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Gravity currents intruding into a uniformly stratified ambient are examined in a
series of finite-volume full-depth lock-release laboratory experiments and in numerical
simulations. Previous studies have focused on gravity currents which are denser than
fluid at the bottom of the ambient or on symmetric cases in which the intrusion is the
average of the ambient density. Here, we vary the density of the intrusion between
these two extremes. After an initial adjustment, the intrusions and the internal waves
they generate travel at a constant speed. For small departures from symmetry, the
intrusion speed depends weakly upon density relative to the ambient fluid density.
However, the internal wave speed approximately doubles as the waves change from
having a mode-2 structure when generated by symmetric intrusions to having a mode-1
structure when generated by intrusions propagating near the bottom. In the latter
circumstance, the interactions between the intrusion and internal waves reflected from
the lock-end of the tank are sufficiently strong and so the intrusion stops propagating
before reaching the end of the tank. These observations are corroborated by the
analysis of two-dimensional numerical simulations of the experimental conditions.
These reveal a significant transfer of available potential energy to the ambient in
asymmetric circumstances.

1. Introduction
Gravity currents are flows driven by horizontal density variations. In the simplest

arrangement, heavy fluid flows beneath a uniform ambient. This describes a bottom-
propagating gravity current and models natural examples such as sea breezes or cold
thunderstorm outflows. At sufficiently large spatial and slow temporal scales a gravity
current may be affected by a continuously stratified ambient and, in particular, may
generate internal gravity waves. An internal gravity wave is caused by the displacement
of a fluid parcel from rest which responds to a restoring force due to buoyancy. This
interaction can be more substantial if the density of the gravity current matches the
density of the stratified ambient at some vertical level, in which case it is referred
to as an intrusion. Such a circumstance may arise, for example, at the outflow of a
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thunderstorm near the tropopause or when a rising plume spreads horizontally where
it encounters an atmospheric inversion (see Simpson 1997 for a comprehensive review
of examples of gravity currents in environmental and industrial contexts.)

In laboratory experiments the most commonly studied gravity current is heavy fluid
propagating along a rigid bottom boundary beneath a uniform ambient (Keulegan
1957; Benjamin 1968; Simpson 1972; Britter & Simpson 1978; Simpson & Britter
1979; Huppert & Simpson 1980; Klemp, Rotunno & Skamarock 1994; Shin, Dalziel
& Linden 2004). In a typical lock-release experiment in a long rectangular tank, a
finite volume of uniform-density salt water is held behind a gate in a lock. On the
other side of the gate is uniform ambient fluid. When the gate is removed, horizontal
density differences establish a horizontal pressure gradient which causes the current
to flow into the ambient and the ambient to move backward into the lock as a
return flow. Observations show that the speed of the gravity current is constant for
several lock lengths. A prediction of this speed was given by the analytical theory of
Benjamin (1968) which examined the prototype problem of the gravity current of a
heavy fluid of density ρc propagating beneath lighter fluid of density ρa . For a steady
current, the front speed U is given by

U = FrB

√
g′H, (1.1)

where g′ = g(ρc − ρa)/ρa is the reduced gravity, H is the total depth of the fluid and
FrB is the Froude number. Using mass and momentum conservation within a control
volume, Benjamin (1968) determined that

FrB(h̃) =

√
h̃(1 − h̃)(2 − h̃)

1 + h̃
, (1.2)

in which h̃ = h/H is the relative depth of the current head. In particular, for an
energy-conserving current released from a full-depth lock, h = H/2 and FrB = 1/2.

Bottom-propagating gravity currents beneath a two-layer ambient were examined
by Rottman & Simpson (1983), and the first experiments and simulations of a gravity
current travelling along a rigid bottom under a continuously stratified fluid were
performed by Maxworthy et al. (2002). The latter found an empirical relationship
between the speed of the front of the gravity current and the parameters of the system
such as the density of the current and the strength of the stratification. By analogy
with (1.1) they found

U = FrNH , (1.3)

in which N is the buoyancy frequency, which characterized the stratification of the
ambient, and Fr is the Froude number appropriate for gravity currents in a stratified
ambient. For gravity currents having the same density as that at the base of the
ambient, they found Fr � 0.266. They also determined that the aspect ratio of the lock
is unimportant as far as the initial dynamics of the gravity current were concerned.
They were interested in the transition from the supercritical case to the subcritical
case. In the supercritical case the current travelled faster than the fastest long-wave
speed and no internal waves were generated. In the subcritical case, internal waves
were generated and these were observed to act back upon the gravity current causing
it to advance in a pulsating fashion.

Using an extension of shallow water theory from homogeneous to stratified
ambients, Ungarish & Huppert (2002) showed that their model well captured the
initial slumping phase of such bottom propagating gravity currents observed both in
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fully nonlinear numerical simulations and in experiments. Specifically, the speed was
predicted by (1.3) with

Fr = FrB(h̃)(1 − S + Sh̃/2)1/2, (1.4)

in which S =(ρb−ρ0)/(ρ�−ρ0) is the ratio of the density difference between the bottom
and top of the ambient to the density difference between the lock fluid and the top of
the ambient. The prediction was developed for bottom-propagating gravity currents,
in which case 0 � S � 1 (Ungarish 2006). For a full-depth lock-release current, one
expects h̃ = 1/2 in which case FrB = 1/2, as above. If the lock fluid density matches
that at the bottom of the ambient, S = 1 and so Fr = Fr0 ≡ 1/4. This result lies in
close agreement with the experimental observation of Maxworthy et al. (2002).

More recently Ungarish (2006) derived an analytic model based upon shallow
water theory that predicted the long-time evolution of bottom-propagating gravity
currents. These results were compared with numerical simulations (Birman, Meiburg
& Ungarish 2007) and showed good agreement for shallow-depth currents (h̃ � 1/2)
in relatively weakly stratified fluids. For subcritical currents in strong stratification the
theory predicted multiple solutions for the current speed and the simulations showed
the current speed matched better with solutions slower than the fastest predicted
speed.

The evolution of intrusions is less understood than that of gravity currents (Holyer
& Huppert 1980; Britter & Simpson 1981; Lowe, Linden & Rottman 2002; Sutherland,
Kyba & Flynn 2004; Monaghan 2007). By allowing the interface ahead of an intrusion
to be vertically displaced, Benjamin’s (1968) theory was adapted to predict the
propagation speed of intrusions in a two-layer fluid (Flynn & Linden 2006). This
speed was predicted on heuristic grounds by Cheong, Kuenen & Linden (2006), who
estimated the speed by relating the available potential energy of the system before
the lock fluid was released to the consequent kinetic energy of the intrusion.

Numerous experiments have been performed that examine the speed and structure
of intrusions propagating at mid-depth in uniformly stratified ambient, these resulting
either from a full-depth lock-release (Sutherland & Nault 2007) or from a localized
mixed patch ( Wu 1969; Schooley & Hughes 1972; Manins 1976; Amen & Maxworthy
1980; Silva & Fernando 1998; Sutherland, Chow & Pittman 2007).

