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ABSTRACT

It is proposed that shear instability of the upper flank of the equatorial undercurrent may generate, under a
broad range of conditions, downward propagating internal gravity waves (IGW) of large amplitude. Tl?e gen-
eration mechanism is shown to require only that the background stratification is weak where the shear is large

(i.e., in the mixing region) and that the stratification is sufficiently large in the far field (i.e., near the thermo-

cline). In a series of studies, the generation of IGW from unstable shear flows is examined. Linear theory is
used to predict under what circumstances the generation of IGW may be large, and fully nonlinear simulations
restricted to two dimensions are employed to provide estimates of the degree of vertical mixing and of the
vertical transport of horizontal momentum by IGW. In particular, the simulations demonstrate that, when large
amplitude IGW are generated by shear instability, the mean flow itself is significantly decelerated in the mixing
region. The momentum flux associated with the radiating IGW is large, and it is proposed that these may act in
part as a momentum source to the deep equatorial countercurrents.

1. Introduction

Well below the surface of the equatorial oceans flow
surprisingly strong zonal jets. In the equatorial Pacific
Ocean, for example, alternating eastward and westward
currents have been observed at depths between 500 and
3000 m, flowing at instantaneous velocities as great as
25 cm s~! (Firing 1987). These currents, referred to
hereafter as ‘‘zonal countercurrents,’”’ are confined to
within 2° latitude about the equator. Similar observa-
tions have been made in the equatorial Atlantic Ocean
(Eriksen 1982) and the equatorial Indian Ocean (Luy-
ten and Swallow 1976). Zonal countercurrents have
been observed to persist for very long times and, in
particular, Eriksen (1985) observed no significant tem-
poral variations of the large-scale features of the zonal
countercurrents over the two years of the PEQUOD
experiment of 1981-83. Although an understanding of
the structure of the currents has improved in recent
years, the sources of energy and momentum that drive
the zonal countercurrents have not yet been clearly
identified. In several of the forcing mechanisms that
have been proposed, the zonal countercurrents are
modeled in linear theory by equatorial waves that are
generated either at the western boundary by the reflec-
tion of Kelvin waves (Clark 1983) or at the eastern
boundary (Harvey and Patzert 1976; Longsdale 1977).
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As pointed out by Muench et al. (1994), however, the
time required for the generation and maintenance of
equatorial waves by these mechanisms is too great in
the presence of dissipative effects. In light of this ob-
servation, they proposed that the zonal countercurrents
are most likely to be generated by the deposition of
momentum and energy in the ocean interior through
either internal instabilities or wave—wave interactions.
It is reasonable to suppose, therefore, that the zonal
countercurrents are driven by disturbances that propa-
gate downward from near the ocean surface where the
energy density is large.

Concurrently, many authors have recently proposed
that internal gravity waves (hereafter referred to as
IGW) may be responsible for transporting horizontal
momentum downward from the surface mixed layer of
the equatorial oceans, and generating turbulence and
drag near the core of the equatorial undercurrent (Dil-
lon et al. 1989; Hebert et al. 1991; Skyllingstad and
Denbo 1994). In particular, Wijesekera and Dillon
(1991) have proposed a mechanism whereby convec-
tive plumes quasiperiodically deform the base of the
mixed layer and generate IGW. By way of nonlinear
simulations, Skyllingstad and Denbo (1994) have dem-
onstrated a mechanism whereby IGW are generated in
the mixed layer by what they identified as Tollmein—
Schlichting instability. In both cases the IGW propa-
gate at horizontal phase speeds comparable to the zonal
velocity of the upper flank of the equatorial undercur-
rent. Since, as first pointed out by Bretherton (1969),
IGW deposit momentum to the mean flow near a crit-
ical level, these mechanisms may act as sources of drag
to the equatorial undercurrent, but they do not seem to
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represent a likely source for IGW that propagate down-
ward below the equatorial undercurrent and deposit
momentum in the deep ocean.

In this paper an alternative mechanism for the gen-
eration of IGW is proposed, which may, at least in part,
account for both the drag exerted on the equatorial un-
dercurrent and for the source of momentum and energy
that drives the zonal countercurrents. It is shown herein
that instability of the upper flank of a model equatorial
undercurrent situated well below the surface mixed
layer may generate IGW, which propagate downward
to the deep ocean. Thus, drag may be exerted on the
upper flank of the equatorial undercurrent not only by
the deposition of momentum by breaking IGW but also
by the extraction of momentum by IGW generation as
shown schematically in Fig. 1.

Previous attempts to demonstrate the existence of a
coupling between shear instability and IGW radiation
have been made by many authors in studies of the at-
mosphere including early work by Lindzen and Rosen-
thal (1976), Lalas and Einaudi (1976), and Davis and
Peltier (1976), who examined the linear stability of a
uniformly stratified shear flow in the presence of a rigid
floor. In each study, the growth rate of the normal mode
that coupled with radiating IGW was significantly less
than the growth rate of the (nonradiating) most unsta-
ble normal mode, and so it was unclear whether radi-
ation would in fact occur as the flow developed non-
linearly. The effectiveness of this mechanism was cast
into further doubt after McIntyre and Weissman (1978)
explained that since the depth of penetration of a nor-
mal mode disturbance into a region of large N” was
inversely proportional to the growth rate of the distur-
bance, one might expect that the mixing region would
become strongly nonlinear before any significant ra-
diating disturbance could develop in the far field. They
concluded that a nonlinear assessment would be nec-
essary to ascertain whether a given basic state was ca-
pable of radiating IGW. Thereafter, followed attempts
to examine whether IGW may be generated by nonlin-
ear mechanisms such as, for example, subharmonic ex-
citation (vortex pairing) (Davis and Peltier 1979) and
wave—wave interactions (envelope radiation) (Fritts
1982; Chimonas and Grant 1984a; Chimonas and Grant
1984b). However, neither of these two mechanisms
seemed adequate to explain the observed prevalence of
large amplitude IGW associated with the tropospheric
jet stream (Fritts and Nastrom 1992).

Only recently has an efficient mechanism for large
amplitude IGW generation by shear instability been
identified. By way of fully nonlinear simulations of
Boussinesq flow restricted to two dimensions, Suther-
land and Peltier (1994) demonstrated that IGW may
be generated in a flow in which the buoyancy frequency
N is small in the region of strong shear and is suffi-
ciently large in the far field. They showed that the ex-
citation mechanism is robust and, furthermore, they ar-
gued that such a precondition of IGW generation may

SUTHERLAND

2399

Gravity Wave Drag

Gravity Wave Drag
by Absorptron

by Emlsswn

" wave absorption ‘Wavé emission

wave absorption

FiG. 1. The schematic represents two mechanisms by which IGW
may exert drag in the equatorial undercurrent. The left-hand diagram
demonstrates a mechanism for wave drag via absorption of IGW
generated in the surface mixed layer. The right-hand diagram dem-
onstrates a mechanism for wave drag via wave emission in a2 dynam-
ically unstable flow that is shear unstable on the upper flank of the
jet. IGW generated by this mechanism propagate downward to great
depths where they may be reabsorbed at a critical level, for example,
on the lower flank of the equatorial undercurrent. In both diagrams,
double horizontal arrows indicate the direction of wave drag, which
is significant in the stippled region. The thick solid curve is a profile
of the mean flow for a model equatorial undercurrent, and the thin
dashed curve illustrates a typical state to which the mean flow may
evolve under the decelerating influence of wave drag.

occur spontaneously in nature under circumstances
where mixing in a continuously reinforced shear layer
consequently reduces NV in the mixing region. In their
analysis of the characteristics of the waves in the later
stages of the nonlinearly developing flow, they showed
that the emitted waves maintained approximately the
same phase speed as that of the most unstable normal
mode calculated for the initial basic state. Indeed, Suth-
erland et al. (1994), upon reexamination of the result
of Mclntyre and Weissman (1978), showed that it is
possible to predict on the basis of linear theory whether
large amplitude IGW are generated by a dynamically
unstable shear flow. In qualitative terms, they proposed
that shear-generated IGW would propagate into a re-
gion of constant N if the vertical structure of the most
unstable normal mode disturbance was sufficiently
“‘wavelike’” over the depth of penetration of the dis-
turbance. Specifically, they estimated that large ampli-
tude IGW should radiate if the ratio of the real to imag-
inary parts of the vertical wavenumber in the far field
exceeds unity [e.g., see Eq. (9) and the discussion that
follows] This was referred to by the authors as the
‘‘penetration condition.’

The result is generic and has been successful in the
analysis of idealized jet and shear flows (Sutherland et
al. 1994) and of a model tropospheric jet ( Sutherland
and Peltier 1995) in nonlinear numerical simulations.
An ‘intuitive explanation for this assumption is that
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large-scale vortices may develop in the mixing region
and periodically excite IGW in the surrounding fluid
where N is sufficiently large to support a broad fre-
quency spectrum of IGW. This view is too simplistic,
and a more satisfactory explanation requires an under-
standing of the interactions between the radiating IGW
and the mixing region. These ideas will be expanded
upon herein. :

In section 2 vertical profiles of the zonal current and
squared buoyancy frequency observed by Hebert et al.
(1992) during an overturning event in the mixing re-
gion of the equatorial Pacific Ocean are used to moti-
vate a detailed survey of dynamically unstable basic
states that may generate IGW. As pointed out by Ped-
losky (1987, §7.1), observed mean flow profiles cannot
be used as an initial state from which to perform a
stability analysis because these inherently average over
fluctuations that, in most cases, give a basic state that
is more stable than the fluctuation free state. Instead,
analytically defined basic-state profiles are examined
here. The large-scale features of the observed flow are
thus represented by a small number of parameters that
may be adjusted to examine the stability and evolution
of the flow for a range of initial conditions. Specifically,
this study examines in detail the effect of varying two
parameters that represent the degree of stratification in
the mixing region and in the far field. Linear stability
analysis of the initial condition specified by these two
parameters is employed to find the most unstable nor-
mal mode, the characteristics of which determine
whether the generation of large amplitude IGW are an-
ticipated.

