is valid to assume that the
refractive index varies linearly over the small depth traversed by the light ray
(typically less than 1 cm) and that the refractive index varies linearly with density
(Weast, 1981). Then, after some simpli�cation of the solution to (13), the vertical
displacement of the ray, z, is found as a function of the spanwise distance across
the tank y:

z(y) ' y tan'i �
1

2
N2y2; (14)

where 'i is the angle to the horizontal of the ray entering the tank on the camera
side, and

 =
1

g

�0
n0

dn

d�
' 1:878� 10�4s2=cm; (15)
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in which n0 is a reference value of the index of refraction.
Equation (14) shows that the e�ect of stable strati�cation is to bend a nearly

horizontal light ray along a (concave downward) parabolic arc. Thus a local increase
in the density gradient in the tank acts to deect a light ray downward, and the
image behind the tank appears to shift upward. Because the angle of the ray
leaving the tank changes, the farther the image is positioned behind the tank the
greater its apparent vertical displacement.

Quantitative measurements of the density gradient �eld are obtained by relating
it to the apparent displacement of horizontal grid lines in the image. By the
repeated application of Snell's Law as the light ray passes from the grid to the
camera, the change in the squared buoyancy frequency is found as a function of
the apparent vertical displacement �eld �z of the image:

�N2 ' ��z
1



�
1

2
L2
tank + LtankLscreen

nwater
nair

�
�1

; (16)

in which nair and nwater are the refractive indices of air and water, taken to be 1
and 1:333, respectively, Ltank ' 20:0 cm is the width of the tank, and Lscreen '
34:2 cm is the distance between the tank and the image. Here, the thickness of
the tank walls is assumed to be negligibly small. Substituting these values in (16)
gives �N2 ' �0:2�z, in which the �elds of �N2(x; z) and �z(x; z) are measured
in units of s�2 and cm, respectively.

The experiment is set up so that a pixel appears to shift vertically by no more
than its height. Knowing the position and intensities of three vertically aligned
pixels, the vertical displacement of the centre pixel is estimated by quadratic in-
terpolation. Speci�cally, if during an experiment the intensity I0 of a pixel changes
from its initial value I0, then the apparent displacement is

�z = (z�1 � z0)
(I0 � I0)(I

0 � I1)

(I�1 � I0)(I�1 � I1)
+ (z1 � z0)

(I0 � I0)(I
0 � I�1)

(I1 � I0)(I1 � I�1)
:

(17)

in which z�1, z0 and z1 are the co-ordinates of the centres of the three pixels, and
I�1, I0 and I1 are the respective initial intensities. Note, if there is no intensity
change of the middle pixel (that is, if I0 = I0), then �z = 0. Equation (17) is
solved only if I1 < I0 < I�1 or I�1 < I0 < I1, and the intensity contrast across the
three lines is su�ciently large: jI1 � I�1j > �Imin, in which the threshold �Imin
is set explicitly. Typically, �Imin = 10.

Once �z has been determined, (16) is applied to determine �N2. Points for
which �z could not be calculated are determined by working out the weighted
average of the neighbouring calculated values. A Gaussian weighting factor is
used, its magnitude decreasing with increasing distance from the center pixel being
determined. The image is then �ltered and averaged in order to reduce noise, as
described below.

Even though a single pixel typically spans a vertical distance of 0:05 cm in the
experiments reported here, it is estimated that apparent displacements correspond-
ing to approximately 1=25 of the pixel spacing (0:002cm) can be visualised. For
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typical experiments, the noise �ltered �z �eld provides quantitative measurements
accurate to �0:01 cm. As a result, using (16) and the experimental data that fol-
lows it, �N2 can be detected in theory for values as small as 0:002s�2. However,
the actual error in the measurement of �N2 is signi�cantly greater due to noise,
which is dominated by rapid variations in the temperature of the laboratory, degra-
dation of the image quality through storage on video tape, and changes in the light
source intensity.

In order to reduce noise e�ectively, vertical time series are constructed from
video images. Pixel scale noise is reduced by replacing each pixel value with the
spatio-temporal average of the surrounding 5 by 5 square pixel region. The result
is then put through a low pass �lter in the time domain to reduce contamination of
the signal due to temperature variations, and the mean value in time is subtracted
to reduce the e�ect of gradually increasing temperatures and light intensities. This
is done for a range of vertical time series determined along a sequence of horizontal
positions. After �ltering, the two dimensional spatial �eld of view is reconstituted
at particular times.