Only recently have laboratory experiments been performed to examine the asym-
metric circumstance of intrusions propagating at arbitrary depth in a uniformly
stratified fluid (Bolster, Hang & Linden 2008). These authors extended the Cheong
et al. (2006) result by fitting a quadratic to the mid-depth, top and bottom propagating
intrusion speeds, that were predicted by (1.3) with Fr0 = 1/4 (Ungarish & Huppert
2002; Ungarish 2006) and Fr0 = 0.266 (Maxworthy et al. 2002). Thus they heuristically
predicted that the speed of an intrusion propagating at depth hL is given by (1.3) with

Fr = Fr0

√
3

(
hL

H
− 1

2

)2

+
1

4
. (1.5)

They found good agreement with both numerical simulations and laboratory experi-
ments, the theory more closely matching the experimental results using Fr0 = 1/4.

Whereas Bolster et al. (2008) examined the initial intrusion speed, this paper focuses
upon the generation of internal waves by asymmetric intrusions and studies the
consequent influence of internal waves upon the long-time evolution of the intrusion.
The length of the lock is small compared with the full length of the tank so that
the initial behaviour of the intrusions as well as the long-time behaviour, which is
affected by the motion of internal waves in the ambient, can be examined. In these
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Figure 1. Set-up and definition of parameters for intrusion experiments.

experiments intrusions were created by having an intermediate density between the
average density of the ambient and the density at the base of the stratification. We
also conducted experiments in which the density of the fluid in the lock exceeded
that of the bottom of the stratification. As such these investigations bridge the gap
between studies of a bottom-propagating current and of a symmetric intrusion in a
uniformly stratified ambient.

Shallow-water theory and numerical simulations (Ungarish 2005) have predicted
that the intrusion should evolve from a steady-state (constant speed) phase to a
decelerating (self-similar) phase. Such behaviour is anticipated by shallow-water
theory (Ungarish 2006) because the current speed is predicted to decrease as the
current depth decreases according to (1.4). However, our experiments show this is not
the case for intrusions released from a full-depth lock. Consistent with Sutherland
& Nault (2007), symmetric intrusions are found to propagate at constant speed up
to 20 lock lengths with no appearance of a self-similar phase. This occurs despite
the fact that the head height continuously decreases with distance from the lock.
Such behaviour occurred because the intrusion evolved into the form of a closed-core
solitary wave. For asymmetric intrusions, the return flow launches internal waves that
reflect off the lock-end of the tank and then catch up with the intrusion head, halting
its advance. Until this occurs the intrusion propagates as constant speed even as the
waves act to reduce the head depth to zero. Internal waves thus play an important
role in the long-time evolution of intrusions as we show quantitatively through an
analysis of the wave properties both in experiments and in numerical simulations.

The paper is organized as follows. The experimental set-up and analysis methods
are described in § 2 and the experimental results are presented in § 3. The analyses
focus upon the intrusion speed and the impact of internal gravity waves generated by
the intrusion and upon how the waves can cause the intrusion to stop before reaching
the end of the tank. The details of the numerical simulations are in § 4. Conclusions
and future work are given in § 5.

2. Experimental set-up and analysis
Experiments were performed in a glass tank measuring L =197.1 cm long × 17.4 cm

wide × 48.5 cm tall as shown in figure 1. The tank was left open to the atmosphere
at the top. Salt water with a linearly stratified density profile filled the tank using
the standard ‘double bucket’ technique (Oster 1965). Dye lines of red food colouring
were added every 5 cm while the tank was being filled in order to visualize internal
gravity waves generated in the experiment. The total depth H of the ambient was
either 30 cm or 15 cm for all experiments. The strength of the stratification, measured
by the buoyancy frequency

N =

√
− g

ρ0

dρ

dz
, (2.1)
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varied between 0.34 and 2.0 s−1 (bottom to top density differences between 0.003 and
0.14 g cm−3) for different experimental runs. A vertically traversing 50 cm long Fast
Conductivity and Temperature Probe (Precision Measurement Engineering Corlsbod,
CA, USA) was used to measure the density profile of the stratification. The probe
was recalibrated before each experiment.

The experiments had corresponding Reynolds numbers, based upon N and H ,
ranging from Re(=NH 2/ν) � 8 × 103 to 1.8 × 105. These values were sufficiently large
and so the viscosity was not expected to play a significant role in the dynamics of the
intrusions. The Schmidt number was Sc = 103.

After filling the tank, a 0.4 cm thick gate was inserted between a pair of vertical
glass guides to create a water-tight lock at one end of the tank. The length of the lock
was set to � =8.5, 18.5 or 38.5 cm. Most of the experiments were performed with a
lock length of � =18.5 cm.

A small amount of blue dye was added to the fluid in the lock and the contents
were vigorously stirred until the lock fluid had uniform density. The dye allowed the
intrusion to be visualized during the experiment and was introduced in sufficiently
low concentrations that it did not significantly change the density of the fluid in the
lock.

In some experiments, additional salt was added to the lock fluid before its contents
were mixed. After mixing, the density of the lock was measured using a hydrometer
placed in the lock. In some experiments, the density was measured using an Anton
Paar density meter.

The intrusion propagated at a depth such that the density of the lock fluid was equal
to the density of the undisturbed stratified fluid at that depth. If no salt was added,
the lock-fluid density ρ� was the average ρ̄ of the density at the top ρT and the density
at the bottom ρB of the ambient and the intrusion travelled at mid-depth, h/H = 1/2.
Here h is the vertical position of the intrusion measured from the bottom of the tank
and H is the total depth of the ambient. Adding salt to the lock increased the density
of the lock fluid. If ρ̄ < ρ� < ρB , the intrusion propagated between the bottom and
mid-depth. Since the stratification was linear, we can calculate this intrusion depth to
be h/H = (ρB − ρ�)/(ρB − ρT ). Analogous to Sutherland et al. (2004), the depth can
be characterized by a non-dimensional parameter

ε =
ρ� − ρ̄

ρB − ρT

. (2.2)

Note that h/H = 1/2−ε, so both h/H and ε are measures of the relative density of the
lock-fluid subject to 0 <h/H < 1 and −1/2 < ε < 1/2 for ρT < ρ� <ρB . If ρ� � ρB then
the intrusion runs along the bottom of the tank and ε > 1/2 even though h/H = 0.
Although we did not run any experiment where ρ� < ρ̄ (which correspond to ε < 0 or
h/H > 1/2) we assume the experiment is symmetrical about ε =0 since the problem
is Boussinesq. When ε > 1/2 the gravity current runs along the bottom and when
ε < −1/2 the gravity current runs along the surface. The choice of a non-dimensional
parameter for density is not unique. For example, in Maxworthy et al. (2002) the
relative density was represented by R = (ρ� − ρT )/(ρB − ρT ). We have chosen to use ε

because it serves to emphasize the symmetry of the problem.
A digital video camera (3 CCD Sony DVD Steadycam) was positioned 3.5m from

the front of the tank so that the whole length of the tank was in the camera’s field of
view. Each experiment was recorded onto video tape for later analysis. The frame rate
was as small as �t = 1/30 s and the spatial resolution allowed disturbances as small
as �z � �x � 0.4 cm to be visualized. The dynamics of the system were primarily
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Figure 2. (a) Horizontal time series taken from experiments with ε = 0.27, H =30 cm,
N = 1.8 s−1 and �= 18.5 cm. The time series is taken from a horizontal slice through movies
of the experiment situated z = 7.5 cm above the bottom of the tank close to the neutral
buoyancy level of the lock fluid. The superimposed solid lines show the intrusion speed Ugc

and propagation distance Lmax . The sloped dark wedge ahead of the intrusion results from
the vertical displacement of a dye line through the level z = 7.5 cm. The displacement occurs
due to internal waves launched ahead of the intrusion. (b) Horizontal time series taken from
the same experiment at the z =25 cm. The superimposed solid line indicates the phase speed
of internal waves moving ahead of the intrusion. The slope dark lines occurring at later times
result from the dye line at z � 25 cm moving vertically through the plane z = 25 cm above and
behind the intrusion head.