In section 3, fully nonlinear numerical simulations
of stratified, Boussinesq two-dimensional flow are per-
formed for a range of cases in which the stratification
within the mixing region and well below the mixing
region is varied. These simulations serve to test
whether large amplitude IGW predicted by linear the-
ory do occur and also to provide a crude assessment of
the intensity of IGW radiation.

A discussion of the results and their geophysical sig-
nificance follows in section 4. Therein some specula-
tion is given concerning which physical preconditions
may be necessary for the IGW generation mechanism
to operate and concerning the propagation of IGW be-
low the undercurrent core in the real ocean.

2. Assessment of IGW generation by linear theory

The supposition motivating this survey of the linear
stability of stratified shear flows is that IGW are gen-
erated by shear instability provided that N is sufficiently
small in the region of strong shear but is sufficiently
large in the far field. Because the IGW of interest here

have relatively small horizontal extent (i.e., horizontal.

wavelengths on the order of 100 m), and because their
excitation, if it occurs, would be intermittent, there is
little direct evidence of IGW coupling with shear in-
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stability. However, one observation that lends credible
evidence for this mechanism is given by Hebert et al.
(1992) who, as part of the Tropic Heat program, have
reported detailed observations during the morning of
16 April 1987 at the equator near 135°W of a horizon-
tally confined IGW wavepacket associated with an
overturning event extending approximately between
25-m and 55-m depth. The solid curve in Fig. 2a is a
representation of the hourly averaged zonal flow across
the depth of the unstable region during the time over
which the wavepacket was observed. Although the
maximum eastward velocity shown is 0.9 m s ™" at ap-
proximately 65-m depth, the actual core of the equa-
torial undercurrent as observed between 5 and 15 April
was situated on average at approximately 120-m depth,
and on 16 April was displaced upward by the presence
of an underlying inertia—gravity wave (Peters et al.
1991, 1995). The dashed curve in Fig. 2a is the profile
of N* determined from the potential density profile ob-
served shortly before the disturbance was observed.
The gradient Richardson number Ri(z) = N?/(dU/
dz)* gives a measure of the stabilizing effect of the
stratification compared with the destabilizing effect of
shear. As pointed out by Miles (1961) and Howard
(1961), if Ri is greater than 1/4, a stratified parallel flow
is stable to normal mode disturbances and instability
may be anticipated where Ri < 1/4. Although the ob-
served flow was not parallel and U and N* were not
recorded at the same point in the flow, the basic-state
profiles give a crude estimate of the flow stability. Fig-
ure 2b shows the profile of Ri for the basic states in
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FIG. 2. (a) Profiles of the zonal flow and N? based on observations
by Hebert et al. (1992). (b) The gradient Richardson number Ri cal-
culated for the basic state in (a). Note the basic state is near marginal
stability between —55 m < z < —30 m in the sense that Ri ~ 0.25
over this range.
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F1G. 3. Typical basic state used for the studies herein based upon
an analytic approximation, given by Eq. (2), to the large-scale fea-
tures shown in Fig. 2: (a) U(z) (solid line) and JN*(z) (dashed line),
shown for parameters J, = 0.2, J = 0.9, z, = 2, R = 0.5; (b) gradient
Richardson number corresponding to basic state in (a).

Fig. 2a, the vertical dashed line representing the critical
value Ri = 1/4. The diagram shows that the mean flow
may be unstable at depths as great as 70 m.

Whether an instability, if it occurs, couples with ra-
diating IGW will be shown to depend sensitively on
the large-scale features cf the mean flow. The stability
and evolution of the observed flow is examined by
studying the basic state with analytic profiles of hori-
zontal velocity U, and squared buoyancy frequency
N%, given by

Us(z) = U0, — U tanh[(zy + zc4)/.£]

N3(2) = Nsj + 3 (Nt - Ns§) (1)

X {1 - tanh[(z* + ZO*)/R*)]}

in which the asterisk subscript is used explicitly to de-
note dimensional fields. The horizontal velocity profile
is characterized by the depth of the maximum shear,
—2ZCy; the horizontal speed of the flow at this depth,
U0,.; the difference between the flow speed at this
depth and at great depths, %; and the vertical extent over
which the flow increases to this speed, .£. Here Ny (z)
is characterized by the buoyancy frequency near the
surface Ns, and at the thermocline Nt,., the depth of
where N% increases most quickly, —z0,, and the ver-
tical extent over which N7 increases, R, . The assump-
tion here is that the small-scale structures of the ob-
served flow do not significantly affect the large-scale
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stability characteristics. Of course, the equatorial un-
dercurrent has a jet and not a shear structure, and N3
decreases below the thermocline. However, the flow
structure at great depths is assumed to have a negligible
effect upon the early evolution of the instability in the
mixing region, and it is therefore convenient to assume
that the velocity and buoyancy frequency at great
depths are constant so that the characteristics of IGW
generated by shear instability may easily be examined.
The hyperbolic tangent shear flow has often been used
in studies of the stability of shear flows both for its
generic structure and because analytic solutions exist
for the curves of marginal stability of this flow in uni-
formly stratified fluid (Drazin and Howard 1966; Hazel
1972) and in stratified fluid characterized by N* = JO
+ J1 tanh?"(z) (Lott et al. 1992).

It is convenient to distil from the basic state, Eq. (1),
the essential parameters that govern the behavior of the
flow evolution. To this end, the basic state is evaluated
in nondimensional units with respect to a frame of ref-
erence moving at speed UO, in a vertical coordinate
system with origin at the shear maximum. Taking %
and .£ as the characteristic velocity and length scales,
respectively, the nondimensional basic state is given by

U(z) = —tanh(z)

IN*(2) = Jo + 5 (J = Jo) (2)

X {1 — tanh[(z + 2,)/R)]}

in which 7 = (24 + zcx)/ L, 20 = (204 + zcy)/L, R
= Ry/ L, U= Uy/U J = (Nt LIU?*, Jo = (Nso . L/U)*,
and JN? = (N*,ﬁ’/‘u)z. The four parameters J, Jy, 2o,
and R are nonnegative and allow the analysis of cir-
cumstances under which waves may be generated in a
stratified fluid where JN? increases from J, to J over
a vertical distance determined by R at a distance z, be-
low the maximum shear of the background flow. For
example, the basic state for parameters J = 0.9, J,
= 0.2, 7o = 2, and R = 0.5 is shown in Fig. 3a and the
corresponding profile of the gradient Richardson num-
ber is shown in Fig. 3b.

A wide variety of observed zonal flows in the mixing
region of the equatorial oceans may be modeled in the
form of Eq. (2). For reference, Table 1 lists the rele-
vant dimensional and nondimensional parameters es-
timated from one of the basic states observed by Hebert
et al. (1992), which is represented in Fig. 2a. In par-
ticular, the characteristic length scale based upon the
shear half-depth is .£ =~ 10 m and the characteristic
velocity scale is % =~ 0.4 m s~'. Because the instanta-
neous basic state immediately preceding the instability
may be moderately different from the time-averaged
basic state [e.g., see Pedlosky (1987), §7.1], the sta-
bility and flow evolution are examined for a range of
parameters to examine under what conditions large am-
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. TABLE 1. Relevant dimensional parameters and wave char-
acteristics estimated from observations by Hebert et al. (1992), and
for four stimulations studied here in detail with the basic state
prescribed analytically by Eq. (2). The characteristic length and
velocity scales based on the shear half-depth are £ ~ 10 m and %
~ 0.4 m s~'. Where the shear is strongest the flow speed is taken to
be ~0.5 m s™'. For the simulations, the horizontal wavelength \, and
phase speed ¢, are determined from the most unstable mode of linear
theory. From nonlinear simulations the peak Reynolds stress in time
Tmax 1S determined 50 m below the initial level of maximum shear.
D estimates the average deceleration in the mixing region due to
extraction of momenturn by IGW generation. It is calculated over the
duration of each simulation (about 42 min) assuming the drag due to
IGW emission extends uniformly over a 100-m depth in the mixing
region.

Jo=0 Jo = 0.05
Observed
flow J=04 J=02 J=04 J=02

Ns, (1072571 15 0 0 0.9 0.9
Nty (107257) 35 25 1.8 2.5 1.8
A (10> m) 1.0 1.3 1.3 1.1 12
Cpe (m 571 02 0.5 0.5 0.5 0.5
Tmax (N M%) 8.8 5.6 4.5 0.7
D10 ms™?) 29 - 1.0 2.6 0.1

plitude IGW are excited. Four of these cases are dis-
cussed in detail below, and the parameters determining
the basic state of each are given in dimensional vari-
ables in Table 1 using £~ 10 mand % ~ 04 ms™'.
For each case, Table 1 also lists the horizontal wave-
length and phase speed of the most unstable mode, as
well as the average deceleration D of the mixing region
due to the extraction of momentum by IGW- as deter-
mined by nonlinear simulations.

