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We investigate the dynamics of a gravity current that propagates along the interface
of a two-layer fluid. The results of the well-studied symmetric case are reproduced
in which the upper- and lower-layer depth of the ambient are equal and the density
of the intrusion is the average density of the ambient. In addition, we present the
first detailed examination of asymmetric circumstances in which the density of the
intrusion differs from the mean density of the ambient and in which the upper- and
lower-layer fluid depths are unequal. The general equations derived by J.Y. Holyer &
H. E. Huppert (J. Fluid Mech. vol. 100, 1980, pp. 739–767,), which predict the speed and
vertical extent of the gravity current head, are re-expressed in a simpler form that
employs the Boussinesq approximation. Approximate analytic solutions are deter-
mined using perturbation theory. The predictions are compared with the results of
laboratory experiments. We find excellent agreement if the density of the gravity
current is the average of the upper- and lower-layer densities weighted by the
respective depths of the two layers. However, exact theory significantly underpredicts
the gravity current speeds if the current density differs from this weighted-mean
average. The discrepancy is attributed to the generation of waves that lead and trail
the gravity current head. Empirical support for this assertion is provided through an
examination of the observed wave characteristics.

1. Introduction
The classical analysis for a gravity current is that for a dense fluid that moves

horizontally along a rigid bottom beneath a less dense ambient fluid (Kármán 1940;
Benjamin 1968; Simpson & Britter 1979; Härtel, Meiburg & Necker 2000). Such
currents are manifest in the atmosphere, for example, as the flow of air in a sea breeze
front which intrudes into the relatively warm, and presumably uniform, ambient air
over land (Simpson, Mansfield & Milford 1977). Other geophysical and environmental
examples have been compiled by Simpson (1997).

A more complicated circumstance occurs when a gravity current propagates into
a non-uniform ambient. For example, when a bottom-propagating gravity current
intrudes into a two-layer ambient fluid, the current can, under some circumstances,
excite internal waves at the interface between the upper- and lower-layer fluids
(Rottman & Simpson 1989). These dynamics have been attributed to the creation of
Morning Glory, a fast-moving band of clouds that appears typically in early morning
hours in late October over North-Western Australia (Clarke, Smith & Reid 1981;
Smith, Crook & Roff 1982). The clouds mark the crest of a solitary wave (alternatively
referred to as an atmospheric undular bore) which moves along the morning-time
atmospheric inversion (Noonan & Smith 1985; Christie 1992; Menhofer et al. 1997).
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Though Australia’s Morning Glory is an oft-cited example of atmospheric nonlinear
waves, waves resulting from interactions between storm systems and atmospheric
inversions have been observed over Texas (Clarke 1998), Oklahoma (Haase & Smith
1984) and elsewhere.

The dynamics of the waves have been well-studied. However, the mechanism for
their generation is not so well understood. The southward-propagating ‘Morning
Glory’ waves are believed to be created by the interaction with the inversion of
synoptic weather systems north of the Gulf of Carpentaria (Clarke 1984; Noonan &
Smith 1986). One way that the waves can be generated is through the release
of relatively dense cold air that propagates underneath the inversion (Rottman &
Simpson 1989). However, another mechanism exists: the synoptic weather system
can mix air above and below the inversion and so create a gravity current that
propagates along the interface of the inversion rather than underneath it. Indeed, this
is the likely mechanism for the generation of northward-propagating ‘Morning Glory’
waves, which are believed to be created by convective mixing of the atmospheric
inversion which overlies Australia’s desert interior.

It is not the purpose of this paper to assess the mechanism for ‘Morning Glory’
waves in realistic atmospheric conditions. Rather, these phenomena are described
as motivation for studying the more general and fundamental dynamics of gravity
currents that propagate along a density interface. Through laboratory experiments,
we will show that interfacial gravity currents, like bottom-propagating currents, can
act as a source of nonlinear waves.

We perform a series of lock-release experiments and analyse digitized images of
the results to determine the characteristics of the gravity current and waves. The
procedure is similar to lock-release experiments of bottom-propagating currents in
which dense fluid lock is released into a less dense ambient by the rapid vertical
extraction of a gate separating the two fluids (Keulegan 1957; Rottman & Simpson
1983; Hacker, Linden & Dalziel 1996).

The set-up of our experiments and the resulting waves and currents are shown in
figure 1. Initially, a gate separates lock-fluid of density ρ� and a two-layer ambient
fluid with upper- and lower-layer fluid densities ρ0 and ρ1, respectively (figure 1a). In
order to ensure the gravity current moves along the interface, we require, ρ0 < ρ� < ρ1.
Upon extraction of the gate, the gravity current moves forward and return flows above
and below the current propagate backwards into the lock (figure 1b). When the return
flows encounter the end of the lock, they reflect and in certain cases (Rottman &
Simpson 1983) may generate internal bores that propagate back toward the head of
the gravity current moving along the interfaces above and below its tail (figure 1c).
Meanwhile, the gravity current may excite interfacial waves that lead the current
head. Depending on the relative density differences and the depths of the upper- and
lower-layer fluids, the leading wave may be either linear or nonlinear.

Previous experiments on interfacial gravity currents have studied the doubly
symmetric case in which the upper- and lower-layer fluid depths are equal and the
density of the lock fluid is the average density of the ambient (Britter & Simpson 1981;
Rooij, Linden & Dalziel 1999; Lowe, Linden & Rottman 2002). In particular, Mehta,
Sutherland & Kyba (2002) studied how the evolution of a gravity current changes
as it propagates in a two- and three-layer fluid, the latter being established through
repeatedly releasing intrusions. They showed that the gravity current propagates
steadily in a two-layer fluid, but that it stops propagating in a three-layer fluid as
a consequence of depositing its momentum to trailing sinusoidal internal waves and
leading double-humped solitary waves.
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Figure 1. Set-up and definition of parameters for intrusion experiments. In (a) the fluid in
the lock has density ρ� satisfying ρ0 <ρ� < ρ1. In (b) the gate is extracted and the intrusion
propagates to the right while return flows above and below the intrusion propagate to the left.
In (c) the return flow reflects from the end-wall of the tank leading to the generation of an
upper and lower rear-bore that propagate to the right.

The speed of a doubly symmetric gravity current in two layer fluid was examined
by de Rooij et al. (1999). The experimental results were compared with two theoretical
predictions: one extends the results of Benjamin (1968) to an infinitely deep two-layer
fluid; the other takes the more general finite-depth predictions of Holyer & Huppert
(1980) applied to the doubly-symmetric case.

A central goal of this paper is to run experiments in asymmetric cases and to
compare the results with those predicted by Holyer & Huppert (1980). Like the one-
layer energy-conserving theory of Benjamin (1968), their theory assumed the system
to be in steady state and it required mass and momentum conservation together with
Bernoulli’s principle to predict the speeds of the gravity current and the return flows
above and below the current head. The relative depths of each of the two-layers in
the ambient is arbitrary and the density of the interfacial gravity current holds any
value between those of the upper and lower layers. (Their theory separately predicts
the speed of a bottom-propagating current in a two-layer ambient, but these results
are not relevant to the experiments we report upon here.)

Quite generally, their theory is non-Boussinesq in that it allows for significant
change in density between the two-layers in the ambient and the current. Here, we
recast their formulae in Boussinesq form, which is appropriate for comparison with
our experiments because in all cases the densities of the two layers of the ambient
differ by less than 5%. We show that the resulting formulae have a greatly simplified
form to which perturbation theory may be straightforwardly applied. Thus, we are
able to gain insight into the effect of relative depths and densities on the flow speeds
through approximate analytic solutions.