two-dimensional, as corroborated by the numerical simulations discussed later. Thus
we did not analyse the cross-tank structure of the gravity current as it evolved.

After the tank was set up, the gate was quickly removed. An unavoidable side effect
of this procedure was to introduce turbulence (and hence mixing) as fluid is dragged
along by the upward movement of the gate. As is typical in lock-release experiments
(Simpson 1982), this mixing did not significantly affect the evolution of the intrusion
after propagating a small distance from the lock.

After the removal of the gate, the lock fluid collapsed into an intrusive gravity
current which propagated horizontally along the length of the tank. The centre of
the current was at a neutrally buoyant depth. We marked the end of the experiment
as the point in time at which the far endwall effects, such as the reflection of waves,
started to impact the evolution of the intrusion.

The ‘DigImage’ software package (Dalziel 1992) was used to perform most of the
analyses. One of the features of DigImage was to create horizontal and vertical time
series from the raw video signal recorded during the experiment. A horizontal time
series was constructed by choosing a vertical position (a particular pixel coordinate),
extracting a row of pixels at that height from successive frames of the video and
vertically stacking these horizontal slices. Vertical time series were created in a similar
manner from successive vertical slices.

To measure the position of the gravity current as a function of time, we used a
horizontal time series taken at a vertical position corresponding to the depth of the
intrusion. The front of the intrusion was identified in the horizontal time series by the
diagonal contour separating the darkly dyed intruding lock fluid and the relatively
light intensity ambient. This is shown, for example, in figure 2(a). The horizontal
time series was taken at the horizontal level corresponding to the neutral buoyancy
level of the lock fluid. After a brief acceleration time, the intrusion propagated at
a nearly constant speed, Ugc . The distance over which the intrusion propagated in
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Figure 3. Vertical time series from experiment with ε =0.27 taken at x =60 cm showing the
measurement of the half-period �T of the leading internal wave and the measurement of the
peak-to-peak displacement 2A of a dye line.

steady state depended upon the consequent interaction between the intrusion and
internal waves. In all experiments, the speed was found to be constant between one
lock length and at least three lock lengths from the gate. The velocity of the intrusion
head was thus determined by finding the slope of the line, typically between one and
three lock lengths from the gate, as indicated in figure 2(a). As was characteristic
of all experiments, the intrusion travelled at an initial constant speed at least up to
three lock lengths. We denote the horizontal distance travelled by the intrusion before
the nose velocity first became zero as the propagation distance Lmax which is also
indicated in figure 2(a). The notation Lmax is not meant to indicate that the intrusion
goes no further than this distance. At later times the intrusion moves forward in a
pulsating way but, as we will show, this is a consequence of internal waves advecting
the lock fluid as was observed by Maxworthy et al. (2002). The motion does not result
from horizontal density gradients establishing horizontal pressure gradients, which is
the mechanism usually ascribed to drive a gravity current.

The dye lines added when the tank was being filled allow for the analysis of internal
waves generated by the intrusion. In most experiments we measured the wave phase
speed cp of the first wave generated by creating a horizontal time series at the
z = 25 cm dye line from the bottom of the tank (e.g. figure 2b). The superimposed
vertically offset lines indicate slopes used to measure speeds. Because the intrusions
propagated at mid-depth or below, a horizontal time series at this height revealed a
clear signal of the dye line being displaced by the waves without contamination by
the intrusion itself. The slope of the contour in the horizontal time series marking the
initial displacement of the dye line allowed us to compute the phase speed.

The frequency of the waves was found by using a vertical time series at x = 60 cm
from the lock-end of the tank, as shown in figure 3. We measured the time �T

between the first crest and first trough to pass this point. We estimated the period to
be T = 2�T and the frequency to be ω = 2π/T .

The internal wave amplitude was found by measuring the maximum displacement
of each dye line and dividing by two as shown for the third dye line in figure 3. These
amplitude measurements were performed using vertical time series at x = 60 cm and
x = 160 cm from the lock-end of the tank.

3. Experimental results
Figures 4–6 show three experiments demonstrating the characteristic behaviour

of symmetric (h/H = 1/2), asymmetric (0< h/H < 1/2) and bottom-propagating
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Figure 4. Snapshots from experiment with ε =0, for which the intrusion travels along the
middle of the tank, at times (a) t = 2 s (Nt � 2), (b) t =7 s (Nt � 14), (c) t = 12 s (Nt � 20) and
(d ) t = 21 s (Nt � 42).

0

10

20

(a)

(b)

(c)

(d)

t = 2 s

t = 7 s

t = 12 s

t = 17 s

0

10

20

30

30

0

10

20

30

0

10

20

30

z 
(c

m
)

z 
(c

m
)

z 
(c

m
)

z 
(c

m
)

50 100 150

x (cm)

Figure 5. Snapshots from experiment with ε = 0.27, for which the intrusion travels along the
middle of the tank, at times (a) t = 2 s (Nt � 3.4), (b) t = 7 s (Nt � 11.8), (c) t = 12 s (Nt � 20.2)
and (d ) t =17 s (Nt � 28.7). Corresponding horizontal and vertical time series are shown in
figures 2 and 3, respectively.
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Figure 6. Snapshots from experiment with ε = 0.54, for which the intrusion travels along
the middle of the tank, at times (a) t = 2 s (Nt � 3.6), (b) t =7 s (Nt � 12.6) and (c) t =12 s
(Nt � 21.6).

(h/H = 0) intrusions. For these experiments, the depth of the tank was H = 30 cm,
the lock length was � = 18.5 cm and the buoyancy frequency ranged from N =
1.7 to 2.0 s−1.

For the experiment shown in figure 4, no salt was added to the lock so that ε = 0.
In this case the intrusion travelled down the middle of the tank. In the initial collapse
stage at t = 2 s (figure 4a) the lock fluid intrudes into the ambient and a return flow
above and below the intrusion moves into the lock. The asymmetry in the return flow
occurs because the gate is not removed instantaneously. At t = 7 s (figure 4b) a clear
head develops which travels at a constant speed along the tank with a sinuous tail
in its lee. At t = 21 s (figure 4d ) the intrusion head has thinned considerably and the
intrusion reaches the end of the tank. The leading internal wave is locked to the head
of the intrusion and dye lines are displaced only slightly in front of the head. The
dye lines reveal the existence of a mode-2 internal wave, for which dye lines displace
upward in the top half and downward in the bottom half of the tank.