In order to assess whether a given basic state is ca-
pable of generating IGW by way of shear instability to
normal mode disturbances, the characteristics of the
most unstable mode must first be determined, and it is
not apparent before such a calculation precisely what
those characteristics might be. Such considerations are
important since, as will be demonstrated, a small
change to the basic state may result in small changes
to the characteristics of the most unstable mode but
large changes in the radiative behavior of IGW. To gain
intuitive insight into which unstable basic states are ca-
pable of linearly exciting IGW, a survey is presented
here of the stability characteristics of a shear flow in a
variable N? environment.

If the fluid is assumed to be inviscid, the linear sta-
bility of a given basic state to the growth of normal
modes may be determined by solving the (nondimen-
sional ) Taylor—Goldstein equation

¢"(2) + v(2)’d(z) = 0, (3)
in which '
- [VG e,
B \/(U(z) o U ¢ W
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Here ¢(z) is the perturbation streamfunction amplitude
and c is the (complex) phase speed of the mode with
horizontal wavenumber «. The square root on the right-
hand side of Eq. (4) may be complex and, without loss
of generality, the branching condition

O<arg(y)sm (5)

is required so that, in light of the form of Eq. (3), +v
may be interpreted as the complex vertical wavenum-
ber of an upward propagating disturbance and — vy may
be interpreted as the complex vertical wavenumber of
a downward propagating disturbance. Indeed, where N*
and U = U_,, are constant and if ¢ is real, Eq. (4) is
just the dispersion relation for IGW of intrinsic fre-
quency 2 = a(c — U_x).

A shooting code is used to integrate Eq. (3) for a
range of a as described in Sutherland and Peltier
(1992). In this method the streamfunction is found for
a particular value of « by first estimating the phase
speed c and then integrating from where JN? ~ J; to
where JN? =~ J. The integration starts and ends at ver-
tical positions sufficiently far from the mixing region
where the amplitude of the streamfunction at the
boundaries is negligibly small. The top and bottom
boundary conditions are set to allow radiating solu-
tions. However, the amplitude of the normal mode is
found to be sufficiently small near the boundaries that
the stability calculation performed for a domain with
rigid boundaries gives similar results. After integrating
using an initially estimated (complex) value of ¢ = c,
+ ic;, the phase speed is then systematically adjusted
until ¢ converges to an eigenvalue for which the cor-
responding eigenfunction satisfies the lower boundary
conditions. The solution of Eq. (3) for the particular «
for which the growth rate o = ac; is greatest is iden-

_tified with the streamfunction amplitude of the most

unstable mode.

First, a case is examined in which N? increases from
Jo to J over a small vertical range and at a moderately
far distance from the mixing region. In particular, for
the case with zob = 3, R = 0.1, the phase speed and
growth rate for specific values of J, and J are calcu-
lated over a range of horizontal wavenumbers o as
shown in Fig. 4. The growth rates as a function of the
horizontal wavenumber shown in Fig. 4a are calculated
for Jo, = 0.05 and J = 0.05 (solid line), J = 0.25
(short-dashed line), J = 0.50 (long-dashed line), J
= (.75 (short dash—dot), and J = 1 (long dash—dot).
In Fig. 4b the growth rates are shown for J = 0.50 and
Jo = 0.0 (solid line), J, = 0.05 (short-dashed line), J,
= (.10 (long-dashed line), and J, = 0.15 (short dash—
dot). In every case, the growth rate has a well-defined
maximum for some horizontal wavenumber ¢ = a,,
which is identified as the wavenumber corresponding
to the most unstable mode. The effect of increasing J
and keeping J, fixed is to decrease moderately the
growth rate of the most unstable mode with little effect
on a,. The-effect of increasing J, and keeping J fixed
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FiG. 4. Properties of unstable normal modes as a function of wavenumber « calculated for a
range of basic states with JN? given by Eq. (2) with zo = 3, R = 0.1. In (a) and (c) growth rates
and phase speeds, respectively, are given for Jy = 0.05 and J = 0.05 (solid line), J = 0.25, (short-
dashed line), J = 0.50 (long-dashed line), J = 0.75 (short dash—dot), and J = 1.0 (long dash—
dot). In (b) and (d) growth rates and phase speeds, respectively, are given for J = 0.50 and J, = 0
(solid line), J, = 0.05 (short-dashed line), J, = 0.10 (long-dashed line), and J, = 0.15 (short dash~
dot).
is to decrease greatly the growth rate and increase the
value of a,. Figures 4c and 4d show the horizontal corr(u', w') = (u'w M u"*)(w'?),  (6)

phase speeds of the normal modes corresponding to the
cases for which the growth rates are shown in Figs. 4a
and 4b, respectively. In every case, the horizontal phase
speeds are small in comparison with the speed of the
background flow at great depths.

Although the flow is unstable over a great range of
parameters J, and J, the most unstable mode is capable
of exciting IGW over only a limited range of parame-
ters. The flux Richardson number, defined by R,
= —g(w'p" Y {u'w')(dU/dz),is often used to provide
a measure of the degree of mixing. It has limited use
in the context of this problem, however, because the
N? and U are uniform at great depths and because the
perturbation kinetic energy varies greatly as the unsta-
ble flows evolve nonlinearly so that the interpretation
of Ry can be ambiguous. A direct measure of the exci-
tation of IGW in an unstable flow is given by compar-
ing the linear correlation coefficient of the horizontal
and vertical velocity,

with that of the vertical velocity and perturbation den-
sity,

corr(w’, p')y = (w'p"MIW' ) {(p'?), (T)

determined from the most unstable mode. For plane
small amplitude IGW, corr(u’, w’). (which is related
to the Reynolds stress) is exactly 1 in absolute value
and corr(w’', p’) (which is related to the vertical den-
sity flux) is exactly 0. In general, these correlations
provide insight into the degree of momentum transport
and mixing by a mode of instability. Figure 5 compares
the correlations as a function of depth calculated from
the most unstable mode for four cases with zo = 3.0, R
=0.1,and (a) b, =0,J =04,(b) Jb=0,J =02,
(c) Jo=0.05,J=04,and (d) Job =005, J=02.In
all four cases the correlations are nonnegative indicat-
ing the tendency of the most unstable mode to transport
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FiG. 5. Profiles of the linear correlation coefficients of horizontal and vertical velocity corr(u’,
w’) (solid line) and of vertical velocity and fluctuation density corr(w’, p') (dashed line) calculated
for the most unstable normal mode of shear flow with JN? given by Eq. (2) with z, = 3.0,R = 0.1,
and (@) Jo =0,J=04,(b)Jo =0,J =02, (c) Jo = 0.05,J = 04, and (d) J, = 0.05, J = 0.2.

upstream momentum downward and to displace lighter
fluid downward below the mixing region. In all four
cases, u’ and w' are strongly correlated in the mixing
region near z = 0. This correlation remains large at
great depths in cases (a) and (c), when J = 0.4 and
the stratification is sufficiently large to support IGW
excited directly by the instability. When the mixing re-
gion is stratified, w’ and p' are strongly correlated near
z = 0 but become more decorrelated at great depths. In
fact, corr(w’, p') is smaller at great depths when the
mixing region is more strongly stratified. The diagrams
demonstrate the significant transition in the mixing
properties of an unstable flow that occurs when strati-
fication at great depths becomes sufficiently large: the
transport of momentum by waves is strongly enhanced
whereas the transport of mass by waves is relatively
unchanged.

These observations invite the question, for which
values of J, and J is IGW radiation expected to occur?
As pointed out by Lindzen (1974) and Mclntyre and
Weissman (1978), among others, the direct excitation
of IGW by an unstable normal mode should not occur
if the intrinsic frequency of the mode exceeds the buoy-
ancy frequency in the far field since disturbances of
this frequency are evanescent. Thus, a necessary con-
dition for the shear generation of IGW that propagate
with horizontal phase speed c,, in the far field (in par-
ticular, at great depths) where the background flow
speed is U_.. and JN? = J is

9] = (e, — U_a)| < J. (8)

This is known as the ‘‘phase speed condition.”” Re-
cently, Sutherland et al. (1994) proposed a sufficient
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condition for IGW excitation by considering the struc-
ture of the most unstable mode in the far field, the am-
plitude of which may decay rapidly with depth if the
growth rate of the mode is large. They claimed that an
unstable mode, whose structure far from the mixing
region has small vertical wavelength compared with the
depth of penetration, may continually generate IGW
even as the flow becomes strongly nonlinear. They hy-
pothesise that during the growth and nonlinear devel-
opment of such modes the periodic undulations in the
far field may act back upon the mean flow modifying
it so that the mixing region continually excites IGW.
Explicitly, the sufficient condition (also called penetra-
tion condition ) states that IGW generation should occur
if the absolute value of the ratio D of the real to imag-
inary parts of the vertical wavenumber of the most un-
stable mode in the far field exceeds one. That is,

1Dl = |y /vil > 1. (9

Physically, D is a measure of the number of vertical
wavelengths spanning an e-folding depth of the normal
mode in the far field. The critical value 1 is not, strictly
speaking, a lower bound but a numerical estimate of
the far-field structure of a normal mode that by hy-
pothesis is *‘sufficiently wavelike.”” Taking the real and
imaginary parts of Eq. (4), the penetration ratio may
be expressed in terms of the frequency and growth rate
of the normal modes of linear theory. Explicitly, D is
the solution of the quadratic