By necessity, the theory does not allow for the generation of upstream or
downstream waves. By comparing theory with experiments in circumstances in which
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waves are generated, we are therefore able to assess the importance of wave generation
on the evolution of the gravity current.

The paper is organized as follows. In § 2, we adapt the theory of Holyer & Huppert
(1980) to the Boussinesq case and examine perturbation solutions in various limits.
The experimental set-up and analysis methods are described in § 3 and qualitative
results are presented in § 4. We compare observed flow speeds with theory in § 5
in which we further examine the properties of the observed waves. In § 6, we
summarize our results and we develop empirical predictions for current speeds and
wave characteristics based upon the experimental results.

2. Theory
Theoretical predictions of gravity current speeds based on mass, momentum and

energy conservation were derived rigourously by Benjamin (1968). The theoretical
speed†, U , of a gravity current of density ρ� propagating into an ambient fluid of
density ρ0 < ρ� and finite depth hT is given implicitly by

U 2

g′∆d
=

(hT − ∆d)(2hT − ∆d)

hT (hT + ∆d)
, (2.1)

in which ∆d is the depth of the trailing tail sufficiently far behind the head and
g′ = g(ρ� − ρ0)/ρ00 is the reduced gravity. Here, we have invoked the Boussinesq
approximation so the density difference ρ� − ρ0 is normalized by a characteristic
density ρ00.

There are two limits of interest. For energy-conserving currents, ∆d = hT /2 and so
(2.1) gives

U →
√

g′∆d/2. (2.2)

In the limit hT � ∆d , energy cannot be conserved in the context of Benjamin’s theory.
Nonetheless, the speed can be predicted by the equation

U →
√

2g′∆d. (2.3)

Here, ∆d is the depth of the tail well behind the turbulent mixing region in the lee of
the gravity current head.

In deriving the theory for the two-layer experiments, it is assumed that the thickness
between the two layers is negligibly small. In the experiments, the interfacial thickness
is typically found to be approximately 0.5 cm, an order of magnitude smaller than
the height of the intrusion head.

The extension of Benjamin’s theory to describe the dynamics of an interfacial
gravity current was first developed by Holyer & Huppert (1980). Assuming a steady-
state dissipationless flow that conserved mass and momentum, they derived a coupled
set of cubic polynomial equations in two variables representing the relative depths of
the fluid above and below the gravity current head. The numerical solution to these
formulae revealed that the equations admitted three possible simultaneous solutions
over a range of parameters.

† We adopt the convention throughout that U() represents theoretically predicted speeds and C()

represents observed speeds, in which ‘()’ is a subscript representative of the velocity in question. For
example, Ugc and Cgc are the predicted and observed speeds, respectively, of intrusions along the
interface of a two-layer fluid.
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In order to gain insight into this behaviour, we apply the Boussinesq approximation
to their equations (2.29) and (2.30), which we leave, for now, in dimensional form.
Thus, we find the dynamics are set by the solution of the following two equations for
mass and momentum conservation, respectively:

α0h0r
2
0 (1 − r0) = α1h1r

2
1 (1 − r1), (2.4)

α0h
2
0(1 − r0)

2(1 − 2r0) + α1h
2
1(1 − r1)

2(1 − 2r1) = 0. (2.5)

Here, r0 =h′
0/h0 and r1 = h′

1/h1, in which h′
0 and h′

1 represent the depth of
the fluid above and below the gravity current, respectively, as illustrated in
figure 1(b). The relative density differences are represented by α0σ =(ρ� − ρ0)/ρ00

and α1σ = (ρ1 − ρ�)/ρ00, in which for convenience, as will be made apparent below,
we have introduced σ = (ρ1 − ρ0)/ρ00, the relative density difference between the lower
and upper ambient layers.

After solving for r0 and r1, the speed of the gravity current, Ugc, is given by
Ugc = r1U1 in which

U 2
1 = 2α1gσh1(1 − r1). (2.6)

Equivalently, Ugc = r0U0 in which

U 2
0 = 2α0gσh0(1 − r0). (2.7)

U0 and U1, respectively, represent the speeds of the return flows above and below the
gravity current in a frame of reference moving with the gravity current head.

We rewrite (2.4) and (2.5) in non-dimensional form introducing parameters
H0 = h0/(hT /2) and H1 = h1/(hT /2), characterizing the relative depth of the upper-
and lower-layer ambient compared with half the total fluid depth hT . In some
circumstances, it is convenient to define

∆ = (h0 − h1)/hT ≡ (H0 − H1)/2, (2.8)

which measures the relative difference in depths between the upper- and lower-layer
ambient depths. In experiments in which the upper- and lower-layer fluids have equal
depth, H0 = H1 = 1 and ∆ =0.

To characterize the relative density differences between the gravity current (which
originates from the lock) and the upper- and lower-layer ambient, we introduce the
non-dimensional parameter

ε =
ρ� − ρ̄

ρ1 − ρ0

, (2.9)

in which ρ̄ = (h0ρ0 + h1ρ1)/hT is the mean density of the ambient fluid. Thus,
experiments with ε = 0 correspond to cases in which neither salt nor fresh water
is added to the lock behind the gate before mixing. This parameter was originally
introduced by de Rooij et al. (1999) in the special case with h0 = h1. The condition
that ρ0 � ρ� � ρ1 requires that −(1 − ∆)/2 � ε � (1 + ∆)/2. In particular, if h0 = h1,
then ∆ = 0 and ε ranges from −1/2 to 1/2.

Using the definition for ε, we find

α0 = H1/2 + ε ≡ 1 − ∆

2
+ ε (2.10)

and

α1 = H0/2 − ε ≡ 1 + ∆

2
− ε. (2.11)
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Thus, the solutions to (2.4) and (2.5) are determined entirely by the parameters ε

and ∆.
Solutions to the more general non-Boussinesq equations were found numerically by

Holyer & Huppert (1980). They showed that three simultaneous solutions existed for
a range of ε in a neighbourhood of ε = 0, but that only one solution existed outside
this range. In the former case, Holyer & Huppert (1980) proposed that the solution
which would in fact be realized would be that for which the mass flux due to the
gravity current was largest. The resulting prediction for values of r0, r1 and ultimately
Ugc thus exhibited discontinuous jumps as a function of ε.

This seemingly unphysical prediction has, in part, inspired us to examine the
pertubation theory solution to (2.4) and (2.5) for ε close to zero. The resulting explicit
analytical solutions may then be compared with a range of experiments first with
ε = 0 (the lock fluid being established by simply mixing the upper- and lower-layer
fluids), with ε > 0 (salt being added to the lock fluid), and with ε < 0 (the lock fluid
being diluted with fresh water).

In the doubly symmetric case ε = 0 and H0 = H1 = 1, (2.5) and (2.4) have a solution
r0 = r1 = 1/2. This is consistent with the prediction by Benjamin (1968) that the depth
of an energy-conserving gravity current is half that of the ambient fluid ahead of it.