In figure 5, salt was added to the lock so that ε = 0.27. Note that the intrusion
is asymmetric. In the initial collapse stage at t = 2 s (figure 5a) the dark lock fluid
intrudes into the ambient with return flows occurring above and below. In figure 5(b)
a clear head develops shortly after being released. The intrusion propagates at a
constant speed until t = 12 s (figure 5c) at which time the intrusion head gradually
collapses due to the advance from behind of an internal wave generated by the return
flow. The leading wave is far in advance of the head and has reached the end of
the tank. After stopping, the lock fluid is effectively incorporated into the wave
field. In the image shown at 17 s (figure 5d ) the dyed fluid has been carried a short
distance forward of the original stopping distance through the action of the waves.
The motion of the front of the intrusion head over time is more clearly shown through
the horizontal time series in figure 2(a).

In figure 6, salt was added to the lock so that ε = 0.54. The current travelled along
the bottom of the tank. In the initial collapse stage at t = 2 s (figure 6a) lock fluid
flows beneath the ambient fluid. The ambient fluid flows above the lock fluid into the
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Figure 7. Relative intrusion speed plotted against ε as measured in experiments with
�= 18.6 cm and H = 30 cm (crosses) and H = 15 cm (upside-down triangles). The open circles
show the corresponding measurements determined from four numerical simulations. Plotted
as a solid line is the predicted speed of intrusions determined by the adaption of Cheong et al.
(2006) theory (Bolster et al. 2008) as given by (3.1). The dashed line shows the prediction of
shallow-water theory for bottom-propagating gravity currents as given by (3.2). Typical errors
in the estimate of ε are shown towards the lower right-hand corner of the plot.

lock. At t = 7 s (figure 6b) the current with a clearly defined head is propagating at a
constant speed. There is a small wedge of undyed fluid beneath the head. Since the
lock fluid was slightly denser than the bottom density of the ambient there must have
been some entrainment of ambient fluid to lower the density of the head, for example,
through interactions with the viscous bottom boundary layer (Härtel, Meiburg &
Necker 2000). At t = 12 s (figure 6c) the head is a thin wedge shape and the leading
wave has reached the end of the tank. The dye lines indicate a mode-1 internal wave
for which all the dye lines are displaced upwards above the current head.

In experiments with still larger ε � 0.65 (not shown) the gravity current excites
mode-1 waves but the current is observed to propagate nearly to the end of the tank
before its speed is affected by interactions with the wave reflecting from the endwall
of the tank.

3.1. Intrusion speed

In all our experiments, after a brief acceleration time the gravity current propagated
at a constant speed for a distance along the tank. Figure 7 shows the initial intrusion
speed as a function of the relative density of the lock fluid. The error bars on
ε indicate the sensitivity in determining this parameter from traverse data. The
appropriate characteristic scaling of the intrusion speed is given by NH in which N

is given by (2.1). The minimum intrusion speed occurs when ε = 0, which corresponds
to the density of the lock fluid being equal to the average density of the ambient.
As ε moves away from zero, the speed of the intrusion increases although its speed
does not change much for 0 � ε � 0.2. As the system makes the transition from an
intrusion to a bottom-propagating current the speed increases significantly with ε.

These intrusion results are compared with the prediction of Bolster et al. (2008)
(1.5), which is recast in terms of the ε parameter to give

Ugc

NH
= Fr0

√
3ε2 + 1/4, (3.1)

in which we use Fr0 = 0.25, as predicted by Ungarish (2006). The curve is plotted as
the solid line in figure 7. Consistent with Bolster et al. (2008) (who also examined
−0.5 <ε < 0 cases), we find the theory agrees well with the observed speeds.

The good fit might be expected because (3.1) results from making a quadratic fit to
the square of the velocity as a function of ε insisting only that the speed in the case
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ε = 1/2 is set by Fr0 = 1/4. By symmetry, the speed in the case ε = 0 should be half
this value and the change in speed as a function of ε should be zero about ε =0. One
could also form a good quadratic fit by requiring the speed, not the square of the
speed, be quadratic. However, Bolster et al. (2008) argue that fitting the square of the
speed is appropriate on energetic grounds. The available potential energy stored in
the lock is released both to the motion of the intrusion and the kinetic and available
potential energies of the ambient. Assuming the partition of energy into the intrusion
and ambient are in proportion, it is appropriate to compare the kinetic energy of the
intrusion, proportional to its velocity squared, to the available potential energy of the
lock fluid.

The speed of bottom-propagating currents (for which ε > 1/2) is influenced not
only by the available potential energy of the lock fluid but also by the normal force
of the bottom of the tank acting upon the current. Such effects were accounted for
by Ungarish (2006), who used Long’s model (1953, 1955) and shallow-water theory
to extended Benjamin’s theory (1968) to gravity currents in stratified environments.
Recasting (1.4) in terms of ε and using h̃ = 1/2, appropriate for a full-depth lock
release, the speed is predicted to be

Ugc

NH
= Fr0

√
4ε − 1

ε + 1/2
. (3.2)

Here we have related S to ε using S = 1/(|ε|+1/2). This curve is plotted as the dashed
line in figure 7 for ε � 1/2.

We find that the theory does reasonably well though it moderately underpredicts
the speed of currents with ε � 0.7. This could be a consequence of experimental
error, however a similar discrepancy between numerical simulations and shallow-
water theory for full-depth lock-release currents was noted by Birman et al. (2007).
Nonetheless, the agreement is promising considering that the full-depth lock-release
case is an extreme extension of shallow-water theory: predicting the current speed is
‘problematic’ because of the strong return flow in the ambient above the intrusion
(Ungarish 2006).

The agreement may lead one to conclude that the excitation of internal waves is
inconsequential in establishing the steady-state speed. However, the situation is more
‘subtle’ than this (Bolster et al. 2008). The very process of collapse means that the
stratified ambient must be displaced above and below the head of the intrusion, a
process that extracts part of the available potential energy from the lock fluid and
which necessarily excites internal waves if not ahead of the current, certainly in its
lee. In part for this reason, but also because the mean ambient density ahead of
the intrusion is reduced, the Froude number for a bottom propagating current with
ε = 1/2 is Fr0 � 1/4 (Ungarish 2006) and not Fr0 = 1/2, as would be the case for a
gravity current in a uniform-density ambient (Benjamin 1968).