Before �ltering, the standard deviation in values of �N2, determined from
calibration test images is approximately 0:05 s�2. After �ltering the resulting mea-
surements have an associated error of 0:01 s�2. This estimate is determined by
noting that the dominant noise signal at a particular pixel is reduced at the �rst
step by averaging over 25 surrounding pixels.

In some circumstances it is convenient to estimate the time derivative of the N2

�eld, N2
t. E�ectively, N2

t is a measure of the rate of stretching and compression of
vertical density gradients. It is calculated from a �nite di�erence approximation to
the time derivative by determining �z at successive times spaced at intervals much
less than the period of the wave-motion. Sutherland et al (1999) have demonstrated
that the basic state �elds of perturbation density and horizontal and vertical veloc-
ity may be estimated from the �N2 and N2

t �elds. In order to assist in developing
an intuition for these relationships, here we present them for the special case of
plane periodic internal waves with frequency ! and wavenumber vector (kx; kz):

u = �{=kx(N
2
t=N

2); w = {=kz(N
2
t=N

2);

� = �0({=gkz) �N
2; and � = {=kz (�N

2=N2): (18)

In the last of these relationships, � is the vertical displacement �eld associated with
the internal waves. Note that each basic state �eld is phase-shifted by ��=2 from
the �N2 and N2

t �elds.

The relationships given by (18) may be used as a double check on the experi-
mental results. For example, by tracking the horizontal displacements of a vertical
line of dye (e.g. from a dropped potassium permanganate crystal), an independent
measure of the horizontal velocity �eld can be determined and compared with u,
determined from (18). An analysis of this kind was performed by Sutherland and
Linden (1998b).



B. R. Sutherland et al./Dynamics of Atmospheres and Oceans 13

Fig. 4. Initial experimentally measured vertical pro�les of a) density and b) the
squared buoyancy frequency.

4 Qualitative results

Using the synthetic schlieren technique, we have performed a range of exper-
iments to study the structure and amplitude of internal waves generated by a
cylinder oscillating at an angle � to the vertical. In each experiment the cylinder is
positioned near z = 25cm above the bottom of the tank. Before the experiments
are performed, a conductivity probe is traversed downward through the uid to
measure the density pro�le. The probe moves downward at 4 cm=s taking samples
at a rate of 100Hz. The density pro�le for the experiments reported here is shown
in Fig. 4a. Figure 4b shows the pro�le of the squared buoyancy frequency calcu-
lated from the density pro�le. The �gure shows that N2 ' 1 s�2 at the depth of
the centre of the cylinder, and is moderately larger (1 < N2 < 1:2 s�2) below the
cylinder.

Fig. 5 shows the wave-beams emanating from a cylinder oscillating at angles
a) � = 0�, b) � = 15:8�, c) � = 22:6� and d) � = 36:8� from the vertical. The
angle of oscillation increases counter-clockwise from the vertical for larger values
of �. In each experiment, the cylinder oscillates at a frequency ! ' 0:53 s�1, thus
producing four wave-beams each of which is expected to emanate from the cylinder
at an angle � ' 58� to the vertical. In each diagram, the wave �eld is shown over
a region extending from �8 < x < 8 cm and �10 < z < 2 cm. The cylinder,
which is centred at the origin, is superimposed in white. Note that the camera is
centred approximately 4 cm below the centre of the cylinder: the image is recorded
of both the end and underside of the cylinder and thus the vertical extent of the
cylinder appears larger than its actual radius. The contours show values of the
�N2 �eld associated with the internal waves after the cylinder has completed at
least four oscillations and it is moving downward through its equilibrium position.
The contours range from �0:12 to 0:12 s�2, as illustrated. The most obvious e�ect
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of changing the angle of oscillation is to change the relative phase of the downward
right and left propagating internal wave-beams. When � = 0:0, the two beams are
symmetric about a vertical line through the centre of the cylinder. The upward
and downward propagating beams to the right of the cylinder are approximately
anti-symmetric about a horizontal line through the centre of the cylinder. The
same is true of the upward and downward propagating beams to the left of the
cylinder.