We are interested in perturbations from this solution as ε differs by a small amount
from zero. Thus, we define δ0 = −(r0 − 1/2) and δ1 = r1 − 1/2. Substituting these
expressions into (2.4) and (2.5), and using (2.10) and (2.11) gives

(H1 + 2ε)H0(1 − 2δ0)
2(1 + 2δ0) = (H0 − 2ε)H1(1 + 2δ1)

2(1 − 2δ1), (2.12)

and

(H1 + 2ε)H 2
0 δ0(1 + 2δ0)

2 = (H0 − 2ε)H 2
1 δ1(1 − 2δ1)

2. (2.13)

Next, we write δ0 and δ1 as perturbation expansions in ε: δi = εδ
(1)
i + ε2δ

(2)
i + . . .,

for i = 0 and 1. Substituting these into (2.13) and (2.12), matching terms of successive
powers of ε, and solving the resulting set of linear equations give the following:

r0 � 1
2

− ε
1

1 + ∆

(
1 − 2ε

3 + ∆

H̄ 2
+ 4ε2 9 − 2∆ + ∆2

H̄ 4

)
, (2.14)

r1 � 1
2

+ ε
1

1 − ∆

(
1 + 2ε

3 − ∆

H̄ 2
+ 4ε2 9 + 2∆ + ∆2

H̄ 4

)
. (2.15)

Here, we have defined H̄ ≡ (H0H1)
1/2 ≡ (1 − ∆2)1/2 to be the geometric mean of H0

and H1. In the case of equal upper- and lower-layer depths, H̄ = 1.
Judging by the first three terms of the pertubation expansions above, and also

by higher-order terms computed using the symbolic algebra package, ‘Maple’, the
expansions converge provided |ε| � H̄ 2/6. Indeed, in practice, we find the perturbation
solutions converge to the numerically determined solutions of the full equations
provided ε lies in the range where three simultaneous solutions exist.

The bounds on this range were first determined by Holyer & Huppert (1980) and are
expressed here by ε− <ε <ε+, where ε− = −[2H1−4/(1+B1)] and ε+ =2H0−4/(1+B0).
The values B−1

1 and B0 are the bounds to α0/α1 where, explicitly,

Bi =

[
1

3

(
2

Hi

)1/2

+ 1

]3[(
2

Hi

)1/2

− 1

]
,

for i = 0 and 1. Substituting H0 = 1+∆ and H1 = 1−∆ into the above conditions, the
bounds on ε can be represented entirely as a function of one parameter, ∆. Indeed, it
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Figure 2. Predicted lower (ε−) and upper (ε+) bounds on perturbation theory expansion
about ε = 0.
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Figure 3. Relative depths of the return flow (a, c) above and (b, d) below the gravity current
plotted in cases of a two-layer fluid (a, b) with equal depths (∆ = 0) and (c, d) with a shallow
lower-layer depth (∆ = 3/4). The dashed lines show the second-order perturbation expansion
about ε = 0.

is a simple matter to show that ε−(∆) = −ε+(−∆). These bounds on the convergence
of the perturbation series for r0 and r1 about ε = 0 are plotted in figure 2.

Figure 3 shows the predicted values of r0 and r1 versus ε for two values of ∆.
Both the numerically computed exact solutions of (2.4) and (2.5) and the approximate
perturbation solutions given by (2.14) and (2.15) are shown.

We have separately computed the solution to the general equations by Holyer &
Huppert (1980) in the two circumstances shown. In both cases, the difference is
negligible between the Boussinesq and non-Boussinesq solutions for a wide range
of ε. In particular, for H0 = H1 = 1 and α1σ =0.01, the magnitude of the difference
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Figure 4. Normalized speeds of the (a, d) gravity current, (b, e) top return flow and (c, f )
bottom return flow plotted in cases of a two-layer fluid (a–c) with equal depths (∆ = 0) and
(d–f ) with a shallow lower-layer depth (∆ = 3/4). The dashed lines show the second-order
perturbation expansion about ε = 0.

between the two solutions is less than 0.001 for ε as large as 0.4524 (corresponding
to α0σ = 2.0).

Using (2.14) and (2.15) together with (2.6), we compute the speed of the gravity
current, Ugc, to be given by

Ugc√
gσhT

� 1

4
(H̄ )

[
1 +

2∆

H̄ 2
ε +

1 − 2∆2

H̄ 4
ε2

]
. (2.16)

In particular, for ε = 0, Ugc varies with ∆ as H̄ = (1 − ∆2)1/2. For ε � 0 (in which
case the density of the gravity current more closely matches that of the lower layer),
the current speed is proportionally larger if the upper layer is deeper than the lower
layer.

Figure 4 compares the exactly and approximately predicted speeds of the gravity
current in cases with (a) ∆ = 0 and (d) ∆ = 3/4. In both circumstances, the second-
order-accurate speed given by (2.16) is comparable with the exact solution over
only a small range of ε compared with the entire range of values that ε can hold.
Nonetheless, as we will show in § 5.1, the approximate solution is in fact a more
accurate representation of the observed gravity current speeds.

We also compute the magnitude of the speed of the return flows, respectively, above
and below the gravity current, Ur0 = U0 − Ugc and Ur1 = U1 − Ugc, which are given in
the frame of reference with a stationary ambient. Explicitly,

Ur0√
gσhT

� 1
4
(H̄ )

(
1 + 2

2 − ∆

H̄ 2
ε − 2

7 − 4∆ − 2∆2

H̄ 4
ε2

)
(2.17)
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and
Ur1√
gσhT

� 1
4
(H̄ )

(
1 − 2

2 + ∆

H̄ 2
ε − 2

7 + 4∆ − 2∆2

H̄ 4
ε2

)
. (2.18)

The exact and approximate values of Ur0 and Ur1 for ∆ = 0 are plotted in figures 4(b)
and 4(c), respectively, and for ∆ = 3/4 are plotted in figures 4(e) and (f ), respectively.

Another limit of interest is that in which one layer is significantly deeper than
the other. In particular, we examine the case in which H1 � H0. This case was also
examined by Holyer & Huppert (1980) in the Boussinesq approximation. (Note, the
corresponding figure they provide is correct, however, a typographical error exists in
their equation (2.3.4)). In our notation, the change in depth r1 of the lower-layer fluid
is given by the solution of the quartic equation

1 − ε

ε
r4
1 + 2r1 − 1 = 0. (2.19)

As shown in Appendix A, the approximations leading to this equation are justified
provided 0 � ε � 1. Regular perturbation theory about ε = 1− gives

r1 � 1
2

− 1
32

(1 − ε) − 3
128

(1 − ε)2, (2.20)

from which we estimate the gravity current speed to be

Ugc√
gσhT

� 1
4
(H̄ )(1 − ε)1/2

[
1 − 1

32
(1 − ε)

]
. (2.21)

Converting (2.21) into a form that does not depend explicitly on the upper-layer
depth (which we now take to be infinitely large), we find

Ugc√
gσh1

� 1
2
(α1)

1/2
[
1 − 1

32
(α1)

]
. (2.22)

in which α1 = (ρ1 − ρ�)/(ρ1 − ρ0) must be small (i.e. ρ� � ρ1).
In particular, in the limit ρ0 → 0, using r1 = 1/2 we find Ugc � (gα1h1)

1/2/2. This
is the same result found for an energy-conserving gravity current propagating into
uniform fluid, as given by (2.2) with ∆d = h1/2.