The discussion so far has focused upon the initial speed of the intrusion and
bottom-propagating gravity currents. But the main interest of this paper is upon its
consequent evolution. Shallow-water theory predicts that the currents decelerate after
propagating one lock length as a consequence of the decreased depth of the current
head (e.g. see figure 4 of Ungarish 2006). However, we find this is not the case. Not
only does the available potential energy released from the lock go into the kinetic
energy of the current, but it is also transformed into the available potential energy
and kinetic energy of the ambient. It is the transformation of energy into the latter
and the consequent interactions between the ambient and intrusion that result in
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Figure 8. Phase speed of the leading internal wave versus intrusion speed. The solid lines
give the long-wave speeds of mode-1 and mode-2 waves and the dashed lines give the wave
speeds of linear waves of mode-1 and mode-2 with frequency ω =0.52N . Points are plotted as
crosses for ε � 0.5 and H = 30 cm, as upside-down triangles for ε � 0.5 and H = 15 cm, and
as solid squares for ε > 0.5.

intrusions propagating long distances from the lock at constant speed even as the
intrusion head height decreases. In intermediate ε cases, the ambient can then act
abruptly to halt its advance.

Clearly the return flow plays an important role in the generation of internal waves
and their consequent impact upon the flow evolution. In § 3.2 we examine the observed
characteristics of these waves and so estimate the relative energy associated with wave
generation and their consequent impact upon the intrusion head.

3.2. Internal gravity waves

The release of the lock fluid generated internal waves, which were visualized by
the vertical deflection of the horizontal dye lines in the tank. The internal waves
were vertically trapped between the rigid bottom of the tank and the free surface.
The properties of the internal gravity waves generated in this experiment are set by
the geometry of the tank, the stratification of the ambient and the density of the
intrusion. The characteristics of the leading internal wave were determined from the
initial displacement of the dye lines occurring in advance of the head of the intrusion.
It is assumed that the trailing internal waves resulting from the return flow that
reflects off the endwall of the lock have the same characteristics as the leading waves.
For example, horizontal time series as shown in figure 2 reveal the phase speed of
leading wave (indicated by the superimposed line labelled cp) and that of the trailing
waves (indicated by the slope of the black dye lines occurring approximately 5 and
10 s later) consistently match.

Figure 8 shows the phase speed cp plotted against the gravity current speed Ugc .
For ε =0, the waves travel at the same speed as the gravity current and are consistent,
for example, with the experiment shown in figure 4. As ε increases from 0, the wave
speed increases quickly while the gravity current speed increases slowly, consistent
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Figure 9. Normalized energy of mode-1 (solid line) and mode-2 (dashed line) components
versus ε for (3.3). The dotted-dashed line shows the sum of mode-1 and mode-2 energies.
The cross-over point where the mode-1 energy begins to exceed the mode-2 energy occurs
at ε � 0.18 and the minimum energy captured by the mode-1 and mode-2 components is
0.72. The data points show the relative energy in the mode-1 component (crosses) and in the
mode-2 component (squares) as computed from a range of experiments. Typical error bars of
the experimental data are indicated.

with figure 7. The internal waves no longer couple to the head of the current but
propagate well in front of it. Simultaneously, upon reflection from the endwall of the
lock, the return flow excites internal waves that catch up with the intrusion head,
pinching it into a wedge shape and causing the intrusion to stop propagating.

The increase in phase speed is due to a change in the structure of the internal waves.
There is a transition between internal waves with a mode-2 vertical structure for small
values of ε to a mode-1 vertical structure for larger values of ε. In general, the waves
observed in our experiments are a superposition of different wave modes. Nevertheless,
the dominant behaviour is characterized by a superposition of mode-1 and mode-2
waves. A long mode-n internal wave has a phase speed given by c = NH /nπ. These
phase speeds for long mode-1 and mode-2 waves are superimposed in figure 8 as
solid lines.

To understand the transition from mode-2 to mode-1, consider an idealized internal
wave with normalized vertical displacement given by

f (z) =

⎧⎨
⎩

sin
(

π(z/H−1/2+ε)
1/2+ε

)
z
H

� 1
2

− ε

− 1/2−ε

1/2+ε
sin

(
/H

1/2−ε

)
z
H

� 1
2

− ε
(3.3)

This function was chosen as an approximation to the actual vertical displacements
of the dye lines. At the matching point, z/H = 1/2 − ε, this function is continuous
and has a continuous first derivative. Further justification or this choice of function
is given below.

A discrete sine transform was used to compute the amount of relative energy in
the first and second modes of the vertical displacements of dye lines. These energies
are plotted against ε in figure 9. Also plotted is a Fourier sine decomposition of
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Figure 10. Frequency of the internal wave normalized by the buoyancy frequency in
experiments with �= 18.5 cm and H = 30 cm (crosses) and H = 15 cm (upside-down triangles).
The dashed line shows the mean frequency. Typical error bars are indicated.

the first two coefficients (squared) (b2
1 and b2

2) of (3.3). The typical error bars for the
relative wave energy, shown to the right, reflect the coarse determination of the wave
amplitudes from a discrete set of dye lines. Despite these errors, the analytical model
and the experimental data confirm that for low values of ε, the internal wave is
primarily mode-2, as indicated by the fact that the squares (representing the fraction
of energy in mode-2 waves) lie above the crosses (representing the fraction of energy
in mode-1 waves). For ε > 0.18, energy in mode-1 exceeds that in mode-2 waves, and
correspondingly the crosses lie above the squares. The analytical model suggests that
the mode-1 and mode-2 components account for at least 70 % of the total internal
wave energy.

Thus the intrusion exists in one of three regimes depending upon the value of ε. For
ε � 0, the advance of the intrusion is supercritical to the mode-2 internal waves that are
dominantly excited, for 0.18 � ε � 0.6 the intrusion and bottom-propagating gravity
currents are subcritical to mode-1 internal waves that are dominantly excited, and
for ε � 0.6 the bottom-propagating gravity currents are supercritical to the mode-1
waves that are dominantly excited.

Figure 10 shows that the frequency ω of these waves normalized by the buoyancy
frequency is independent of ε with ε �= 0 and has a mean value of 0.52 and a standard
deviation of 0.10 over all experiments. Although one might expect that the collapse
of the lock fluid would generate a spectrum of frequencies, the waves themselves are
excited in a narrow frequency band. This frequency selection has been observed in
a variety of experiments and simulations in which waves were generated by grid-
generated turbulence (Dohan & Sutherland 2002, 2003), turbulence resulting from
flow over rough topography (Aguilar & Sutherland 2006), and from an intrusion at
the interface of a uniform density fluid and a uniformly stratified fluid (Flynn &
Sutherland 2004).

Because ω is comparable to N , the waves cannot be treated as long. The phase

speed of a mode-n internal wave of frequency ω is given by c = (H/nπ)
√

N2 − ω2.
Since we found on average ω =0.52N , we can compute the speed of a typical mode-1
and mode-2 waves. These speeds are plotted as dashed lines in figure 8. These phase
speeds underestimate the phase speeds observed in our experiments. The fact that the
observed phase speeds are larger than what linear theory predicts indicates the waves
are nonlinear.
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Figure 11. Normalized maximum vertical displacement of dye lines as function of height
taken at x = 60 cm and computed over first wave period. The dotted lines show (3.3) plotted
for the corresponding value of ε with (a) ε = 0, (b) ε = 0.27 and (c) ε = 0.54.