When the cylinder oscillates at an angle to the vertical, the symmetry is broken
between the downward right and left propagating wave-beams. The relative phase
of the beams changes so that, for example, the amplitude of the �N2 �eld on the
lower ank of the left propagating wave-beam is smaller compared with the right
propagating wave-beam as � increases. The change in phase with increasing � of
the upward and downward propagating waves is also apparent to the right and left
of the cylinder. When � = 0�, there is a positive and negative peak in the �N2

�eld approximately 0:5 cm above and below the line z = 0, respectively. When
� = 36:8�, there is a negative peak centred just below the line z = 0 to the right
of the cylinder and a positive peak centred just above the line z = 0 to the left of
the cylinder.

To demonstrate the phase change in more detail, Fig. 6 shows four time series
constructed from a cross-section along a vertical line directly below the cylinder
centre along x = 0. The experiments from which each diagram is determined
correspond with those shown in Fig. 5 with a) � = 0�, b) � = 15:8�, c) � = 22:6�

and d) � = 36:8�. The cylinder oscillates at a frequency ! ' 0:72 s�1 in each case.
The time evolution of the waves is shown over 20 s from �6 � z � �1 cm, the time
series ending when the cylinder moves downward through its equilibrium position.
The contours show the time rate of change of the squared buoyancy frequency �eld
N2

t with values ranging from�0:25 to 0:25 s�3, as illustrated. In each diagram, the
lines of constant phase propagate upward with increasing time. This behaviour is
expected because internal waves with downward group velocity have upward phase
speed.

The pattern of waves illustrates the e�ect of changing � upon the relative phases
of the right and left propagating wave-beams. Consider the time and depth at which
the maximum and minimumvalue of N2

t occurs. Although it is not clear precisely
where the maximum occurs in the case with � = 0o (Fig. 6a), both the positive
and negative peaks occur at depths between z = �4 and �3 cm. For successively
larger values of �, the depth and phase of the cylinder oscillation for which the
negative peak value of N2

t occurs is approximately the same: the peak occurs
near z = �3 cm at a time when the cylinder moves upward through its equilibrium
position. However, the positive peak value of N2

t occurs at a time closer in phase
to the negative peak and it occurs at shallower depths (z > �3 cm). In particular,
when � = 36:8� (Fig. 6d) the peak is situated near the base of cylinder at about
z = �2 cm and occurs shortly after the cylinder begins to move upward from its
deepest displacement. Thus as the cylinder oscillates at angles further from the
vertical, the interference between the left and right wave-beams is more destructive.
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Fig. 5. �N2 �eld about a cylinder oscillating about an angle � to the vertical with
a) � = 0:0o, b) 15:8o, c) 22:6o, and d) 36:8o. In each case the cylinder oscillates
at frequency 0:53 s�1, which generates internal waves that propagate at angles
� ' 58o to the vertical.

Indeed, linear theory predicts that if the cylinder oscillates horizontally, the N2
t

�eld of the two beams should destructively interfere along x = 0.
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Fig. 6. Time series of a vertical cross-section taken directly beneath the cylinder
at x = 0 for the cylinder oscillating with frequency 0:72 s�1 about an angle � to
the vertical with a) � = 0:0o, b) 15:8o, c) 22:6o and d) 36:8o.

5 Comparison with Theory

A range of experiments have been performed in which we compare observations
and theory for internal waves generated by a cylinder oscillating with di�erent
amplitudes and a range of angles to the vertical. Future work will examine how
the wave �eld depends upon the shape of the cylinder itself.

A detailed study of the dependence of the internal wave �eld amplitude upon the
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amplitude of a vertically oscillating cylinder is given in Sutherland et al (1999). In
this paper, we review the comparison of experiments with the theory of Hurley and
Keady (1997) for the structure of the wave �eld produced by a cylinder oscillating
vertically at four di�erent frequencies. We then examine how the structure of the
wave �eld depends upon the angle of oscillation with the vertical. Future work will
examine how the wave �eld depends upon the shape of the cylinder itself.