D* — 28D — 1 =0, (10)

in which

-— l _1_ _1_ 2 272 __ O2 2
B 2QU(J(Q + 0?) Q+a>. (1)
Of the two roots of Eq. (10), 9 is taken to be that
corresponding to energy propagation away from the
mixing region. It is a simple matter to show that the
phase speed condition and the penetration condition are
equivalent in the limit of zero growth rate. It can also
be shown, in general, that the penetration condition is
satisfied only if the phase speed condition is satisfied.
The range of parameters for which either of these
conditions is satisfied is illustrated in Fig. 6, which
plots the critical value J€ against J, for which the most
unstable mode calculated for R = 0.1 satisfies (a) |D|
=1 and (b) Q = VJ. In both diagrams, J° as a function
of J, is shown for z, = 3.0 (solid curve), 2.6 (small
dash), 2.2 (long dash), 1.8 (small dash—dot), and 1.4
(long dash—dot). Note that for J, = 0.25 the flow is
stable. For both the phase speed and the penetration
conditions, stronger stratification (large J°) is neces-
sary in the far field for IGW generation when the ver-
tical level (z,) where JN? increases is closer to the
region of strong shear. For fixed zy, J¢ determined for
the phase speed condition is smallest for J; = O and is
as small as ~0.25 for z, = 3. For small values of J,,
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J¢ determined for the penetration condition is predicted
to be moderately larger than that predicted for the phase
speed condition, although J¢ for both conditions is
comparable if J, > 0.1. The region of parameter space
where the phase speed condition is satisfied but the
penetration condition is not satisfied provides a con-
venient location in which to investigate the effective-
ness of the two conditions in characterizing the effi-
ciency of IGW excitation by unstable normal mode de-
velopment. These predictions are compared with the
results of nonlinear simulations discussed in the follow-
ing section.

3. Nonlinear simulations

The linear stability analysis in section 2 demon-
strates that the IGW generation process is robust in the
sense that waves are predicted to be excited by the most
unstable mode for a broad class of basic states. The
manner in which IGW are excited as the normal mode
grows in amplitude and breaks in the mixing region is
examined by way of fully nonlinear analyses.

The nonlinear simulations are performed by numer-
ically solving the primitive equations for incompress-
ible, Boussinesq flow that is restricted to two spatial
dimensions. These are represented numerically in a
model based on the methodology developed by Smyth
and Peltier (1989) for the study of the evolution of
Kelvin—Helmholtz and Holmboe waves. The fully
nonlinear equations for momentum conservation and
for the conservation of internal energy are, respec-
tively,

Du,, 1 opi

—E - =F V2, 12

Dr, 00 0%y VUVl (12)
Dw,, 1 dpi ,
—E = - — =F 9l + VW, 13
Dty D0 D2s 8Px Wy (13)

and
D I3
ZP% = Niw, + kViph, (14)

in which the dimensional fields are of horizontal ve-
locity u,, vertical velocity w,, fluctuation density
P %, and fluctuation pressure pl. The fluctuation pres-
sure p,, is the total pressure minus the pressure p,(z)
that is in hydrostatic balance with the background den-
sity p4(z). Here D/Dty, = 8/0¢ty + uyd/0xy + wy 0/
07y is the material derivative.

As with the linear theory in section 2, Egs. (12),
(13), and (14) are reexpressed in nondimensional form
by the substitutions (x4, z4) = L(x, 2), ty = (L/U)L,
(ug, wg) = Uu, w), pi = (plLIF)p’, px
(pollJ6)p, and pl — poU*p’, in which & is the length
scale of background density variations with height. For
the validity of the Boussinesq approximation, ¥ > .£.
With these substitutions, the nondimensional form of
the equations are
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FiG. 6. Values of J,; and J in Eq. (2) for which the most unstable mode of linear theory satisfies
(a) the penetration ratio |D| = 1 and (b) the critical phase speed condition for which the Doppler
shifted frequency equals the Brunt=Viisild frequency in the far field. In both diagrams R = 0.1
and z, = 3.0 (solid line), 2.6 (short-dashed line), 2.2 (long-dashed line), 1.8 (short dash-dot), 1.4

(long dash—dot).

Du 1
—=-—pi+ =V 1
Dr PrTRe V" (15)
Dw 1
—=-p,—Jp + =V 1
Dt p:—Jp Rve (16)
and
Dp’ 2 1 2.1
— = + .
pr VYT Rep VP (17

The nondimensional parameters of the model are the
Reynolds number Re = %£/v in which v is the kine-
matic viscosity, the Prandtl number Pr = v/« in which
k is the thermal diffusivity, and the bulk Richardson
number J = (g/J¢)(L/%)* in which g is the accelera-
tion of gravity.

In practice, Eq. (15)—(17) are solved in the vortic-
ity —streamfunction form since the model then reduces
to the evolution equations for only two coupled fields,
namely, the vorticity w and the density fluctuation p’.
Taking the curl of Eqs. (15) and (16) gives the vortic-
ity equation

Dw 1

— = Jp, + — Vi, 18
Dt p Re “ (18)
in which w = u, — w, is the spanwise component of
vorticity. The streamfunction is found by inverting the

elliptic differential equation

Vi = —w, (19)
and from ¢ the components of the velocity vector u
= (u, w) may be determined from u = ~0¢/dz, w
= O/0x.

Of Egs. (17) and (18), the only solutions considered
are those that are periodic in the streamwise (horizon-
tal) direction having wavenumbers that are integral
multiples of the wavenumber of the most unstable
mode o = 27 /\, in which \ is the horizontal wave-
length of the most unstable mode. The length of the
channel is set to be L, = \. Accordingly, the horizontal
structure of the dependent fields may be represented in
a Fourier basis via

f(x,z,6)= Y fulz,t)exp(tmax) (20)

m=—M

in which fmay represent w or p, and M determines the
limit of horizontal resolution of each field. The vertical
structure of the dependent variables is represented in
finite difference form so that w and p are sampled at P
+ 1 equally spaced points zg, ..., Zp, Spanning the
channel of vertical extent L , and vertical derivatives
are replaced by their second-order finite-difference
equivalent. The resulting set of evolution equations is
stepped forward in time using a leapfrog method with
an Euler backstep taken at regular time intervals to min-
imize splitting errors. Typically, simulations are ter-
minated at time ¢ = 100, before waves grow to large
amplitude near the lower boundary of the channel. (In
dimensional units this is about 42 min based upon £
=10 m and % = 0.4 m s'.) To ensure that the results
of the simulations are not sensitive to the resolution,
simulations are performed for channels of varying
width and the equations are integrated with varying
spatial resolution, always ensuring that the time step is
sufficiently small for numerical stability. The vertical
grid spacing is taken to be dz ~ 0.1 and, depending on -
the value of the horizontal wavelength of the most un-
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stable mode, the equivalent horizontal grid spacing is
dx = 0.1.

In this mixed spectral-finite difference scheme,
modal budgets of quadratic quantities that are con-
served in the absence of viscous and thermal diffusion
may be assessed by means similar to those employed
by Smyth and Peltier (1992). As the simulated fields
evolve, they are analyzed to ensure that the rate of en-
ergy loss is balanced by diffusion to machine precision.
This and the additional diagnostic analyses employed
to understand the basic physical interactions governing
the flow dynamics are described in further detail in the
subsections below.

The vertical profiles of horizontal velocity and JN?
are taken to be initially of the form given by Eq. (2).
The linear stability of basic states in this form has pre-
viously been discussed in section 2.

In order to initialize the nonlinear simulations, the
background fields of density and horizontal velocity are
perturbed by addition onto the basic state of a small
amplitude random component as well as a fluctuation
having the spatial structure of the fastest growing mode
of linear theory determined on the basis of a Galerkin
stability analysis employing finite Re and Pr [e.g,,
Klaassen and Peltier (1985)]. The amplitude of the
mode is prescribed such that the maximum vertical ve-
locity in the perturbed flow is initially a small fraction
of the characteristic speed. Before accepting numerical
results concerning computed disturbance life cycles, it
is ensured that the simulations adequately reproduce
the exponential growth rate predicted by linear theory.
This is done by comparing the linear growth rate to the
initial perturbation growth rate o determined from the
simulation by calculating

from the evolving wave Kinetic energy E’'.

Numerical simulations are performed with Prandtl
number Pr = 10 and with moderately large Reynolds
number Re = 200. Simulations have also been per-
formed with the same Prandtl number and Re = 400,
and with Re = 2000 and Pr = 1. In all cases the large-
scale features of the flow and, in particular, the char-
acteristics of radiating IGW are not affected signifi-
cantly. In the real ocean, the Reynolds number is many
orders of magnitude larger. However, it is found in
these simulations that the dissipation of energy does
not change greatly for Reynolds numbers larger than
2000 because diffusion is enhanced by eddy mixing.
Nonetheless, it is because the Reynolds number is un-
realistically small that the most unstable mode is ex-
plicitly introduced initially. The background flow
would otherwise diffuse on an unphysically fast time-
scale compared with the time for the unstable mode to
develop spontaneously from white noise. For the mod-
erately high value of Re that is considered here, the
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horizontal wavenumber, frequency, and growth rate of
the most unstable mode determined by this analysis is
found to differ by less than 5% from the corresponding
quantities determined by direct integration of the in-
viscid linear stability equations (3) and (4).

a. Simulations with an unstratified mixing region

To illustrate the range of behavior of the mechanism
by which IGW are generated by shear unstable flow,
two examples are considered below in which the strat-
ification of the fluid is negligibly small where the shear
is large. In the first of these the stratification is suffi-
ciently large in the far field that IGW are excited di-
rectly by the growth and nonlinear development of the
most unstable mode. In the second example, the strat-
ification in the far field is weaker and a small amplitude
IGW wavepacket is generated below the mixing region
by a nonlinear mechanism.