Figure 11 shows vertical profiles of the maximum vertical displacement of the
ambient measured in three experiments from vertical time series examining the
displacement of five dye lines at x = 60 cm. This distance, a little more than two lock
lengths from the gate, is chosen to be sufficiently close to the lock that reflecting
waves from the lock-end of the tank do not interact with the intrusion head as it
passes this position. The dashed lines in the figure show amplitude profiles using (3.3)
overlaid on measurements taken from three sample experiments. The three profiles,
which correspond to the experiments with snapshots shown in figures 4–6, clearly
reveal displacements with a mode-2 shape if ε = 0 (figure 11a), a mixed mode-1 and
mode-2 shape if ε =0.27 (figure 11b), and a mode-1 shape if ε =0.54 (figure 11c).

From the amplitude, frequency and vertical mode structure of the waves, we
estimate the energy associated with waves in the ambient during the slumping phase
of the intrusion. Defining the vertical displacement amplitude Aξ to be the largest
displacement of the set of the five dye lines, the energy density per unit mass is given
by

〈Ewave〉 =
1

2
N2Aξ

2. (3.4)

The energy per unit tank width associated with the ambient is then estimated by
multiplying the energy density by the area

Awave =

{
(1 + 2|ε|)�H |ε| < 1/2

2�H |ε| � 1/2.
(3.5)

Here the horizontal length scale is assumed to increase in proportion to ε as the
waves evolve from having a mode-2 to a mode-1 structure. This is consistent with the
observation that the frequency is fixed but the vertical scale doubles as ε increases
from 0 to 1/2.

The resulting energy is compared with the available potential energy per unit width
of the fluid in the tank before the gate is extracted. This is calculated as the difference
between the potential energy of the initial state and the final state that would occur
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Figure 12. Total energy associated with internal waves, shown as a fraction of the initial total
APE of the system and plotted versus ε. The solid line shows an empirically determined curve
using (3.4), (3.5) and (3.9) which is fit to the data using α = 0.18 in (3.10). Typical error bars
are indicated.

in the absence of mixing

APE 0 =

∫ L

0

∫ H

0

g
(
ρinitial (x, z) − ρfinal (z)

)
z dz dx. (3.6)

In the initial configuration, homogeneous fluid of density ρ� resides in a lock of
length � beside the uniformly stratified ambient of length L − �, as shown in figure 1.
Explicitly, the density structure is given by

ρinitial (x, z) =

{
ρ� 0 < x < �

ρB + (ρT − ρB) z
H

� < x < L.
(3.7)

Assuming no mixing occurs, the final state is that of a piecewise-uniform stratified
fluid with a horizontal slab of fluid of density ρ� occupying the full length L of the
tank about the neutrally buoyant depth of the ambient before the experiment begins
(see figure 4d ). From conservation of mass of the lock- and ambient-fluid, this final
density profile is given by

ρfinal (z) =

⎧⎨
⎩

ρ� + (ρT − ρ�)
z−h0

H−h0
h0 < z < H

ρ� h1 < z < h0

ρB + (ρ� − ρB) z
h1

0 < z < h1.

(3.8)

If ρ� < ρB , then

h1 =
ρ� − ρB

ρT − ρB

H
L − �

L
and h0 = h1 + H

�

L
.

Otherwise, if ρ� >ρB , then h1 = 0 and h0 = H�/L. The available potential energy
(APE) per unit width is thus given by

APE 0 =
1

24
ρ0

(
1 − �

L

)
�H 3N2

{
12ε2 + 1 |ε| < 1/2

12|ε| − 2 |ε| > 1/2,
(3.9)

which increases with the absolute value of ε and with the strength of the stratification.
Using (3.9) to normalize the energy associated with waves given by (3.4) and (3.5),

we compute the relative percentage of energy and plot this against ε in figure 12.
The internal waves generated by the release of the lock fluid accounted for between
7% and 22 % of the APE in the system over 25 experiments where the vertical
displacements were measured. This is smaller than the 36 % of energy determined
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by Ungarish & Huppert (2006) for the case ε = 1/2 in part because we make a
conservative estimate of the wave energy based upon the one wavelength of the
disturbance determined by the lock length and the wave-mode, the latter which
depends upon ε. The relative energy is larger between ε =0.1 and 0.5, corresponding
to the cases in which the intrusion stopped before reaching the end of the tank. This
analysis demonstrates that a significant enough amount of the APE goes into internal
waves and this energy transfer, as a result, significantly influences the dynamics of an
intrusion not only at long times but also during the initial stages of its evolution.

3.3. Wave amplitudes and energy

To illustrate this impact, we assume the depth-relative amplitude of the waves increases
linearly with ε until this parameter exceeds 1/2. Thereafter the amplitude is assumed
to be constant. By symmetry, we expect the relative amplitude to double as ε increases
from 0 to 1/2. Therefore, we have

Aξ/H =

{
α(1/2 + |ε|) |ε| � 1/2

α |ε| > 1/2.
(3.10)

Using this formula, we compute the associated energy of the waves over a volume
given by (3.5) and empirically determine the value of α that fits the observed data.
Explicitly, we find α = 0.18 ± 0.01. This implies, in particular, that intrusions with
ε � 0.5 excite internal waves whose amplitudes are almost one-fifth the tank depth.

The corresponding energy normalized by the initial APE of the system is plotted
as the solid line in figure 12. Note that the relative energy decreases for ε > 1/2
because the energy associated with waves generated by bottom-propagating currents
is constant whereas the APE of the system increases with increasing density of the
lock fluid.

As the waves change from mode-2 to mode-1, their amplitude and wavelength
doubles and so their associated APE increases by a factor of 8. Meanwhile, the APE
associated with the lock fluid given by (3.9) increases by a factor 4 as ε changes from
0 to 1/2. Therefore, as expected from symmetry. the percentage change in relative
APE is twice as large for mode-1 waves with ε = 1/2 as for mode-2 waves with ε = 0.

3.4. Intrusion propagation distance

A universal feature of our experiments is that the intrusions started off at an initially
constant speed after a brief acceleration phase. In some cases the intrusion propagated
to the end of the tank where it stopped due to the rigid vertical boundary. This
occurred either in experiments with ε ∼ 0 or ε � 1/2. Otherwise, due to interactions
with internal gravity waves, the intrusion stopped abruptly midway along the tank.

Figure 13 shows the relative distance the intrusion travelled in units of lock lengths
before this stopping first occurred.

Such an interaction between internal waves and subcritical bottom-propagating
gravity currents was also observed by Maxworthy et al. (2002). An estimate of the
distance over which the waves interact strongly with the current head was provided
by Ungarish & Huppert (2004), who claimed the internal waves were locked with
the head over the first two wavelengths of motion. Thereafter the waves ‘unlocked
from the head and move forward relative to the current until the crest reaches the
nose (and thus slows it down)’. Our intrusion experiments demonstrate a different
interaction mechanism. As shown, for example, in Figure 2(a), we find the waves are
not locked with the head but advance at constant speed towards the intrusion head
after reflecting from the lock-end of the tank. The current does not slow down after
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Figure 13. Maximum distance travelled by intrusion in experiments with �= 18.5 cm
and H = 30 cm (crosses) and H = 15 cm (upside-down triangles). The results of numerical
simulations are shown by open circles. For these H = 30 cm. Small, medium and large circles
represent the intrusion distances found in simulations with �= 18.6, 40 and 80 cm, respectively.
Typical errors in estimating ε in experiments are indicated towards the bottom right-hand
side of the plot. Values are plotted only for those experiments in which the intrusion did not
interact with the far end of the tank before being stopped by internal waves catching up to
the intrusion head from the lock-end of the tank.

interacting, but stops abruptly. Stopping occurs if the intrusion speed is slower than
the internal wave speed.