5.1 Cylinder Oscillating at Di�erent Frequencies

Figure 7 shows the downward and right propagating internal wave beam gen-
erated from a cylinder that oscillates vertically at frequencies a) ! = 0:15 s�1, b)
0:35 s�1, c) 0:53s�1 and d) 0:72 s�1. Because linear theory predicts that density
perturbations scale with the cylinder amplitude it is convenient to show contours
of the �N2 �eld normalised by the cylinder amplitude A = 0:32cm. The contours
range from �0:5 to 0:5 s�2cm�1. In each case the �elds are shown as the cylinder
moves downward through its equilibrium position. The waves are shown in a frame
of reference rotated anti-clockwise by an angle 90o � �r , with �r determined so
that in each case the lines of constant phase of the right and downward propagating
beams between 10 � r � 15 cm are, on average, horizontal. In a) �r = 78:9o, b)
66:1o, c) 54:2o and d) 39:4o. In this frame the horizontal (r) axis is the along-beam
direction and the vertical (�) axis is the across-beam direction oriented so that
� > 0 corresponds with the upper ank of the wave beam. (Note, this orientation
for � is opposite to that used by Hurley and Keady (1997)).

The buoyancy frequency of the uid is N ' 1:02(�0:04)s�1, determined from
the mean and standard deviation of the experimentally measured N (z) pro�le for
10 � z � 30 cm. From linear theory, the corresponding angle of propagation of
the beams with the vertical is expected to be a) � ' 81:5 � 0:3o, b) 69:9� 0:8o,
c) 58:7 � 1:5o, and d) 45:1 � 2:4o, respectively, for the four diagrams in Fig. 7.
Although �r ' � is expected, we �nd that �r is consistently smaller than �:
in a) �� ' 2:6o, b) 3:8o, c) 4:5o, and d) 5:7o, in which �� = � � �r . The
reason for this discrepancy is unclear. Parallax, while playing a small role, does
not account for the observed apparent deection of the beam. It is possible that
the deection occurs because the width of the beam is comparable with the scale
of the background buoyancy frequency variations (Sutherland and Linden, 1998a),
or that it is an artifact of the broadening beam as it attenuates.

In experiments performed with the cylinder oscillating at frequency ! ' 0:72 s�1,
upward propagating waves reect from the water surface and signi�cantly interfere
with the wave beams that propagate downward from the cylinder. The interfer-
ence between the reected and downward propagating wave beams can be seen
in Fig. 7d. Here, the positive and negative peaks above � ' 2 cm are associated
with the reected waves. The lower ank of the reected beam interferes with the
upper ank of the downward propagating beam originating from the cylinder at
about � ' 2 cm, but the interference is negligible on the lower ank of the beam
(� < 0 cm). In general, the diagrams show that the amplitude of the waves is larger
if the cylinder oscillates with larger frequency.
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Fig. 7. Normalised �N2=A �eld for a vertically oscillating cylinder with ampli-
tude A, oscillating at frequencies a) ! = 0:15 s�1, b) 0:35s�1, c) 0:53s�1 and d)
0:72 s�1. The background buoyancy frequency is N ' 1:02� 0:04 s�1. The right
and downward propagating beam of waves is shown in a (r; �) co-ordinate system.
The vertical dashed line at r = 9R indicates where a cross-section is taken for
comparison with theory.

Figure 8 shows the amplitude of the observed (dashed line) and theoretically
predicted (solid line) wave �eld determined from the four experiments shown in
Fig. 7. The plots of �N2=A are shown along cross-sections perpendicular to the
beam, centred at a distance 9R from the centre of the cylinder as indicated by
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the vertical dashed line in each diagram of Fig. 7. The distance is chosen to be
su�ciently far along the wave beam from the cylinder that the superposition of
the upward propagating wave beam upon it can be neglected in the case with
! = 0:35 s�1. The structure of the wave beam at a range of distances from the
cylinder is examined by Sutherland et al (1999).

In each diagram the range of experimental error is indicated in the top left-hand
corner. From the estimates given at the end of x3.3, the error in the amplitude is
given by �0:01=A ' �0:03. The error in time is estimated by assuming the desired
phase of the waves can be determined within 0:5 s of the actual time at which they
occur.