3. Experimental set-up and analysis
Experiments are performed in a glass tank of length L = 197.1 cm, width 17.6 cm

and height 48.5 cm, as shown in figure 1. A two-layer fluid is established by first filling
the tank to a depth h1 with salt water of density ρ1. Fresh water, of density ρ0, is then
added such that it forms an additional layer of depth h0. The fresh water is poured
through a sponge float to reduce interfacial mixing. A vertically traversing 50 cm long
fast conductivity and temperature probe (Precision Measurement Engineering) is used
to measure the resulting density profile and to confirm that the interface between the
two fluids is negligibly thin (typically with half-thickness less than 0.5 cm) compared
with the depth of the gravity current head.

Experiments are performed so that the total depth hT = h0 + h1 is either 20 cm or
40 cm. Relative values of h0 and h1 are examined so that ∆, defined by (2.8), ranges
approximately between −3/4 and 7/8. Values of ρ1 are chosen so that the relative
density difference σ ranges approximately between 0.005 and 0.050. The resulting
Reynolds number of the flow, based on the intrusion speed and ambient half-depth,
ranged from 1000 to 20 000 with typical values of Re ∼ 5000, corresponding to
intrusions moving at speeds of 5 cm s−1 in fluid with half-depth hT /2 = 10 cm.
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After the two-layer fluid is established- a water-tight gate is inserted into one of five
guides composed of 1 mm thin glass strips on either side of the tank. These permit
the gate to be rapidly vertically extracted. The resulting lock established behind the
gate has length � = 8.5, 18.6, 28.6, 38.5 or 48.5 cm. Most experiments are performed
with � = 18.6 cm as the characteristics of the intrusion and waves are found to be
similar for the other four lock-lengths.

In experiments with ε =0, the gate is inserted and the two layers of fluid in
the lock are well mixed so that the lock is filled with fluid of uniform density
ρ̄ = (h0ρ0 + h1ρ1)/hT . This establishes the final lock-fluid density, ρ� (e.g. see (2.9)).

In experiments with ε > 0, salt is added to the lock prior to mixing so that the fluid
density is increased, but not so much that the final lock-fluid density, ρ�, is greater
than ρ1.

Experiments with ε < 0 follow a slightly different procedure. After the gate is
inserted, a pre-established volume of salt water is siphoned from the lower layer of
fluid in the lock and an equal volume of fresh water is added to the top layer. Only
after this transfusion is the lock fluid well mixed to give a fluid of density ρ�. Values
of ρ� are chosen so that ε ranges approximately between −0.2 and 0.65.

A digital camera is positioned 3.5 m from the front of the tank and is set up to be
level with the depth of the interface between the upper- and lower-layer fluids. The
whole length of the tank is in the camera’s field of view.

In order for the camera to visualize the collapse and structure of the gravity current
after the gate is released, a small amount of blue food colouring is first mixed into
the lock fluid. Typically 10 ml of dye is added, an amount that negligibly changes the
density of the lock fluid. Once the solution in the lock is calm (approximately 30 s),
the gate is quickly removed and the resulting dynamics are recorded on tape. In some
experiments, the interface between the two layers of ambient fluid is also marked by
adding a small quantity of red food colouring to the sponge float during initial stages
of layering on the fresh water.

Using ‘DigImage’ software, the position of the gravity current as a function of time
is determined from digitized horizontal time-series images of the experiments (Dalziel
1992). These images are constructed by successively stacking in time horizontal slices
through the movie images with the slices taken at the level of the two-layer fluid
interface. The time between slices can be as small as ∆t = 1/30 s. The front of the
gravity current can be identified in the time series by the diagonal contour separating
the darkly dyed intruding lock fluid and the relatively light ambient. The velocity of
the gravity current head, Cgc, is determined by finding the slope of the best-fit line to
the position versus time data over a fixed spatial range.

Likewise, time series constructed by taking horizontal slices at distances (3/4)h0

above and (3/4)h1 below the interface are used to determine Cr0 and Cr1, the velocity
of the top and bottom return flows, respectively (see figure 1b).

After the return flows encounter the rear wall of the tank, top and bottom forward-
moving rear bores may be established (see figure 1c). The bore speeds, respectively,
Cb0 and Cb1, are determined when possible from horizontal time series taken (1/4)h0

above and (1/4)h1 below the interface.
The horizontal time series and, in particular, those at the level of the interface may

also be used to measure the speed, Cwv, and horizontal extent, λ, of the interfacial
wave that propagates ahead of the intrusion in some experiments, particularly those
with ε 
= 0 (see figure 1c). We also construct vertical time series from a vertical slice
through the movie images at a range of distances from the lock. These are used
to measure the amplitude, Awv, of the leading wave. Typically, the measurement is
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(a)

(b)

(c)

(d)

Figure 5. Snapshots of gravity current in experiment with h0 = h1 = 10 cm, and α1σ = α0σ =
0.01 (∆=0, ε = 0). The gate, whose initial position is illustrated with the vertical dashed line
superimposed on each image, is extracted at time t =0. Snapshots are taken at (a) t = 2 s;
(b) 14 s; (c) 26 s; (d) 38 s.

made from a vertical time series taken from a vertical slice halfway along the tank
(approximately four lock-lengths from the gate in most experiments).

4. Qualitative results
The experiments exhibit a remarkably rich variety of dynamics depending on

the values of ∆ and ε. For fixed ∆ and ε, however, the qualitative properties and
quantitative measurements do not depend explicitly on hT , σ and �.

The range of behaviours is illustrated in this section with the presentation of
successive snapshots and time series taken from four representative experiments. In
each, hT = 20 cm, σ = 0.02 and � = 18.6 cm.

Figure 5 shows snapshots taken every 12 s of the full length of the tank for
an experiment in which ∆ = ε = 0. This is the well-studied doubly symmetric case
(Britter & Simpson 1981; de Rooij et al. 1999; Mehta et al. 2002) in which the upper-
and lower-layer fluid depths are equal and the density of the lock fluid is the average
of the upper and lower layers.

Two seconds after the lock is released (figure 5a), the forward collapse of the
intrusion and the coincident return flows above and below the intrusion are evident.
At time t = 14 s, the top rear bore, which advances toward the gravity current head, is
evident close to one lock length from the original position of the gate. After another
12 s, the rear bore catches up with the gravity current head which then maintains an
oblong shape until it encounters the end of the tank after 38 s.
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Figure 6. Horizontal time series taken at depth (with respect to the bottom of the tank)
(a) (7/8)hT , (b) (5/8)hT and (c) (1/2)hT , and (d) vertical time series taken one lock length to
the right of the gate. The images are extracted from the same experiment as that shown in
figure 5.

Although the interface is not dyed in this particular experiment, in general,
we observe no significant deflection of the interface in these doubly symmetric
experiments. On the other hand, the thin tail behind the gravity current head does
exhibit weak undulations representative of interfacial internal waves.

These dynamics are best illustrated with the time series images shown in figure 6.
The horizontal time series taken at the level of the interface (figure 6c) shows the
steady advance of gravity current head into the ambient. The diagonal bands behind
the front result from the trailing undulations of interfacial internal waves. Note that
the speed of these waves is moderately larger than that of the gravity current, a
feature observed by Mehta et al. (2002) in their study of intrusions in two- and
three-layer fluids. The frequency, amplitude and decay of the waves with time after
the gravity current passes are also apparent in the vertical time series in figure 6(d).