The speed of both waves and intrusions depends upon the value of ε. If ε ∼ 0
the intrusion speed is comparable to the mode-2 internal wave speed. If ε � 1/2, the
bottom-propagating gravity current propagates at speeds comparable to or faster than
the mode-1 internal wave speed. In both circumstances the intrusion is supercritical
and so waves reflecting from the lock-end of the tank do not catch up with the
intrusion head.

At intermediate values of ε, the return flow into the lock excites internal waves that
reflect off the lock-end of the tank and then propagate towards the intrusion head at
a faster speed than the intrusion itself: the intrusion is subcritical. The advance of the
intrusion stops when the waves catch up with the head. This occurs on a time scale
which, for fixed N and H , depends upon the mode number (depending upon ε) and
the lock length.

We estimate the stopping distance of intrusions from the time taken for internal
waves generated in the return flow to reflect off the lock-wall of the tank and then
catch up to the intrusion head. We crudely estimate the speed of these waves to be
given by

c =
NH

π
(1/2 + |ε|) |ε| � 1/2. (3.11)

This corresponds to a linear increase in the phase speed from that of mode-2 to
mode-1 waves as ε increases from 0 to 0.5. The relative distance from the gate that
a subcritical intrusion moving at speed Ugc travels before internal waves at speed
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c > Ugc catch up to it is

Lmax

�
=

2Ugc

c − Ugc

. (3.12)

Using (3.1) and (3.11) gives the solid curve plotted in figure 13. This estimate agrees
well with the observed stopping distance of the intrusion.

4. Numerical simulations
4.1. Description of code

Two-dimensional numerical simulations were performed to compare with the
experimental results, as well as to obtain additional insight into the energy balance
of the flow. The Navier–Stokes equations in vorticity streamfunction formulation are
employed for the numerical simulation. The vorticity streamfunction formulation of
the non-dimensional governing equations with the Boussinesq assumption can be
written as

∂2ψ

∂xi∂xi

= −ω, (4.1)

∂ω

∂t
+ ui

∂ω

∂xi

=
1

Re

∂2ω

∂xi∂xi

− ∂ρ

∂x1

, (4.2)

∂ρ

∂t
+

∂(ρui)

∂xi

=
1

ReSc

∂2ρ

∂xi∂xi

. (4.3)

The equations are non-dimensionalized using the tank height H as the length scale
and the inverse buoyancy frequency N−1 as the time scale. The two governing
dimensionless parameters in (4.1)–(4.3) are the Reynolds number Re, and the Schmidt
number Sc, which are defined as Re =NH 2/ν and Sc = ν/κ , where ν is kinematic
viscosity and κ is the coefficient of molecular diffusivity. Numerical simulations were
performed with Re = 20 000, comparable to values in experiments, and sufficiently
large that viscous effects do not play an important role. The Schmidt number was set
to be unity, rather than the experimental value of 1000. Although smaller than the
corresponding values in laboratory experiments, this was large enough that molecular
dissipative effects negligibly affected the intrusion evolution while not being so large
that the code became numerically unstable.

The domain is rectangular with the same aspect ratio as the fluid in the laboratory
experiments. The grid size of Nx = 2049 and Ny =240 is used for all the simulations.
The lock length � likewise was set to mimic the experiments. Initially the lock fluid was
assigned a density ρ�. At the gate location we assume the vertical interface between
the lock and ambient has a thickness of O(0.01) over which the density smoothly
changes from its lock value to the ambient value. No-slip boundary conditions are
employed at the top and bottom walls, while slip is allowed at the left and right walls.
The simulations employ equidistant grids in the rectangular computational domain.
Spectral Galerkin methods are used in representing the streamwise dependence of the
streamfunction and the vorticity fields as explained in Härtel et al. (2000). Vertical
derivatives are approximated with sixth order in the centre and third at walls, on the
basis of the compact finite difference stencils described by Lele (1992). A third-order
Runge–Kutta time integration scheme is employed to evolve governing equations in
time. The computational procedure used is very similar to that described in Härtel
et al. (2000). Further details of the validation of the code are provided in Härtel et al.
(2000).
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The non-dimensional energy equation derived from the governing equations can be
written as (Necker et al. 2005, cf.)

d

dt
(Ek + Ep) = − 2

Re

∫
Ω

sij sij dV, (4.4)

where sij denotes the rate of strain tensor, Ek(t) is the non-dimensional kinetic energy
and Ep(t) is the potential energy of the flow. In non-dimensional form they can be
expressed as

sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (4.5)

Ek =
1

2

∫
Ω

uiui dV, (4.6)

Ep =

∫
Ω

ρz dV (4.7)

Equation (4.4) shows that during the flow the total energy, i.e. the sum of kinetic
energy, potential energy and dissipated energy remains constant. We can numerically
calculate the kinetic energy, potential energy and dissipation energy as functions of
time as the flow evolves.

In particular, we examine the evolution of the APE over time. The initial APE is
defined, as in (3.6), to be the difference in potential energy between the state when
the lock fluid is mixed and still behind the gate and the minimum-energy state, given
by (3.8), in which this fluid lies in a horizontal slab at its neutral density level. At
later times, the total APE is computed from the corresponding integral with ρinitial

replaced by the instantaneous density ρ(x, z, t). In practice a threshold is set so that
fluid associated with the intrusion has a density change from the initial lock fluid
which is no more than 1 % of the maximum absolute value of the density difference
between the density of the initial lock fluid and the ambient.

In order to assess how the energy associated with the intrusion is transferred to
the stratified ambient, we further partition the domain of integration into two parts,
one associated with the area occupied by fluid having the same density as the lock
fluid and the remaining area being that associated with the perturbed ambient. The
resulting integrals over each area we refer to as the ‘intrusion APE’ and the ‘ambient
APE’, respectively. The sum of the two quantities is the ‘total APE’, in the normal
sense of APE.

4.2. Results

Snapshots from three simulations having parameters similar to the experiments
highlighted in figures 4–6 are shown in figure 14. These are plots of the total
density field. The greyscales are constructed so that grey contours are plotted at the
corresponding level of the dye lines in the laboratory experiments and black contours
are drawn where the density is comparable to the initial lock fluid density.

The simulations are qualitatively and quantitatively similar to the laboratory
experiments. A symmetric intrusion, with ε = 0, propagates to the end of the domain
and excites a mode-2 disturbance that surrounds the intrusion head but which
does not propagate ahead of the intrusion. If symmetry is broken by increasing ε,
a complex internal wave field is excited in the ambient which moves well ahead
of the intrusion head and an internal wave reflecting from the lock-end of the
tank catches up to the intrusion and halts its advance. If ε = 0.5, the intrusion
excites a mode-1 wave that propagates ahead of the intrusion. For still large ε
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Figure 14. Snapshots from three numerical simulations with ε = 0 at (a) t = 7 s and (b) t =
12 s, with ε = 0.25 at (c) t = 7 s and (d ) t = 12 s and with ε =0.50 at (e) t = 7 s and (f ) t =12 s.