The nonlinear evolution of the flow is quite different
for cases in which the stratification in the mixing region
is nonnegligible. These cases will be examined in sec-
tion 3b.

First, the evolution is considered of the unstable ba-
sic state given by Eq. (2) with parameters R = 0.1, z
= 3.0, Jo =0, and J = 0.4. The results of linear theory
have been discussed for this case in section 2, and the
characteristics of the most unstable mode are given in
Table 2. In particular, the horizontal wavenumber «
~ 0.50 and the phase speed c,, ~ —0.014. (For refer-
ence to the real ocean, the dimensional horizontal
wavelength and phase speed are estimated in the third
column of Table 1 for this case: A, ~ 1.3 X 10> m and
¢px = 0.5 m s™"). Therefore, for large negative values
of z, the absolute value of the intrinsic frequency |a(c,,
— U_,)| < VJ, so the phase speed condition is satis-
fied. From the intrinsic frequency and growth rate, o
~ 0.18, the penetration ratio may be calculated ac-
cording to Eqgs. (10) and (11), and it is found that

TABLE 2. Characteristics of the most unstable mode of linear theory
calculated for four different basic states determined analytically by
Eq. (2) with z;, = 3, R = 0.1: « is the horizontal wavenumber, c,, is
the horizontal phase speed, and ¢ is the growth rate. Also given are
the absolute values of the ratio of the intrinsic frequency of the mode
to the buoyancy frequency in the far field and of the penetration ratio,
which is a measure of the number of vertical wavelengths of the mode
over its penetration depth in the far field. The former is used to
evaluate the phase speed condition and the latter to evaluate the
penetration condition.

Jo=0 Jo = 0.05
Most unstable mode
characteristics J=04 J=02 J=04 J=02
a 0.50 0.48 0.55 0.52
Cpx -0.014 -0.012 —-0.011 —-0.008
o 0.178 0.185 0.141 0.148
lac,, ~ U_INT | 0.79 1.08 0.87 1.17
| D} 1.11 0.46 1.15 0.36
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|D| ~ 1.1 > 1. Hence, the penetration condition is
also satisfied. On the basis of both criteria, the gener-
ation of large amplitude IGW is anticipated.

Figure 7 shows the state to which the flow has
evolved at time ¢ = 100 of the simulation. In (a), con-
tours of vorticity are shown by intervals of 0.1 over a
vertical range extending from z = —10 to 10. These
clearly show the development of a well-defined vortex
coupling with IGW that, as can be seen from the up-
stream phase tilt of the waves, are downward radiating.
The vortex structure is qualitatively similar to that stud-
ied by many authors [e.g., Zabusky and Deem (1971)
and Smyth and Peltier (1989), among others] in the
examination of Kelvin—Helmholtz instability. Here,

however, although the maximum shear is initially at -

depth z = 0, the vortex center is displaced above this
level. In Fig. 7b, the horizontally averaged mean flow
at time ¢ = 100 (solid line) is compared with the profile
of the mean flow at ¢ = 0 (dashed line). The inset plots
of difference between these flow speeds below the mix-
ing region. This diagram illustrates the significant de-
gree to which the flow is accelerated above z = 0 and
decelerated below the mixing region due to the down-
ward transport of horizontal momentum by IGW. At
time ¢t = 100 the shear is largest at z =~ 1.4, and this
corresponds approximately with the position of the vor-
tex center. The displacement of the vortex core occurs,
therefore, because IGW extract horizontal momentum
from the mean flow. The deposition of momentum to
the mean flow by IGW can likewise be significant. As
the inset diagram shows, IGW decelerate the flow by
as much as 0.1 from its initial speed 1.0 at a depth z
~ —33, well below the mixing region.

The full extent of the waves is illustrated in Fig. 7c,
which shows contours of fluctuation density by inter-
vals of 0.4 over a vertical range from z = —60 to 10.
The vertical flux of horizontal momentum is given by
the (nondimensional) Reynolds stress, 7 = (u'w’),
and this is shown in Fig. 7d for z = —60 to 10. The
Reynolds stress is largest at the leading edge of the
wavepacket where the amplitude of the IGW is largest.
The sign of the Reynolds stress is positive indicating
the downward transport of upstream momentum.

These results may be compared with those of a sim-
ulation in which IGW are not excited directly by the
development of the most unstable mode. In particular,
a simulation is examined in which the basic state is
given by Eq. (2) with parameters R = 0.1, z, = 3.0, Jo
= 0, and J = (.2. Although the horizontal wavenum-
ber, phase speed, and growth rate of the most unstable
mode listed in Table 2 for this case are similar to those
in the previous case, neither the phase speed condition
nor the penetration condition are satisfied; therefore,
large amplitude IGW are not expected to be excited
directly by the growth of the most unstable mode. Fig-
ure 8 shows the state to which this simulation has
evolved at time ¢t = 100. The vorticity contours given
by intervals of 0.1 in Fig. 8a show a well-defined vortex
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core that couples only weakly with radiating IGW at
this time: although the vorticity field is perturbed below
the vortex, there is no overall upstream phase tilt ap-
parent between z = —10 and z = 0 and, therefore, the
disturbance in this region is not composed of down-
ward propagating IGW. By comparison with the pre-
vious case, more of the momentum associated with the
flow accelerated above z = 0 is accounted for in the
flow decelerated below but near z = 0; less momentum
is transported away from the mixing region, and the
center of the vortex core is displaced only marginally
above z = 0. The momentum redistribution by mixing
and IGW is illustrated explicitly in Fig. 8b, which
shows profiles of the initial mean flow (dashed curve)
and of the mean flow at time ¢ = 100 (solid curve).
The peak deceleration of the mean flow at r = 100,
shown in the inset, is 0.03 occurring near z = —23. The
deceleration occurs due to the passage of a compact
IGW wavepacket generated during the initial stages of
the flow evolution. Although the intrinsic frequency of
the most unstable mode is too great for IGW to be
directly excited in the far field, the wavepacket is be-
lieved to be generated due to a nonlinear mechanism,
primarily from transient forcing of the far field during
the initial development of the vortex in the mixing re-
gion. Figure 8c shows contours of fluctuation density
by intervals of 0.3 over a vertical range from z = —40
to 10 (the full computational domain extends down to
z = —60). As in Fig. 8a, disturbances have no upstream
phase tilt except below z ~ —15 where the compact
IGW wavepacket is situated. The amplitude of the IGW
at the leading edge of the wavepacket is much smaller
than is the previous case and it propagates downward
at a slower speed, an observation consistent with the
fact that the phase tilt of the leading edge of the wave-
packet is more vertical. The Reynolds stress profile
shown in Fig. 8d over the range z = —40 to 10 is pos-
itive only where the phase tilt of the waves is upstream,
and the peak positive value is less than 20% smaller
than that in the previous case.

Therefore, even though IGW may be generated by a
nonlinear mechanism when the most unstable mode
does not directly excite IGW, these waves are much
less effective. at transporting horizontal momentum
downward and away from the mixing region. This ob-
servation is quantified in what follows.

IGW are generated when energy is extracted from
the initial mean flow by waves. The equation for the
time rate of change of mean kinetic energy is given by
taking u times Eq. (15) and w times Eq. (16) together
with the incompressibility condition and averaging
over the domain to give

XHKE) _

_ WLl oo 2
Y Jwp )+Re(uVu+wV w), (21)

in which KE = (4 + w?)/2, and the domain averaging
operator is defined so that



NOVEMBER 1996

a) Vorticity

SUTHERLAND

2409

10

10

b) Mean flow profile

-60

B | E— Y
T

FiG. 7. Development of simulated hyperbolic tangent shear flow for JN? characterized by Eq.
(2) withJy=0,J =04, 2y = 3,and R = 0.1 at time ¢ = 100. (a) Vorticity field shown by contours
of 0.1; (b) horizontally averaged mean flow at r = 100 (solid curve) compared with mean flow at
t = 0 (dashed curve), and inset diagram showing difference between these below z = —5; (c)
fluctuation density field shown by contours of 0.4; and (d) Reynolds stress profile indicating

downward transport of upstream momentum.

1 (=
(f(x,2)) =ZJ; dxfdzf(x,z). (22)

Equation (21) expresses the fact that changes of the
domain-averaged kinetic energy occur either due to dis-
sipation or due to the baroclinic conversion of kinetic
energy into available potential energy. In order to ex-
amine the way in which kinetic energy is extracted
from the mean flow by radiating waves, Eq. (21) is
further decomposed into terms expressing the change
of the mean flow kinetic energy, MKE = i?/2, and
eddy kinetic energy, EKE = [(« — @)% + w?]/2, in
which @(z) = [ [ u(x, z)dx]/L,.

