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One way that large-scale oceanic internal waves transfer their energy to small-scale
mixing is through parametric subharmonic instability (PSI). But there is a disconnect
between theory, which assumes the waves are periodic in space and time, and reality,
in which waves are transient and localized. The innovative laboratory experiments and
analysis techniques of Bourget et al. (J. Fluid Mech., vol. 723, 2013, pp. 1–20) show
that theory can be applied to interpret the generation of subharmonic disturbances
from a quasi-monochromatic wave beam. Their methodology and results open up new
avenues of investigation into PSI through experiments, simulations and observations.
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1. Introduction

The stratification of the abyssal ocean is generally believed to be maintained
by mixing resulting from the breakdown of large-scale internal waves generated
by surface processes or by the motion of tides over the ocean floor (Munk &
Wunsch 1998). But it is not well understood how the energy from these waves
cascades from large scales to sufficiently small scales that it efficiently dissipates. Far
from boundaries and neglecting the influence of currents, eddies and other waves,
the dominant mechanism in the abyss for the energy transfer to small scales is
through parametric subharmonic instability (PSI). This describes a nonlinear resonant
interaction through which a primary wave excites pairs of waves whose frequencies
and wavenumbers add up to the frequency and wavenumber, respectively, of the
primary wave (Hasselmann 1962).

The theory for PSI is based upon the assumption that the primary wave is
monochromatic in space and time. Furthermore, the predicted growth rate of PSI is
typically quite small compared to the frequency of the wave. And so, although all
plane internal waves are known to be unstable to PSI (Lombard & Riley 1996), it is
not obvious that PSI occurs in realistic scenarios.
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FIGURE 1. The development of PSI in the x–z plane observed at two times in three
circumstances: (a,b) the displacement of dye-lines in experiments with a vertically oscillating
rectangular tank at t = 1200 and 1220 s (Benielli & Sommeria (1998); (c,d)) perturbations of the
spanwise vorticity field computed in simulations of a wave beam in a doubly periodic domain,
shown initially and after 40 buoyancy periods (Clark & Sutherland (2010); (e,f ) perturbations of
the vertical density gradient in experiments on a wave beam emanating from a camshaft wave
generator, shown after 10 and 50 wave periods (Bourget et al. 2013).

The occurrence of PSI for internal waves in continuously stratified fluid has
been investigated mainly through laboratory experiments. Internal waves modes in a
rectangular tank were shown to excite subharmonic disturbances (Benielli & Sommeria
1998). For example, by vertically oscillating a rectangular tank filled with uniformly
stratified fluid, low-mode internal waves were generated (figure 1a). After 20 min
(approximately 400 buoyancy periods) disturbances developed near the centre of the
tank, oscillating with half the forcing frequency of the low-mode wave (figure 1b).
These experiments showed that the waves need not be plane periodic: PSI occurred
for modes as well as for propagating waves. Nonetheless, the primary waves under
investigation were still spatially monochromatic in the sense that the horizontal and
vertical wavenumbers were fixed. And so, the occurrence of PSI may not be so
surprising (McEwan & Plumb 1977).

Several experiments have studied internal wave beams created by oscillating bodies
(Sutherland & Linden 2002; Peacock et al. 2009). In these circumstances, the waves
had fixed frequency but the beam was composed of a superposition of waves with
a range of wavenumbers restricted only in the sense that the ratio of vertical to
horizontal wavenumber was fixed. In none of these experiments was the occurrence of
PSI evident. Possibly this was because of viscous attenuation of the beam. PSI may
also have been retarded because only one across-beam wavelength spanned the width
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of a beam. Using shadowgraphs, the appearance of PSI in a wave beam generated
by moderately large-amplitude oscillations of a cylinder was first demonstrated
qualitatively by McEwan & Plumb (1977). Indirectly, PSI was argued to occur in an
experiment with a large cylinder oscillating with large amplitude (Clark & Sutherland
2010). In this case, a wave beam was generated from an oscillatory turbulent patch
that surrounded the cylinder. That an internal wave beam could exhibit PSI was
supported by numerical simulations, as shown in figure 1(c,d). In these simulations
the Gaussian amplitude-envelope of the beam contained two across-beam wavelengths.
The implication was that wavepackets must contain more than one wavelength in order
for PSI to occur.