The horizontal time series taken (3/4)h0 above the level of the interface ((7/8)hT

above the bottom of the tank) is shown in figure 6(a). It clearly illustrates the return
flow of the ambient fluid into the lock after the gate is released. After the return flow
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(a)

(b) 

(c) 

(d) 

Figure 7. As in figure 5 but for experiment with h0 = h1 = 10 cm, and α0σ = 3α1σ = 0.015
(∆ = 0, ε = 0.25).

reflects from the rear wall of the tank, the depth of the ambient above the intrusion
increases and a rear bore develops that moves toward the gravity current head as
illustrated by the horizontal time series taken (1/4)h0 above the interface, as shown
in figure 6(b).

A curious feature of these experiments is that the gravity current speed does not
decrease after the rear bore catches up with the gravity current head (at time t � 18 s
in the experiment shown in figures 5 and 6). This behaviour is different from that of
gravity currents that move along the bottom of a uniform ambient, in which case the
gravity current speed is well known to decrease, typically after it has propagated 6 to
10 lock lengths (see Rottman & Simpson 1983; Sutherland 2002; and, in particular,
figure 4 of Mehta et al. 2002). Why an intrusive gravity current does not decelerate
remains an open question whose investigation is beyond the scope the present study.

Figure 7 shows snapshots taken from an experiment in which the upper- and
lower-layer fluids have equal depth (∆ = 0), but salt is added to the lock-fluid so that
ε � 1/4. The change in behaviour of the gravity current is striking. Most notably, the
gravity current does not propagate to the end of the tank, but stops after propagating
a distance of approximately 6 lock lengths. Ahead of the gravity current, an interfacial
internal wave is generated. Finally, in observations made more clear from moving
images of the experiment, the top rear bore catches up with the gravity current head
at time t � 26 s and thereafter passes it, resulting in the flattening of the head between
times t � 26 and t � 38 s.

These dynamics are illustrated more clearly in figure 8 which shows the speed of
advance of the interfacial wave as the most shallow diagonal contour that marks the
rise above z = hT /2 of the initially dyed interface. The initial speed of advance of
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Figure 8. Horizontal time series taken at depth (a) (1/2)hT and vertical time series taken
(b) 1 and (c) 4 lock lengths from the gate. The images are extracted from the same experiment
as that shown in figure 7.

the gravity current head is indicated by the slope of the contour between the dark-
dyed fluid and the lighter ambient. Finally, the speed of the rear bore is apparent
in this figure from the slope of the contour that intersects the contour that tracks
the front of the gravity current head midway along the tank. It is the fact that the
contours intersect rather than asymptotically become parallel that indicates the strong
interaction between the top rear bore and the gravity current head. Over the 30 s
shown, the bore obviously retards the progress of the intrusion. Longer time series
confirm that the intrusion stops advancing altogether after approximately 40 s.

Comparing the vertical time series in figures 6(d) and 8(b), the latter shows that
the tail behind the gravity current head remains thick for a long time after the front
of the head has passed. It also shows that the amplitude of the leading interfacial
wave is comparable to the height of the gravity current head above the interface.
Figure 8(c) shows that further from the lock (approximately half-way along the tank),
the tail remains thick behind the head even after it is deformed by the top rear bore
and the interfacial wave crests near the gravity current head at this position.

The dynamics are different again if the relative depths of the upper- and lower-layer
fluids are not equal. For example, figure 9 shows snapshots taken from an experiment
with ∆ � 3/4 and ε = 0. As in the experiment shown in figure 5, no salt is added to the
lock and similarly we observe negligibly small amplitude leading interfacial internal
waves. There are several differences, however. The gravity current head propagates
less quickly along the tank and it is not symmetrically shaped: its underside is almost
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(a)

(b)

(c)

(d)

Figure 9. As in figure 5 but for experiment with h0 = 7h1 = 17.5 cm and
α1σ = 7α0σ = 0.0175 (∆ = 0.75, ε = 0).

flat whereas there is significant mixing on the upper flank of the head and trailing
behind it for several lock-lengths.

Because the density difference between lock and ambient upper-layer fluid is small,
the top return flow takes some time to become established. Indeed, mixing between
the lock and ambient fluid is dominated initially by the vorticity introduced by the
extraction of the gate. At later times, the front sharpens and adopts a form similar in
appearance to that of a classic gravity current which propagates over a rigid bottom
with a uniform ambient above. There is a subtle difference, however. The underside
of the gravity current shown in figure 9(d) exhibits small undulations with typical
wavelength smaller than the extent of the gravity current head. These are the result
of a weak stratified shear instability in which waves grow at the interface between
two fluids of different density and moving at different speeds.

The dynamics of the gravity current and interfacial disturbances are shown in
figure 10. The horizontal time series, taken along the level of the interface shows
weak leading interfacial waves but, as is apparent from the vertical time series, the
amplitude of the waves is small. The undulations on the underside of the current
result in the diagonal stripes in the horizontal time series image. The image shows
that the phase speed of the undulations is close to the gravity current speed. A more
in-depth analysis of these undulations is presented in Flynn & Sutherland (2004).

Finally, we present the case where ∆ � 3/4 and ε � 5/8. The parameters for this
experiment are similar to those for the experiment shown in figure 7 in that the
corresponding densities of the upper-, lower- and lock-fluid are the same.

Snapshots are shown in figure 11. During the initial collapse of the lock fluid
into the ambient, the gravity current propagates with its underside moving along
the bottom of the tank. The current drives ahead of it an interfacial wave similar
to that seen in experiments by Rottman & Simpson (1989), who studied gravity
currents moving along the bottom of a two-layer fluid. In the present case, however,
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Figure 10. As in figure 8 but for the experiment with parameters given in the caption
to figure 9.
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Figure 11. As in figure 5 but for experiment with h0 = 7h1 = 17.5 cm and α0σ = 3α1σ = 0.015
(∆ = 0.75, ε = 0.625). The solitary wave in the bottom image propagates from right to left
after having reflected from the right-hand wall of the tank.
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Figure 12. As in figure 8 but for the experiment with parameters given in the caption
to figure 11.

the gravity current has a smaller density than the ambient lower-layer fluid and it
therefore ultimately rises above the tank bottom, as shown in figure 11(b).

No rear bore is apparent in this experiment. However, the gravity current head
does flatten out as it propagates along the tank. The current propagates quickly with
speed comparable to that of the leading interfacial wave. The wave itself is clearly
a nonlinear solitary wave: the disturbance is hump-shaped and during its passage it
displaces fluid parcels in the lower layer by a distance comparable to the horizontal
extent of the wave (not shown).

The time series images in figure 12 should be compared with the corresponding
images in figure 8. Here, the gravity current head is clearly unaffected by disturbances
behind the front catching up to it. The vertical time series shows that the amplitude
of the interfacial wave is comparable to that of the gravity current head but the time
scale for the interface to move from equilibrium to crest is significantly shorter.

5. Quantitative results
5.1. Gravity current speed

The speed of the gravity current is determined from the slope of the contour that
tracks the front of the gravity current in horizontal time series taken along the
interface of the two-layer ambient such as that shown in figure 6(c). The best-fit line
through the contour is determined between 1 and 3 lock-lengths downstream of the
gate and the inverse slope of this line gives the speed.
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Figure 13. Normalized gravity current speeds in experiments with (a) no salt added and
(b) with salt added to the lock after mixing. In (a), data are shown for experiments with
total depths hT equal to 20 cm (plus sign) and 40 cm (diamond). The solid line represents the
theoretically predicted normalized speed, H̄ /4. In (b), symbols correspond to experiments with
hT = 20 cm and ∆ equal to 3/4 (open square), 1/2 (open triangle), 0 (cross), −1/2 (closed
triangle) and −3/4 (closed square). The line styles and weights correspond to the second-order
accurate speeds predicted by theory in the cases with ∆ equal to 3/4 (long-dash light), 1/2
(dotted light), 0 (solid light), −1/2 (dotted heavy) and −3/4 (long-dash heavy). The velocity
data and theoretical curves are normalized by U0 = [(gσhT )1/2]H̄ /4.