In each of the four cases shown, the across-beam structure is well reproduced
by the theoretical prediction given by (9). In the case with ! = 0:15s�1, the
theoretical structure of the upward propagating wave beam is superimposed, as it
is necessary in this case to account for interference of the upper and lower beams at
r = 9R. In Figs. 8a{c, the discrepancies between theory and experiment are within
experimental error. In Fig. 8d, the di�erences between experiment and theory for
� > 1 cm may be attributed to the interference of the surface reected wave beam
with the upper ank of the downward propagating wave beam, as discussed above.

Although the theoretically predicted amplitude is within errors, in general,
some consistent discrepancies exist. We �nd that in each case the width of the
beam is under-predicted by theory by approximately 10� 6%. This discrepancy is
examined more closely by Sutherland et al (1999), who argue that it occurs because
linear theory neglects the viscous boundary layers surrounding the cylinder, that
e�ectively act to increase the size of the source. This is not to say that a theoretical
solution, rescaled to account for the e�ective increase in size of the source, would be
su�cient to predict accurately the experimental results. For example, whereas the
width of the beam is consistently under-predicted, as shown below, the amplitude
of the waves is apparently both over- and under-predicted, depending on the wave
frequency.

A comparison between the experimental and theoretical pro�les shows that
theory over-predicts the peak positive amplitude observed on the upper ank of
the beam, except in the case with ! ' 0:15 s�1. This discrepancy is believed to
be an artifact of errors in the time (�0:5 s) at which the images are analysed from
video images of the experiment. As a result the phase of the waves may di�er from
theory by as much as 6%.

However, what cannot be attributed to such an artifact is that theory over-
predicts the peak-to-peak amplitude of the waves by approximately 5% for the
case with the cylinder oscillating with frequency ! ' 0:53 s�1 (Fig. 8c). For the
case with ! ' 0:72 s�1 (Fig. 8d), the theoretically predicted peak amplitude on the
upper ank of the beam is more than twice as large as the experimentally deter-
mined amplitude. This occurs because waves that have reected downward from
the surface of the tank interfere with the downward propagating beam emanating
from the cylinder. Nonetheless, by analysis of a range of experiments, not reported
here, we �nd in general that theory over-predicts the amplitude of large frequency
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Fig. 8. Comparison between theory (solid line) and experiment (dashed line) of the
normalised �N2=A �eld along a cross-section perpendicular to the beam taken 9
cylinder radii from the source. The cross-sections are taken from the corresponding
diagrams in Figure 7. The vertical dashed lines in each plot indicate the radius
of the cylinder. The ranges shown in the top left corner of each plot indicate the
experimental error.

waves. Although it is possible that this discrepancy may be an artifact of the way
in which the experimental data is noise-�ltered (the procedure acting to smooth the
observed pro�les), it seems likely that the amplitude of the waves would be smaller
in experiments in part because a fraction of the energy associated with them is
dissipated in the boundary layer surrounding the cylinder. A more detailed study
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of the boundary layer dynamics is necessary to determine how

In general, though not clear from Fig. 8a, we also �nd that theory moderately
under-predicts the amplitude of small frequency waves. Sutherland et al (1999),
argue that this may be the result of wave-wave interactions that occur over the
relatively large region where the upward and downward propagating wave beams
overlap.

5.2 Cylinder oscillating at an angle with the vertical

Figure 9 shows the structure of the downward and right propagating wave beam
generated by a cylinder oscillating at angles a) � = 0:0o, b) 15:8o, c) 22:6o and
d) 36:8o to the vertical. The �elds are shown as the cylinder moves downward
through its equilibrium position. In each case the cylinder oscillates at frequency
! ' 0:35s�1, and the amplitude of oscillation is given by A ' 0:32(cos�) cm. As
in Fig. 7, the diagrams show contours of �N2=A in a (r; �) co-ordinate system
rotated counter-clockwise by an angle 90o � �r , so that the beams in this system
are approximately horizontal. The contours range from �0:50 to 0:50 s�2cm�1.
From linear theory, we expect the beams to propagate at an angle � ' 70:4� 1:0o

from the vertical. However we �nd the angle of propagation to the vertical is
consistently less by an amount a) �� = 4:3o, b) 2:0o, c) 0:3o, and d) 0:4o.