2. Overview

One breakthrough of Bourget et al. (2013) is the use of a new wave generation
mechanism that creates a beam with three across-beam wavelengths spanning its width.
Thus they are able to observe the onset of instability in the beam, as shown in
figure 1(e,f ). The generator operates by fixing a sequence of rectangular plates to a
camshaft (Gostiaux et al. 2007). As the camshaft rotates, the plates move back and
forth providing an oscillatory forcing in time. If the camshaft is set up with a stepwise
sinusoidal variation of displacement along its length, then the collective motion of the
plates is a waveform that propagates in one direction. Thus this versatile tool can
create quasi-monochromatic wavepackets of arbitrary spatial extent.

The waves are visualized and disturbances measured using a non-intrusive
method called synthetic schlieren (Dalziel, Hughes & Sutherland 2000). The other
breakthrough of Bourget et al. (2013) is the application of novel analysis methods
that separate the signal of the primary beam and the subharmonic waves it excites.
For example, at an arbitrary point in the tank measurements of the perturbation
vertical density gradient versus time can be Fourier transformed. This is convolved
with a windowing function that produces a time–frequency spectrum, showing a peak
frequency associated with the primary beam and the growth in power at later times of
the subharmonic beams, each observed with a different frequency.

Bourget et al. (2013) go on to construct separate snapshots of the primary beam
and its subharmonics through an adaptation of the Hilbert transform methods devised
by Mercier, Garnier & Dauxois (2008). Here the Fourier-transformed fields are filtered
to pass a selected frequency and the result is then inverse Fourier transformed back
to temporal space. This can be done for time signals extracted from each horizontal
and vertical location in the field of view. Putting the filtered results back together,
Bourget et al. (2013) produce snapshots of disturbances having the frequency only of
the primary wave or of one of the two subharmonically excited waves. Thus one can
examine the spatial as well as temporal frequency of each wave component in the
resonant triad.

Finally, their observations of instability in a wave beam are compared directly
with the theory for PSI, which assumes the primary and subharmonic waves are
perfectly periodic in space and time. For a primary wave of known frequency, ω0,
and wavenumber vector, k0, a wide range of subharmonic wave pairs exists for which
their frequencies sum to ω0 and their wavenumber vectors sum to k0. From theory
they compute the subharmonic wave pairs that grow at the fastest rate. Consistent with
theory, they find that the observed subharmonic waves are indeed amongst the fastest
growing.
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3. Future

The new experimental and analysis tools have shown how the PSI theory
developed for plane waves can indeed make predictions about the stability of quasi-
monochromatic wavepackets. Now the challenge is to determine the range of validity
of theory. What is the minimum number of wavelengths inside a wavepacket necessary
for PSI to occur? If a wavepacket is transient (and so not monochromatic in time),
what duration must it have for PSI to occur? If a wavepacket propagates through
a background with currents, eddies and other waves, will PSI be the dominant
mechanism for breakdown or will interactions with the transient background control
the energy cascade?

Even if PSI develops from a quasi-monochromatic wave, it is still not known
from theory specifically what pair of subharmonic waves is generated. For example,
Bourget et al. (2013) identified three distinct classes of subharmonic wave pairs with
comparable growth rates. But only one of these was observed to develop to substantial
amplitude. Ultimately the goal is to assess whether PSI operates on large-scale waves
generated in the ocean by storms or by tidal flow over bottom topography. The
signature of PSI seemed evident in observations of near-inertial waves in the Luzon
Strait (Alford 2008). Through the application of time–frequency and Hilbert filters
to their data and in future endeavours, the occurrence of PSI may be made more
conclusive.
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