The results of experiments with lock-length � � 18.6 cm are shown in figure 13.
Results, not shown, from experiments with half and with twice this lock length are
similar for given ∆ and ε.

Figure 13(a) shows the results of experiments with ε = 0, in which case the lock
density is established simply by mixing the ambient fluid behind the gate. Experiments
with two different total depths are indicated by different symbols. The data also
represent experiments with a range of σ . When the speeds are normalized by (gσhT )1/2

and the points are plotted against ∆, the data collapse onto a curve whose shape
is represented well by the theory given by (2.16), although the theory generally
overpredicts the observed current speed by 5–10%.

The discrepancy can be explained in part by the thickness of the ambient two-
layer fluid interface, which is assumed to be zero in theory but in experiments
is typically δ � 1.0 cm. The empirical formula by Faust & Plate (1984) predicts
that the speed of doubly symmetric gravity currents should decrease with interface
thickness as 0.58δ/hT , which is approximately 3% in experiments with hT = 20 cm. As
demonstrated by Lowe et al. (2002) in their detailed analysis of symmetric intrusive
gravity currents, despite mixing behind the head, the velocity was found to be close
to that predicted for energy-conserving currents, presumably because the energy loss
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is negligibly small compared to the energy of the system as a whole. Thus, we do
not believe that dissipation can account for the small discrepancy we observe in our
experiments with ε. Nor do we anticipate dissipation should play a significant role in
any of our experiments.

In cases with non-zero ε, the agreement of theory with experiment is not as
strong, though the trends are captured qualitatively. Figure 13(b) shows the results of
experiments with a range of ∆ and ε. The velocity data is collapsed by normalizing
the observed speeds Cgc by U0 = (gσhT )1/2H̄ /4 ≡ (gσh0h1/hT )1/2/2. For clarity, only
those experiments with σ � 0.02 and hT = 20 cm are shown (as the plotted symbols),
though data computed from experiments with other σ and hT collapse within errors
to the corresponding values plotted here.

The second-order accurate theoretical predictions, given by (2.16) and plotted by
lines in the figure, generally overpredict the observed speed by as much as 50%,
the agreement being worse for larger |∆|. Nonetheless, the approximate solutions
qualitatively capture the observed trends: the normalized speeds increase with
increasing ε if ∆ is positive and decrease with increasing ε if ∆ is negative. The
rate of increase is larger as ∆ becomes larger.

This result is at first surprising because it implies that the asymptotic approximation
predicts the actual behaviour better than the exact solution. Consider, for example,
the approximate and exact speeds predicted in the case ∆ = 3/4, which are plotted
in figure 4(d) by the dashed and solid lines, respectively. The approximate prediction
is also plotted in figure 13 by the long-dashed light line. The approximate theory
diverges significantly from the exact theory for ε � −0.02 and ε � 0.05 (as given by
the bounds ε± plotted in figure 2) and increases monotonically for all ε. In contrast,
the exact theory discontinuously jumps from an increasing solution near ε = 0 to a
monotonically decreasing solution for ε � 0.05.

Even in the absence of observational evidence, we might anticipate the complicated
structure of the exact solution would not occur in reality. The discontinuous change in
velocity for ε � ε± is an artefact of the restrictive assumptions employed to formulate
the exact theory.

One of these restrictions is that internal waves cannot develop ahead of the gravity
current on the interface of the two-layer fluid. This assumption turns out to be
valid in the case ε = 0 because experiments show there is indeed negligible motion
of the interface ahead of the gravity current. In this case, the gravity current speed
is predicted well by theory. The experiments show, however, that large-amplitude
internal waves are generated in experiments with non-zero ε. Apparently, the process
of generating these waves dominates the dynamics governing the motion of the gravity
current in a manner that is not captured by the exact theory of Holyer & Huppert
(1980).

To illustrate the consequence of allowing non-steady upstream disturbances,
consider the case ε � 5/8 and ∆ � 3/4, for which snapshots of an experiment are
shown in figure 11. Here, the gravity current density is greater than that of the
average of the upper and lower layers and so it penetrates more deeply into the
shallow lower layer. If, in theory, the interface ahead of the current does not support
waves, the lower-layer ambient must overcome the potential energy of the current in
order to pass underneath it. This must be done at the expense of the kinetic energy of
the system, hence the gravity current must propagate relatively slowly. On the other
hand, if the leading interface can support waves, then the lower-layer ambient fluid
can be pushed ahead of the current as well as passing underneath it. Thus, the gravity
current can propagate more quickly, as indeed we observe.
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Figure 14. Normalized speeds of return flow in the upper layer determined from experiments
with hT = 20 cm and σ � 0.02. The symbols and lines are plotted as in figure 13 but, for clarity,
only those results for ∆= 0 and ±3/4 are plotted.

5.2. Return flow speeds

Experimental determination of the speeds Cr0 and Cr1 of the top and bottom return
flows, respectively, in the lock is difficult because the distance over which the speeds
can be measured is limited. It is particularly difficult to measure in a shallow layer
because the return flow is partially obscured by mixing between the fluid entering
and exiting the lock.

For these reasons, we restrict our analysis here to measurements of the top-return
flows in experiments where their speeds are unambiguously determined. Figure 14
plots as a function of ε values of Cr0 normalized by U0. As in figure 13, we find
good agreement between experiments and the approximate theory given by (2.17)
provided |ε| � 0.1. However, both the approximate and exact theory significantly
underpredict the observed speed in experiments with large ε and ∆ = 0 and 3/4 (e.g.
see figure 4b, e).

We conclude that when ε is significantly different from zero, the upstream dynamics
are important not only in controlling the gravity current speed but also the return
flow speeds.

5.3. Rear-bore/lee-wave speeds

In experiments of full-depth lock-release bottom-propagating gravity currents in a
uniform ambient, Rottman & Simpson (1983) showed that after the return flow
encounters the end-wall of the tank, a forward-moving rear-bore develops. This is
characterized by an internal hydraulic jump in which the ambient flow deepens and
the tail of the gravity current becomes shallower over a short distance. The advance
of this effective front is 20–30% faster than the speed of the gravity current and
ultimately catches up with the gravity current head after it has travelled 6 to 10 lock
lengths.

These dynamics are evident in intrusion experiments as well except that two rear
bores can potentially develop: a top rear-bore resulting from the reflection of the
top return flow off the endwall of the lock, and a bottom rear bore developing from
the bottom return flow. These bores are schematically represented in figure 1(c) with
top and bottom speeds indicated by Cb0 and Cb1, respectively. The evolution of the
observed rear bores are more complicated, however. Because both advancing fronts
are connected through the thick density interface of the gravity current tail, they can
collectively undulate vertically up and down through the excitation of an internal
wave at this interface.
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Figure 15. Speed of the rear-front (either rear-bore or lee wave) along upper interface relative
to measured intrusion speed determined from experiments with hT = 20 cm and σ � 0.02. The
symbols are plotted as in figure 13.