In Fig. 9 the nondiffusive rate of change of mean
flow kinetic energy (solid line), the nondiffusive rate
of change of eddy kinetic energy (short-dashed line),

and the baroclinic conversion of eddy kinetic energy to
available potential energy (long-dashed line) are com-
pared between times ¢ = 0 and 100 in three simulations.
In each case the stratification of the fluid is negligibly
small where the shear is large. Here JN? is given by
Eq. (2) with R = 0.1, zp = 3.0, Jo, = 0; and in (a) J
= 0.4 for which the phase speed and penetration con-
dition are satisfied, in (b) J = 0.3 for which only the
phase speed condition is satisfied, and in (c) J = 0.2
for which neither condition is satisfied. Qualitatively,
the simulations are similar up to ¢ = 30 during which
time kinetic energy is extracted from the mean flow by
eddies. At ¢t ~ 11 in all three cases, the amplitude of
the most unstable mode begins to saturate and a vortex
develops. Although some eddy kinetic energy is re-
turned to the mean flow during the development of the
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FiG. 8. Development of simulated hyperbolic tangent shear flow for JN? characterized by Eq.
2y withJ, = 0,J = 0.2, 20 = 3, and R = 0.1 at time ¢ = 100. (a) Vorticity field shown by contours
of 0.1; (b) horizontally averaged mean flow at z = 100 (solid curve) compared with mean flow at
t =-0 (dashed curve), and inset diagram showing difference between these below z = —5; (c)
fluctuation density field shown by contours of 0.3; and (d) Reynolds stress profile indicating weak
downward transport of upstream momentum only near the leading edge of the IGW wavepacket.

vortex, some of this energy is converted to available
potential form. During the first stages of these simu-
lations they are dissimilar in that for large J the peak
rate of transfer of kinetic energy between the waves
and the mean flow is small and the baroclinic conver-
sion of kinetic energy is large. Such behavior is antic-
ipated since the development of the most unstable nor-
mal mode should become retarded when it grows to
large amplitude in the presence of the more strongly
stratified fluid in the far field. More kinetic energy is
baroclinically converted to available potential energy
when large amplitude IGW are generated. After time ¢
=~ 30, the behavior of the three simulations diverges
significantly. Figure 9a shows that kinetic energy is
continuously extracted from the mean flow by eddies
and that the kinetic energy of the eddies, in turn, is
continuously converted into available potential energy

form. This continuous conversion is not confined to the
mixing region but is instead indicative of the extraction
of energy from the mean flow by radiating waves. Like-
wise, as shown in Fig. 9b, mean flow kinetic energy is
extracted by waves but the process is not so vigorous
at late times. For the case in which J = 0.2 and only
weak IGW radiation occurs, Fig. 9c shows that the di-
rection of energy transfer is reversed after time ¢ =~ 50
and that the mean flow kinetic energy slowly increases
at the expense of stored available potential energy and
eddy kinetic energy.

This figure gives some evidence of the way in which
the nonlinear evolution of the most unstable mode de-
velops so as to excite IGW. During the initial stages of
the flow evolution the horizontal wavenumber of the
disturbance remains unaltered and the horizontal phase
speed changes to a small degree. These characteristics
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0.08 a) Wave—Mean flow interaction: J,=0, J=0.40
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FIG. 9. A study of wave—mean flow interaction between times 0
and 100 for cases with the stratification characterized by J, = 0 and
(a)J =04, (b)J = 0.3, (c) J = 0.2. In each diagram the solid curve
represents the change in mean flow kinetic energy due to nondiffusive
effects, the short-dashed curve represents the nondiffusive change in
the wave kinetic energy, and the long-dashed curve is the nondiffu-
sive change of total kinetic energy due to the deposition of available
potential energy. In the first two diagrams it is apparent that Kinetic
energy is continuously extracted from the mean flow by waves. The
last diagram indicates that kinetic energy is returned to the mean flow
by waves after time ¢t ~ 50.

determine the frequency at which IGW are forced in
the far field. After the mode saturates, in cases where
the stratification in the far field is not sufficiently large
to support radiating IGW, the eddy energy remains
confined to the mixing region with no direct mecha-
nism through which to excite waves. If the stratification
is stronger in the far field, however, energy may be
extracted from the mixing region by the direct excita-
tion of IGW. This excitation stops when the mean flow
is decelerated to such an extent that the frequency of
forcing in the far field is larger than the buoyancy fre-
quency or when the eddy energy of the mixing region
is dissipated to such an extent that the amplitude of
forcing is negligible. IGW are excited for a longer time
if the stratification is larger because the far field can
support a broader range of frequencies of IGW.

The energy transfer diagnostics illustrate the effects
of the wave—mean flow interaction on IGW generation.
In order to distinguish the effects of momentum redis-

SUTHERLAND

2411

tribution due to viscous and eddy diffusion in the mix-
ing region from the effects of momentum transport by
waves, the Reynolds stress change is plotted between
times ¢ = 0 and 100 for the same three simulations as
those discussed above regarding Fig. 9. In Fig. 10 the
solid curve in each diagram shows the Reynolds stress
T across z = 0, and the dashed curve is the Reynolds
stress 7_s across z = z, = —95. The value z. = —5 is
chosen as a level close to the mixing region but suffi-
ciently far below it so that motion across z. is wavelike.
Here 7, gives a measure of the transport of momentum
by eddies and waves downward across the inflection
point of the shear in the mixing region; 7_s gives a
measure of the momentum transport away from the
mixing region by waves alone.

In all three cases, during the development of the most
unstable mode, horizontal momentum is transported
vertically across z = 0, this flux being largest about

a) Momentum Flux: J,=0, J=0.40

- //\\

b) Momentum Flux: J,=0, J=0.30

L N
// \

FiG. 10. A comparison of the vertical transport of horizontal mo-
mentum by IGW with the redistribution of horizontal momentum in
the mixing region by eddies between times 0 and 100 for cases with
the stratification characterized by Jo = 0 and (a) J = 0.4, (b) J = 0.3,
(c) J = 0.2. In each diagram the solid curve represents the Reynolds
stress at z = 0 and the dashed curve represents the Reynolds stress
at z = —5. The latter is a measure of the transport of horizontal
momentum away from the mixing region by IGW. Only in (a) and
(b) is it apparent that IGW extract horizontal momentum away from
the mean flow for long times.
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time ¢ =~ 11, In Figs. 10a and 10b for which J = 0.4
and 0.3, respectively, the momentum flux below z = z,
becomes large after ¢+ =~ 20. The peak Reynolds stress
is 7_5 =~ 0.055 (~8.8 N m~? in dimensional units; see
Table 1). At all times in these two simulations, the flux
of upstream momentum is directed downward, al-
though this flux is greater in the simulation with J
= 0.4. Figure 10c shows the Reynolds stress for the
simulation with J = 0.2. Here its peak value across z,
is 7_s ~ 0.035 (~5.6 Nm™2) and after t+ ~ 60 the
upstream momentum flux is redirected upward.

A measure of the drag to the mixing region due to
IGW emission is calculated in terms of the average
deceleration D between z = —5 and z = 5 over the
duration of each simulation. In Table 1, D is given in
dimensional units using % = 0.4 ms ™' and £ = 10 m,
emphasizing the substantial drag exerted on the mean
flow due to the generation of IGW. For example, when
large amplitude IGW radiate (the case with J; = 0, J
= 0.4), the flow in the mixing region decelerates on
average by 2.9 X 107> m s ~2; in other words, the flow
speed decreases on average by approximately 5 m s ™!
in less than one hour due to IGW emission. Because
the simulations are restricted to two dimensions, this is
probably an overestimate of the degree of drag that
occurs in fully three dimensional turbulent flow. None-
theless, it demonstrates the potentially nonnegligible
effect that the generation of IGW by shear instability
may have upon the mean flow of the equatorial under-
current.

If the momentum is redistributed locally across z = 0
due to eddy mixing alone, then 7_s = 0. Hence a con-
venient measure of the relative importance of momen-
tum transport by IGW compared with the local mo-
mentum redistribution by eddy mixing and IGW at time

t is given by
o ([ ) /(] o).
0 0

If at late times M, ~-0, then the momentum is locally
redistributed due to eddy mixing. If M, =~ 1, the mo-
mentum is efficiently transported away from the mixing
region by waves. Table 3 lists values of Mo, for a range
of simulations in which the mixing region is both strat-
ified and unstratified. The numbers in bold represent
values for which the penetration condition is satisfied
and underlined numbers represent values for which the
phase speed condition is satisfied. The values for the
stratified mixing region cases will be discussed in the
section 3b. If the mixing region is unstratified, the pen-
etration condition is satisfied if J > 0.37, and the phase
speed condition is satisfied if J > 0.24. Table 3 shows
that Mo, =~ 1.16 = 0.01 for J between 0.25 and 0.45,
and M, is significantly smaller for J = 0.20 and 0.15.
Therefore, for these simulations the phase speed con-
dition effectively predicts the circumstances under
which IGW may efficiently extract energy and mo-

(23)
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TABLE 3. Values of M, defined by Eq. (23) at time ¢t = 100
calculated for a range of simulations with basic states given by Eq.
(2) with z, = 3, R = 0.1. M, is a measure of the efficiency by which
IGW transport momentum away from the mixing region. If M, is
small, the momentum is redistributed about the shear by eddy mixing.
If M, = 1, IGW transport substantial momentum away from the
mixing region. Bold numbers represent values for which the
penetration condition is satisfied; underlined numbers represent
values for which the phase speed condition is satisfied.