The experimental results are compared with theory in Fig. 10. along a span-
wise cross-section taken at r = 9R, as indicated by the dashed line on each diagram
of Fig. 9. The normalised �N2=A �elds determined theoretically (solid line) and
experimentally (dashed line) are shown. The agreement between theory and ex-
periment is generally good in each case. However, the predicted width of the beam
is consistently smaller than the observed width. Based on the distance between
the two positive peaks, we �nd that the theory under-predicts the experimentally
determined width by approximately 7� 4%.

In addition, we �nd that theory under-predicts the peak positive amplitude
of the waves on the lower and upper ank of the beam in all four cases. We
attribute this discrepancy in part to errors in the time at which the analysed image
is taken from video, as discussed above. In all four experiments, the theoretically
determined peak-to-peak amplitude is moderately larger than that observed in
experiments.

6 Conclusions

We have described a new \synthetic schlieren" technique for visualising and
quantitativelymeasuring the amplitude of nominally two-dimensional internal waves.
The technique is more robust than previously existing visualisation techniques in
that it is relatively inexpensive to set up, it allows a wider �eld of view, and pro-
vides non-intrusive measurements of the amplitude of a quasi-two dimensional wave
�eld continuously in time. Furthermore, the technique is highly sensitive. In the
experiments reported here, for example, uid parcels displaced vertically by dis-
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Fig. 9. Normalised �N2=A �eld for a cylinder oscillating with amplitude A about
an angle � to the vertical with a) � = 0o, b) 15:8o, c) 22:6o and d) 36:8o. In each
case the cylinder oscillates at frequency ! ' 0:35s�1 and the background buoyancy
frequency is N ' 1:02 � 0:04 s�1. The waves are shown in a (r; �) co-ordinate
system, rotated by counter-clockwise about an angle �r so that the downward and
right propagating wave beam is approximately horizontal. In a) �r = 66:1o, b)
68:4o, c) 70:1o and d) 70:0o.

tances as small as 0:01cm can be detected, and density gradient changes as small
as 1% of the ambient density gradient can be measured.
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Using this technique, we have performed experiments with a cylinder oscillat-
ing at a range of frequencies along an axis inclined to the vertical. Comparing
the results with the theoretical predictions of Hurley and Keady (1997), we �nd
generally good agreement. The di�erence between the theoretical and experimen-
tally measured amplitudes is well within experimental error across the width of
the beams measured 9 radii from the source, except in cases where the beams are
contaminated by surface-reecting wave beams. When comparing theory with a
range of experiments, however, consistent though small discrepancies are found to
exist.

We �nd that the width of the wave-beam is under-predicted by theory by as
much as 10%. We believe this is due to the viscous boundary layer around the
cylinder not being included in current theories for the structure of these waves.
Viscous boundary layers act e�ectively to increase the size of the source. Indeed,
order of magnitude estimates of the boundary layer size by Sutherland et al (1999
) agree with the observed di�erence in width between theory and experiment.

Both theory and experiment show that the amplitude of the waves increases
as a function of frequency, but is a weak function of the angle of oscillation of
the source. However, theory moderately over-predicts the peak to peak amplitude
of large frequency waves. This is attributed in part to viscous dissipation in the
boundary layer surrounding the cylinder, which is not accounted for in theory. It
is also found that, in general, theory underpredicts the peak-to-peak amplitude
of low frequency waves. The reason for this is unclear at present but may result
from changes to the structure of the wave beam due to weakly nonlinear interac-
tions between the upward and downward propagating waves, which overlap over
a relatively large region when forced at low frequency. In ongoing research, such
�nite amplitude e�ects are being examined both experimentally and numerically
for vertically oscillating elliptical cylinders.

To understand the e�ects of the boundary layer in more detail, a variation
of the synthetic schlieren technique is presently being used in which, rather than
measuring the displacement of horizontal lines, the displacement of a random array
of dots is tracked (Dalziel, Hughes and Sutherland, 1999). With this set up, it will
be possible to improve the resolution of measurements of the uid motion in the
boundary layer.

This work has been supported in part by NERC under grant number GR3/09399.
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Fig. 10. Comparison between theory (solid line) and experiment (dashed line) of the
normalised �N2=A �eld along a cross-section perpendicular to the beam taken 9
cylinder radii from the source. The cross-sections are taken from the corresponding
diagrams in Figure 9. The vertical dashed lines in each plot indicate the radius
of the cylinder. The ranges shown in the top left corner of each plot indicate the
experimental error.