The excitation of internal waves through this process was investigated by Mehta
et al. (2002) who examined doubly symmetric intrusions in two-layer fluids with
ε = ∆ =0 and in three-layer fluids with corresponding symmetry. The three-layer
fluid was formed as a consequence of repeatedly releasing doubly symmetric intrusions
along an interface that successively thickens as lock fluid transported by the intrusions
is deposited along the fluid’s mid-depth. The experiments showed that sinusoidal
internal waves developed in the lee of the gravity current head and the amplitude
and number of waves increased as the thickness of the middle layer deepened.

In our asymmetric experiments we likewise find that interfacial waves rather than
advancing bores are predominant in the lee of the gravity current head. The structure
of the interfacial waves is more complicated, however. Whereas trailing sinusoidal
waves are observed in three-layer experiments – a result of resonant coupling between
waves on the interfaces above and below the middle layer – we find that the trailing
waves do not have such a symmetric structure if ε is non-zero. Similar to the three-
layer experiments, we find the trailing waves not only catch up to the gravity current
head like a rear-bore catches up to a bottom-propagating gravity current, but the
waves can move through and pass the interfacial gravity current head. When this
occurs, the head is deformed and halts its steady advance. Such behaviour is evident,
for example, in time series images such as that in figure 8(a).

Figure 15 shows the observed speed of the advancing rear-front (either a bore
or a lee-wave) along the upper interface behind the gravity current head. Typically,
measurements are taken from horizontal time-series over distances between one and
three lock-lengths from the lock-end of the tank. The differences between the rear-
front speed Cb0 and the gravity current speed Cgc are plotted as a function of ε. In
all cases, the rear-front speed is faster than the gravity current speed.

If ε =0, we find the rear-front catches up to the gravity current head, but does
not pass it. The head instead assumes an approximately steady-state shape. If ∆ = 0,
this shape is in the form of a rounded bulge symmetrically above and below the
interface with a trailing tail of approximately constant depth. If ∆ is non-zero, the
rounded bulge is more pronounced in the deeper layer and undulations appear along
the interface between the gravity current and the more shallow layer. Generally, we
find the rear-front speed is 10–20% faster than the gravity current speed.

If |ε| is sufficiently large, the rear-front speed is substantially larger than the gravity
current speed. It is almost 60% faster in experiments with ∆ = 0 and ε � 1/4. The
relative difference in speeds is smaller as ∆ increases.
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There is a corresponding qualitative change in the dynamics of the gravity current
head. In experiments with ∆ =0 and ε > 0, the rear-front passes the gravity current
head which deforms it and halts its advance. In experiments with ∆ > 0 and ε > 0,
the gravity current head has a flattened shape shortly after it is formed but advances
at an approximately constant speed while a solitary wave develops in the shallow
layer ahead of the intrusion.

The bottom-propagating gravity current experiments of Rottman & Simpson (1983)
showed that the gravity current head decelerated to a new but constant speed after
the rear-bore catches up with it. Our experiments demonstrate the dynamics are more
complicated for an interfacial gravity current. If no interfacial waves are generated
ahead of the current (ε = 0) the head propagates at constant speed well beyond 6 to
10 lock lengths. Likewise, the head propagates at constant speed if |∆| is sufficiently
large that solitary waves are efficiently generated in the shallow layer ahead of the
current. Presumably this is because the relatively small-amplitude rear-fronts are
damped when they interact with the trailing edge of the solitary wave. However, if
∆ � 0, classical Korteweg–de Vries solitary waves cannot exist in the ambient fluid
ahead of the gravity current. If ε is sufficiently large that the gravity current head
propagates predominantly below the interface of the equal-depth two-layer fluid, the
rear-front is not inhibited from passing over the current head. The resulting transport
of momentum from the lee to the fore of the head induces a deceleration to the
interfacial flow which halts it.

Though we have presented a qualitative argument for the observed dynamics, it
remains to develop a quantitative theory which predicts the gravity current speed
and the transition in its behaviour. Developing such an analytic theory is beyond
the scope of the present work. However, the analysis of the leading interfacial waves
below and the empirical analysis in § 6 serve to provide data that would be useful in
the development of such a theory.

5.4. Interfacial wave

Figure 16 shows measured values of the leading interfacial wave speed Cwv relative to
the observed gravity current speed Cgc and the predicted two-layer small-amplitude
shallow-water wave speed Usw. Explicitly, Usw is given by (e.g. see Gill 1982)

Usw = (gσhsw)1/2 ≡ 2U0, (5.1)

in which hsw = h0h1/hT ≡ H̄ 2hT /4.
Figure 16(a) plots the relative difference Cgc − Usw as a function of ε. Only cases

with ε > 0 and ∆ > 0 are plotted. For small ∆, the gravity current speed is smaller
than the shallow-water speed for all ε, though the magnitude of the difference
decreases as ε increases. When ∆ is sufficiently large, however, the gravity current
speed can exceed the shallow-water speed provided ε is large enough. For example,
Cgc − Usw > 0 in experiments with ∆ =3/4 and ε � 0.5. In these experiments, solitary
waves are generated in the form of hump-shaped waves on the shallow layer in
the ambient fluid. Thus, similar to the observations of Rottman & Simpson (1989)
who studied bottom-propagating gravity currents in a two-layer ambient, we find
that solitary waves result when the gravity current propagates at supercritical speeds
relative to the ambient interfacial wave speed.

Figure 16(b) plots the relative difference Cwv − Usw as a function of the difference
Cgc − Usw. The diagonal line in this plot indicates values where Cwv = Cgc. In all
cases, we find the leading wave speed is faster than the gravity current speed by
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Figure 16. (a) Speed of the intrusion head, Cgc, relative to theoretical shallow-water wave
speed Usw and plotted against ε. (b) Speed of the leading interfacial wave, Cwv, relative to
Usw and plotted against the relative speed of the intrusion head. In both plots, symbols
correspond to experiments with hT = 20 cm, σ = 0.02 and ∆ equal to 3/4 (open square), 1/2
(open triangle), 1/4 (open circle) and 0 (cross). Points are plotted only in experiments in which
interfacial waves have resolvable amplitudes. Note, interfacial wave amplitudes are negligible
in experiments with ε = 0.

approximately 0.3Usw when Cwv < Usw. The difference is smaller when Cwv >Usw,
corresponding to the solitary wave regime.

The analysis of leading interfacial wave amplitudes is shown in figure 17.
Figure 17(a) shows that the measured wave amplitude Awv relative to the shallow-
water depth hsw increases approximately linearly with the normalized gravity current
speed after the speed passes a threshold. Below this threshold, the amplitudes are too
small to be measured within pixel-scale resolution. Specifically, interfacial waves are
observed to have significant amplitude once Cgc is larger than approximately 30%
of the theoretical shallow-water speed Usw. Experiments in which the ratio Awv/hsw

exceeds unity correspond to those where the wave speed Cwv is observed to be faster
than Usw.

These results thereby give us an empirical prediction for the occurrence of significant
leading interfacial waves. They further provide a consistent picture of the transition
from linear (undulating) interfacial waves to solitary (hump-shaped) waves as the
wave amplitude, Awv, and speed, Cwv, become greater than hsw and Usw, respectively.

Finally, figure 17(b) shows that, although there is some scatter in the data, the
horizontal extent of the leading interfacial wave, as represented by the equivalent
wavelength λ, is set approximately by the value of hsw. Typically, we find λ/hsw =
6.5 ± 2 independent of the amplitude or speed of the wave.