J=045 040 035 030 025 020 0.15
Jo =00 116 117 115 117 116 089 048
Jo=005 103 100 095 097 010 0.8

mentum from an unstable shear flow. The penetration
condition is sufficient but not necessary for these cases.
b. Simulations with a stratified mixing region

In cases where the stratification is nonnegligible in
the mixing region, the flow evolution is markedly dif-

‘ferent with regard to both the generation of IGW by

the most unstable mode and the long time evolution of
the simulations. Two simulations are examined in detail
that illustrate the range of behaviors. In both, zo = -3,
R = 0.1, and Jy, = 0.05 so that the minimum gradient
Richardson number is well below the Miles—Howard
1/4 limit, and the growth rate of the most unstable mode
is comparable to that in cases with J, = 0. In the first
simulation, to be discussed below, the far-field strati-
fication is J = 0.4, which is sufficiently large that the
most unstable mode is capable of directly exciting
IGW. In the second simulation J = 0.2, and IGW are
not directly excited.

The characteristics of the most unstable mode for the
basic state given by Eq. (2) with zo = 3, R = 0.1, J,
= 0.05, and J = 0.4 are given in Table 2, which shows
that both the phase speed and penetration conditions
are satisfied. Large amplitude IGW are therefore antic-
ipated in this case. Figure 11 shows the vorticity field
at time ¢ = 100 of the simulation with J = 0.4 over a
vertical range between z = —10 and 10. The contours
are shown by intervals of 0.3, positive (negative) con-
tours shown by solid (dashed) curves. Unlike the vor-
ticity field shown in Fig. 7a, this diagram shows sig-
nificant mixing associated with the vortex that develops
from the most unstable mode. Although the resolution
of this simulation is not adequate to accurately repre-
sent mixing at very small scales, simulations at higher
resolution (not shown here) reveal that the large-scale
structures and, in particular, the radiating wave field,
are sufficiently well represented here. Regions of
strong negative vorticity are apparent near the braids
on either side of the vortex core. In their study of uni-
formly stratified jet flow, Sutherland and Peltier (1994)
observed similar patches of negative vorticity and
showed that they were generated by baroclinic torques
that develop where heavy fluid is carried downward
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FiG. 11. Development of simulated hyperbolic tangent shear flow for JN? characterized by Eq.

(2) with Jo = 0.05,J = 04,2 = 3,and R = 0.

1 at time ¢ = 100. (a) Vorticity field shown by

contours of 0.3; (b) horizontally averaged mean flow at # = 100 (solid curve) compared with mean

flow at r = 0 (dashed curve), and inset diagram s!

howing difference between these below z = —5;

(c) fluctuation density field shown by contours of 0.4; and (d) Reynolds stress profile indicating

downward transport of upstream momentum.

and light fiuid is carried upward by the flanking large-
scale vortical motion.

Despite the different structure of the mixing region
between cases with J, = 0 and J, = 0.05, the accel-
eration of the mean flow above z = 0 due to the down-
ward transport of momentum by IGW and the charac-
teristics of the waves themselves are similar in the two
cases. Figure 11b compares the horizontally averaged
mean flow at time ¢ = 100 (solid line) with the initial
mean flow (dashed curve) over the same vertical range
as that in which the vorticity field is shown and dem-
onstrates the significant drag on the mean flow induced
by the radiation of IGW. The momentum deficit in the
mixing region is accounted for by the momentum trans-
ported to great depths by IGW as shown in the inset.
In particular, the mean flow at + = 100 is decelerated

from 1.0 to below 0.9 at depths around z = —26. In
Fig. 1ic contours of the fluctuation density field are
shown by intervals of 0.4 with positive (negative)
contours given by solid (dashed) curves. The field is
shown over the full vertical range of the simulation
from z = —60 to 10. The amplitude of the IGW is
comparable to that in the unstratified mixing region
case with J; = 0 and J = 0.4, although the waves in
this case have not propagated downward as far by
time ¢ = 100. This is primarily because the vertical
wavenumber of the IGW in this case is smaller and
the vertical group velocity is reduced. Nonetheless,
the Reynolds stress profile shown in Fig. 11d over z
—60 to 10 is positive below z = 0 and the peak
Reynolds stress is comparable to that in the unstrat-
ified case.
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For the stratified mixing region case with J, = 0.05
and J = 0.2, the characteristics of the most unstable
mode given in Table 2 show that neither the phase
speed nor the penetration condition are satisfied and so
large amplitude IGW are not expected to occur. The
vorticity field at time ¢ = 100 of the simulation for this
case is shown by contours of interval 0.3, in Fig. 12a,
illustrating small-scale mixing where the shear is large.
The momentum associated with the shear is redistrib-
uted about z = 0 and no significant IGW radiation oc-
curs. The local redistribution of momentum is explicitly
demonstrated in Fig. 12b, which compares the mean
flow at ¢ = 100 (solid curve) with that at t = 0 (dashed
curve). No significant deceleration of the flow occurs
below z = —10. The fluctuation density is large only
near the mixing region and this field is shown for —10
< z < 10 by contours of interval 0.4 in Fig. 12c. The

a) Vorticity
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Reynolds stress profile is shown over the same vertical
range in Fig. 12d. The peak is largest at z = 0 and the
Reynolds stress is negligible below z = —10.

As in Fig. 9, the wave—mean flow interaction in the
stratified mixing region cases between times ¢ = 0 and
100 is illustrated in Fig. 13, which shows the time rate
of change of nondiffusive mean flow kinetic energy
(solid curve), of nondiffusive eddy kinetic energy
(short-dashed curve), and of the baroclinic conversion
of eddy kinetic energy to available potential energy
(long-dashed curve). These are shown for cases with
Jo = 0.05 and (a) J = 04, (b) J = 0.3, and (c) J
= 0.2. Although in the stratified mixing region cases
the peak rate of change of mean flow kinetic energy is

_smaller compared with the counterpart examples in the

unstratified mixing region cases (i.e., Fig. 9), the in-
teraction between the waves and the mean flow is sig-

b) Mean flow profile

10

10

-10
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L
L i 0
Y050
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¢) Fluctuation density 0 d) Reynolds stress profile
0 -
-10
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FiG. 12. Development of simulated hyperbolic tangent shear flow for JN? characterized by Eq.
(2) with J, = 0.05, J = 0.2, zo = 3, and R = 0.1 at time-¢ = 100. (a) Vorticity field shown by
contours of 0.3; (b) horizontally averaged mean flow at ¢ = 100 (solid curve) compared with mean
flow at r = 0 (dashed curve), and inset diagram showing difference between these below z = —5;
(c) fluctuation density field shown by contours of 0.4; and (d) Reynolds stress profile indicating

downward transport of upstream momentum.
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a) Wave-Mean flow interaction: J,=0.05, 1=0.40
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FiG. 13. A study of wave—mean flow interaction between times 0O
and 100 for cases with the stratification characterized by J, = 0.05
and (a) J = 0.4, (b) J = 0.3, (¢) J = 0.2. In each diagram the solid
curve represents the change in mean flow kinetic energy due to non-
diffusive effects, the short-dashed curve represents the nondiffusive
change in the wave kinetic energy, and the long-dashed curve is the
nondiffusive change of total kinetic energy due to the deposition of
available potential energy. In the first two diagrams it is apparent that
kinetic energy is continuously extracted from the mean flow by waves
and this process continues efficiently for long times compared with
the case for J, = 0 (see Fig. 9). The last diagram indicates that kinetic
energy is returned to the mean flow by waves after time ¢ =~ 40.

nificant for longer times. The effect of the stratification
in the mixing region is to enhance the interactions be-
tween the waves and the mean flow by allowing the
transfer of eddy energy between available potential and
kinetic energy forms where the mixing is most intense.
In all three cases, the baroclinic conversion of eddy
kinetic energy to available potential energy is signifi-
cant during the early development of the initial distur-
bance and energy continues to be converted in this
sense at late times both due to IGW generation and
mixing in the shear. The conversion is much larger for
the cases with J = 0.4 and J = 0.3 in which large
amplitude IGW are generated.

Figure 14 shows the effect of the wave—mean flow
interaction upon the flux of momentum across z = 0,
and z = z, = —5 between times ¢ = 0 and 100. In (a)
and (b) for which J = 0.4 and 0.3, respectively, and
IGW are directly excited by the development of the
most unstable mode, qualitatively similar behavior oc-
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curs between the stratified and unstratified mixing re-
gion cases (i.e., Figs. 10a and 10b) in that IGW con-
tinually extract momentum from the mixing region
throughout the duration of the simulations. In the strat-
ified mixing region case, although the peak Reynolds
stress across z = 0 is smaller (=~0.03 for J = 0.4 and
~0.04 for J = 0.3; see also Table 1), the momentum
flux is large for longer times. In (c), for which J = 0.2
and IGW are not directly excited by the most unstable
mode, negligible momentum is transported away from
the mixing region.

The average deceleration of the mixing region due
to IGW emission in the case with J, = 0.05 and J = 0.4
is comparable to that when J, = 0 (see Table 1). When
J = 0.2, however, the drag is negligible.

The efficiency M, by which the radiation of IGW
influences the redistribution of momentum in the mix-
ing region at time ¢ as characterized by Eq. (23) is
listed, for + = 100, in Table 3 for a range of simulations

a) Momentum flux: J,=0.05, J=0.40

0.04

0.04

0.02

AT

0.04

0.02

AT

100

Fig. 14. A comparison of the vertical transport of horizontal mo-
mentum by IGW with the redistribution of horizontal momentum in
the mixing region by eddies between times 0 and 100 for cases with
the stratification characterized by J, = 0.05 and (a) J = 04, (b) J
= 0.3, (¢) J = 0.2. In each diagram the solid curve represents the
Reynolds stress at z = 0 and the dashed curve represents the Reynolds
stress at z = —5. Only in (a) and (b) is it apparent that IGW extract
horizontal momentum away from the mean flow for long times and
this process continues to be efficient over longer times than in the
case with Jo = O (see Fig. 10).
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Fi1G. 15. Profiles of the linear correlation coefficients of horizontal and vertical velocity corr(u’,
w') (solid line) and of vertical velocity and fluctuation density corr(w’, p’) (dashed line) calculated
at time ¢ = 100 for cases with the stratification characterized by (a) J, = 0, J = 0.4, (b) Jo = 0,J
=0.2,(c)J, =005, J =04, and (d) Jo = 0.05,J = 0.2.

with varying far-field values of stratification J. As with
the unstratified case, numbers in bold represent values
for which the penetration condition is satisfied (which
for Jo = 0.05 occurs if J > 0.32) and underlined num-
bers represent values for which the phase speed con-
dition is satisfied (which for J, = 0.05 occurs if J
> (0.24). For cases in which J, = 0.05, Mo, = 0.99
* 0.04 when the far-field stratification J = 0.30. This
value is moderately less than the efficiency calculated
for the unstratified mixing region when the phase speed
condition is satisfied, as might be expected since there
is more small-scale turbulence in this case. Even
though the phase speed condition is satisfied for J
= 0.25, the emission of IGW in this case is weak. Com-
pared with its results for the unstratified mixing region
case, the phase speed condition is not as successful pre-
dicting whether large amplitude IGW generation will
occur.

In summary, if the mixing region is unstratified,
large amplitude IGW are excited by the growth of the
most unstable mode of the shear if the thermocline is
strongly stratified. A compact IGW wavepacket of
smaller amplitude is generated by a nonlinear mecha-
nism if the thermocline is more weakly stratified. If the
mixing region is stratified, the excitation of IGW by the
growth of the most unstable mode is more efficient
when the thermocline is stratified, and IGW excitation
is strongly inhibited when the thermocline is more
weakly stratified.

The coupling between radiating IGW and the mixing
region at time 100 in four cases is demonstrated in Fig.
15, which shows profiles of the linear correlation co-
efficients corr(u’, w') and corr(w’, p') at depths be-
tween z = —5 and 5. The four cases are the same as
those considered in Fig. 5 for which the correlation
profiles were deduced from the most unstable modes
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of linear theory: in (a) Jo, =0, J =04,in(b) J, =0,
J=10.2,in(c) Jo=0.05,J =04, and in (d) J, = 0.05,
J = 0.2. When the thermocline is strongly stratified
propagating IGW occur below z =~ —2.5, where
corr(u’, w') > 0.95 and corr(w’, p’) =~ 0. When the
thermocline is moderately stratified, corr(u’, w') is
close to zero (Fig. 15d) or even negative (Fig. 15b).
In the latter case IGW propagate upward toward the
mixing region at ¢ = 100.

Large amplitude IGW develop in an unstable shear
flow if they are excited directly by the most unstable
normal mode of linear theory. As a crude estimate, in
practice, this occurs if the ratio of N5 in the mixing
region to the maximum squared shear strength S%
= max (| dU/dz|?) is less than ~0.25 and the ratio of
N3 in the thermocline to S% exceeds ~0.25, provided
the thermocline is situated sufficiently far below the
shear unstable region. For example, regarding the basic
state shown in Fig. 2, which is derived from observa-
tions, S% =~ 0.0012 s~? and N2 < 0.0003 s 2 down to
70-m depth. Near the thermocline N% ~ S%. There-
fore, strong IGW generation from shear flow instability
is not unlikely.

4. Discussion and conclusions

The generation of IGW by shear instability is pro-
posed as a mechanism by which momentum is trans-
ported downward from the upper flank of the equatorial
undercurrent, thus acting simultaneously as a momen-
tum sink to the undercurrent and, potentially, as a mo-
mentum source to the deep equatorial countercurrents.
Linear theory and nonlinear numerical simulations
demonstrate that IGW are generated under a robust
range of initial conditions but occur on such small hor-
izontal length scales (of the order of the shear depth
~ 10 m) and fast timescales (of the order of minutes)
that direct observation of them is challenging. Some
support appears to be provided, however, by Hebert et
al. (1992) who observed an IGW wavepacket associ-
ated with an overturning event on the upper flank of
the Pacific equatorial undercurrent.

In this paper, many of the diagnostics that have been
employed may be used to ascertain whether the gen-
eration of IGW by shear instability has actually oc-
curred. On the basis of linear theory, conditions have
been determined under which a shear unstable basic
state is capable of exciting large amplitude IGW
(“‘large’’ in the sense that the emission of IGW non-
negligibly influences the nonlinear development of the
mixing region). Qualitatively, large amplitude IGW
are generated if a shear flow is unstable in weakly strat-
ified fluid and the surrounding fluid is strongly strati-
fied. Quantitatively, this is assessed by examining the
characteristics of the most unstable mode of linear the-
ory and testing whether these satisfy the phase speed
condition, Eq. (8), and the penetration condition, Eq.
(9). Nonlinear numerical simulations support the linear

SUTHERLAND

2417

theory assumption that the phase speed condition is
necessary and the penetration condition is sufficient for
strong IGW generation. The phase speed condition
more accurately poses a necessary and sufficient con-
dition if the mixing region is weakly stratified.

Transport of momentum and mass have been studied
by calculating the linear correlation coefficients
corr(u’,w’) and corr(w’, p'). Where waves propagate
well below the mixing region, the former correlation is
close to 1 and the latter is close to 0, as expected for
plane IGW. This analysis clearly distinguishes the mix-
ing region from the far-field region where IGW prop-
agate unaffected by mixing. Although the simultaneous
measurement in the open ocean of vertical velocity,
density, and horizontal velocity is challenging, it would
provide information that could indicate whether surface
and deep ocean mixing are linked by IGW generation,
propagation, and breaking. The technology for such
measurements now appears to be accessible as Fleury
and Lueck (1994) have shown by making direct esti-
mates of the vertical heat flux.

Though it is beyond the scope of this work to ex-
amine what processes would cause the flow itself to
become unstable, one might speculate, in light of the
ambient conditions preceding the observation by He-
bert et al. (1992), that cooling and convective mixing
near the surface in the presence of the underlying mar-
ginally stable shear flow may be sufficient to reduce
the stratification above the thermocline and destabilize
the upper flank of the equatorial undercurrent. A de-
tailed study of convective processes in the presence of
shear is required to examine this hypothesis. The up-
ward displacement of the thermocline due to the ‘‘shear
wave’’ may also be an essential ingredient because this
may act to facilitate the coupling between shear insta-
bility in the mixing region and radiating IGW in the
thermocline.

Finally, it is speculated upon but not examined here
that IGW once generated by shear are capable of prop-
agating to great depths (below 300 m) where they act
as a source of momentum driving the zonal counter-
currents. The basic states studied here fix U and N?
constant at great depths in order to easily examine the
characteristics of downward propagating IGW. In re-
ality, both U and N? decrease below the undercurrent
core, but if the basic state is dynamically stable over
many shear depths below the mixing region, as in the
case of the observations motivating this work, it is as-
sumed that variations of U and N? at great depths
should not significantly affect the behavior of the dy-
namically unstable flow within the mixing region dur-
ing the early stages of the flow development. Although
such variations of the basic state should not, therefore,
affect IGW generation from the upper flank of the un-
dercurrent, they would greatly affect IGW propagation.
For small amplitude wavepackets, ray theory [e.g., see
Lighthill (1978) §4.6] predicts that if N? decreases suf-
ficiently, IGW reflect from a depth (the ‘‘evanescent
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level’’) where the intrinsic wave frequency equals N,
and if U decreases sufficiently, IGW asymptotically ap-
proach a depth (the “‘critical level’”) where the hori-
zontal phase speed of the waves equals the speed of the
background flow. In the latter case IGW ultimately
break and the associated momentum flux convergence
acts to accelerate the mean flow near the critical level.
Indirect evidence for the near-surface generation and
deep ocean breaking of IGW may possibly be inferred
from one of the observations by Peters et al. (1995)
who, four days preceding the observations by Hebert
et al. (1992), recorded velocity and N? profiles at 0°,
140°W that showed strong mixing near 200-m depth
(see Fig. 15 of their paper). Near the surface occurred
strong mixing associated with the diurnal cycle and the
presence of a ‘‘shear wave’’ (Peters et al. 1991 ). Under
suitable conditions it may be that the two mixing events
were linked: IGW generated near the surface extracted
momentum from the mixing region and transported it
downward to 200-m depth where the waves encoun-
tered a critical level and deposited momentum to the
mean flow.

Both the reduced stratification and alternating cur-
rents below the thermocline would seem to limit the
depth to which IGW may propagate. However, it seems
now that large amplitude IGW may propagate to depths
greater than those predicted by ray theory. Specifically,
Sutherland (1996) examined the nonlinear evolution of
a large amplitude IGW wavepacket in nonuniformly
stratified fluid and showed that, due in part to transient
forcing but also significantly due to nonlinear pro-
cesses, large amplitude IGW may propagate into
regions in which the initial wavepacket is evanescent.
The effects of variations in the background flow upon
the propagation of large amplitude IGW is currently
under investigation.
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