Taken together, figures 16(b) and 17(b) show that the wave speed and extent are
primarily controlled, respectively, by the gravity current speed and the depth of the
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Figure 17. (a) Amplitude of leading interfacial wave, Awv, normalized by equivalent
shallow-water depth hsw and plotted against intrusion speed normalized by shallow-water
speed. (b) Awv/hsw plotted against the horizontal extent of the wave λ normalized by hsw. In
both plots, symbols correspond to experiments with hT = 20 cm, σ = 0.02 and symbols are
drawn as in figure 16.

shallow layer, as we would anticipate from scaling arguments. Figure 17(a) shows that
wave amplitude is controlled by the gravity current speed, implying that energetic, not
geometrical, arguments are required to explain the mechanism for wave generation.

Elaborating upon this hypothesis, recall that the mean energy associated with
shallow-water waves increases as the square of the wave amplitude, Awv, and the
kinetic energy per unit length of the intrusion is proportional to the square of its
propagation speed Cgc. Thus, once a threshold is passed (Cgc � 0.3Usw), the energy
imparted to the waves is proportional to the energy of the intrusion in excess of this
threshold. The threshold itself is presumably determined by a transition from stable
to unstable flow of the steady state. Theoretical analysis of this transition is beyond
the scope of this work.

6. Discussion and conclusions
We have shown that the dependence of gravity current speeds on ∆ ≡ (h0 −

h1)/hT is qualitatively well represented by the theory of Holyer & Huppert (1980)
in circumstances where negligibly small interfacial waves are excited. Specifically,
this occurs in cases for which ε = 0 corresponding to experiments where the gravity
current density is the weighted-mean average of the two-layer ambient fluid density.
Quantitatively, the theory overpredicts the speed by approximately 10%, with better
agreement in experiments with ∆ = 0.
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If ε is different from zero, large-amplitude interfacial waves are excited and the
current speed is significantly underpredicted by the exact theory. The qualitative
trend in the observed behaviour is better captured by the second-order asymptotic
approximation to theory, computed about ε = 0, but extrapolated to ε outside the
convergence bounds.

An empirical formula for the gravity current speed has been determined by
computing as a function of ∆, the slopes, m(∆), and intercept, b(∆), of the best-fit
lines through plots of Cgc/U0 versus ε, such as those shown with corresponding sets
of symbols in figure 13. The results of 68 experiments were used in this computation,
giving values of m(∆) and b(∆) for ∆ =1/4, ±1/2 and ±3/4. The intercept, b, was
found to be approximately constant and its average value was found. The slope, m,
was found to increase with ∆ and the best-fit line was then found to give a linear
approximation for m as a function of ∆. Thus, we found the observed gravity current
speed is given approximately by

Cgc � Usw [(0.44 ± 0.02) + (2.0 ± 0.2)∆ε] . (6.1)

Here, we have used (5.1) to relate U0 to Usw.
The result (6.1) predicts that the gravity current speed is faster than the shallow-

water speed, and hence is supercritical, when ∆ε � 0.28.
Likewise, the data plotted in figure 16 shows that Cgc increases as a function of ∆

and ε. The computed coefficients in the linear approximation to Cgc/Usw as a function
of ∆ε give comparable values to those in (6.1) except with significantly larger errors
because there is less data: the former points are plotted only in circumstances when
large-amplitude interfacial waves are generated.

Using data, such as those shown in figure 16(b), we similarly compute the linear
approximation to the observed phase speed of interfacial waves, Cwv, as a function of
Cgc and Usw. Explicitly, we find

Cwv − Usw

Usw

� (0.68 ± 0.06)
Cgc − Usw

Usw

+ (0.23 ± 0.02).

Using (6.1), we therefore determine

Cwv � Usw [0.85(±0.04) + 1.36(±0.18)∆ε] . (6.2)

This relation predicts that the wave speed is faster than the shallow-water speed
(and hence must constitute a nonlinear solitary wave) when ∆ε � 0.11. Hence, this
empirical formula predicts that solitary waves should appear before the gravity current
speed is supercritical.

The response of the wave amplitude to the gravity current speed is determined
empirically by finding the best-fit line to plots such as that shown in figure 17.
Explicitly, we find

Awv

hsw

� (2.44 ± 0.18)

(
Cgc

Usw

+ (−0.29 ± 0.05)

)
� 0.34(±0.13) + 4.9(±0.6)∆ε, (6.3)

which holds for Cgc � 0.29 Usw. Here, we have used (6.1) to express the linear
approximation explicitly in term of ∆ and ε.

The empirical formula (6.3) must be employed with care. In the case ε = 0, no
significant interfacial waves are generated in experiments despite the fact that the
formula predicts that wave amplitudes are finite even in the case ε = 0. We must
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interpret the formula as predicting wave amplitudes only in circumstances in which
waves actually occur. Our experiments show this occurs for |ε| as small as 0.1.

Equation (6.3) gives an explicit prediction for the generation of nonlinear waves. The
condition Awv >hsw occurs if ∆ε � 0.16. This result is consistent with the prediction
above that the observed wave speed, Cwv, exceeds the shallow-water speed, Usw.

These experiments have been performed only for the case of a full-depth lock-
release in a two-layer ambient fluid. Wave-generation phenomena in the atmosphere
and ocean would be better represented by partial-depth lock-release experiments
in fluids with more complex stratification. This is the subject of ongoing research
including work by Flynn & Sutherland (2004).

The experiments were performed in the Environmental and Industrial Fluid
Dynamics Laboratory at the University of Alberta. This work has been supported
by funding from the Natural Sciences and Engineering Research Council of Canada
Discovery Grant, USRA and PGS-A programs, Alberta’s iCore Scholarships and the
Canadian Foundation for Climate and Atmospheric Science.

Appendix A. Shallow lower layer
Here we derive the perturbation expansion appropriate for a shallow lower layer

in the Boussinesq approximation.
In the limit H1 → 0 in (2.12) and (2.13), we have

ε(1 − 2δ0)
2(1 + 2δ0) = 0 (A 1)

and

εδ0(1 + 2δ0)
2 = 0, (A 2)

respectively. These are simultaneously satisfied for ε = 0 or δ0 = −1/2.
Here, we are interested only in the latter case, which corresponds to r0 = 1: no

change in depth and consequently no change in speed in the upper layer upstream
and downstream of the gravity current. For small H1 we therefore expand assuming
that 1 + 2δ0 = βH1 in which β is an order 1 parameter.

Then (2.12) and (2.13) become

(1 − ε)(1 + 2δ1)
2(1 − 2δ1) = 8εβ (A 3)

and

(1 − ε)δ1(1 − 2δ1)
2 = −2εβ2, (A 4)

respectively.
Note that if ε ∼ O(1) in these equations, then β ∼ O(1 − 2δ1). Hence, δ1 → 0 as

H1 → 0 and ε � 1. We cannot have ε � 0 in (A 3) and (A 4) because these equations
would then simultaneously imply that 1 − 2δ1 ∼ O(ε) and 1 − 2δ1 ∼ O(ε1/2).

We proceed to eliminate β in (A 3) and (A 4) under the implicit assumption that
0 � |ε| � 1.

After some algebra we obtain (1−ε)r4
1/ε+2r1 −1 = 0, in which we have substituted

δ1 = r1 − 1/2. This equation, which implicitly defines r1 is the result given by (2.19).
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