(not shown) the bottom-propagating gravity current is supercritical and internal
waves reflecting from the lock-end of the tank do not catch up with the intrusion
head.

In the laboratory experiments, the gate is extracted over a small, but finite time
whereas the release of fluid from the lock is instantaneous in the simulations. The fact
that the simulated intrusion and wave field have similar structure to the experiments
indicates that the asymmetry resulting from extracting the gate in experiments does
not significantly affect the flow evolution.

For example, figure 15(a) shows the position of the intrusion head as it advances in
time in three simulations with ε =0, 0.31 and 0.68. Consistent with the experiments,
the plots show that the currents travel at constant speed for up to 10 lock lengths
with the speed increasing as ε increases. In the case with ε = 0.31 the current stops
propagating approximately three lock lengths from the gate as a consequence of
interactions with internal waves.
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Figure 15. (a) Location of intrusion head and (b) volume of the intrusion as it evolves over
time. Results are shown for three simulations with the same dynamical parameters as the
experiments shown in figures 4–6, with corresponding lines indicated in the legend inset in (a).

The simulated non-dimensional speeds are Ugc/NH = 0.133, 0.162 and 0.32 for
ε = 0, 0.31 and 0.68, respectively. Comparing these with the speeds observed in
experiments, as shown in figure 7, we find good agreement within the scatter of data.

To examine the effect of lock length upon the evolution of the intrusion, we have
performed simulations of intrusions released from longer locks in longer horizontal
domains. Figure 16 shows the results of three simulations in which ε = 0.25 and the
lock length has values of � =18.6, 40 and 80 cm. In all three cases H = 30 cm and
N = 1 s−1. When the horizontal is rescaled by x/� and time is rescaled by Nt , we see
that waves advancing from the lock-end of the tank catch up with the intrusion head
at approximately the same rescaled time and position. The (un-rescaled) horizontal
wavelength of internal waves is the same in all three cases, confirming that the
horizontal wavelength is set by the tank depth, not the lock length. Also, in each
case the intrusion speed is constant until it stops. The stopping distance, plotted by
the small, medium and large open circles in figure 13, shows the rescaled distance is
the same in all three simulations.

Likewise in simulations with ε =0 and ε =0.5, we observe that the intrusion
propagates at constant speed which is comparable to the mode-2 and mode-1 internal
wave speeds, respectively. In these cases the intrusion does not stop but the lock fluid
is carried by the waves similar to the transport of fluid by closed-core solitary waves
(e.g. see Sutherland & Nault 2007).

The volume of the three intrusions shown in figure 14 is examined in figure 15(b).
This is calculated as the volume of fluid having the same density as the fluid initially
in the lock. As expected, the volume decreases in all three cases due to mixing. In the
two intrusion cases with ε =0 and 0.31, the volume decreases at nearly the same rate
over time, whereas the volume of the bottom-propagating gravity current decreases
much more rapidly. Presumably this is because the faster moving current exhibits
more vigorous mixing.
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Figure 16. Same as in figure 14, but showing snapshots at two times from each of three
numerical simulations with ε = 0.25 and (a), (b) �= 18.6, (c), (d ) �= 40, and (e), (f ) �= 80 cm.
In all three cases H = 30 cm and N =1 s−1. In simulations with larger �, the horizontal extent
of the domain is larger and the time at which the snapshot is shown is larger.

It is encouraging to note that the position and structure of the intrusions in the
three simulations agree well with the corresponding laboratory experiments. Thus the
neglect of fully three-dimensional mixing in the simulations does not significantly
effect the evolution of the intrusions and the wave fields they produce.

Figure 17 shows the available potential and kinetic energies associated with the
intrusion and ambient as the system evolves over time. The graphs are normalized
by the initial total APE, given by (3.9). Before release the APE associated with the
intrusion is positive and that with the ambient is negative. As the intrusion collapses
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Figure 17. Available potential energy (left panel) and kinetic energy (right panel) associated
with the intrusion (thin solid line) and ambient (dashed line). The total energies are plotted as
the thick solid line. These are computed in three simulations with (a, b) ε = 0, (c, d ) ε = 0.25
and (e, f ) ε = 0.5.

it imparts APE to the ambient as well as converting it in part to kinetic energy and
losing it to dissipation. Values of the kinetic and available potential energies of the
intrusion and ambient at different times are listed in table 1.

In simulations with increasing ε, a qualitative change in the evolution of each
component of the APE is observed. This is illustrated in figure 17. In all three
simulations, the initial APE associated with the lock fluid is rapidly converted into
kinetic energy and the APE of the ambient, the two being nearly in equipartition. The
time taken for energy to transfer to the ambient is longest for the case with ε = 0. The
ambient has as much APE as the intrusion at time Nt = 5.5 and after non-dimensional
time Nt = 15, only 4 % of the APE is associated with the intrusion. Although the
APE and kinetic energy of the ambient are close to equipartition after Nt = 10, the
kinetic energy of the intrusion is 30 % of the kinetic energy of the ambient.
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Nt 3 9 15

ε = 0 Intr. APE 0.564 0.101 0.021
Amb. APE −0.021 0.322 0.377
Intr. KE 0.116 0.125 0.111
Amb. KE 0.327 0.380 0.377

ε = 0.25 Intr. APE 0.544 0.053 −0.028
Amb. APE −0.144 0.391 0.440
Intr. KE 0.112 0.058 0.016
Amb. KE 0.469 0.437 0.459

ε = 0.5 Intr. APE 0.251 0.048 0.011
Amb. APE 0.155 0.404 0.432
Intr. KE 0.122 0.099 0.081
Amb. KE 0.452 0.406 0.397

Table 1. Intrusion and ambient available potential energy (APE) and kinetic energy (KE)
given as a fraction of the total initial APE of the system. Values are extracted from three
numerical simulations with ε =0, 0.25 and 0.5 and are given at times Nt = 3, 9 and 15. The
same quantities are plotted for times between Nt = 0 and 15 in figure 17.

In the case with ε = 0.25, the APE of the lock fluid transfers rapidly to the ambient
and by time Nt = 15, almost all the energy is associated with the ambient fluid, the
kinetic and available potential energies being in equipartition.

Although the transfer of energy from intrusion to ambient energy is faster still
in the case ε =0.5, as in the case with ε =0, a significant fraction (20 %) of energy
remains associated with the intrusion by time Nt =15.

These observations lie in contrast with the shallow-water theory results of Ungarish
& Huppert (2006). They showed that for subcritical bottom-propagating gravity
currents, the interaction between waves and the current head could not be detected
by analysis of the energetics of the system in the case S =0.72 (ε = 0.89). In the
case S = 1 (ε = 1/2), they found that, in comparison with numerical simulations,
shallow-water theory significantly underpredicted the total mechanical energy of
the current shortly after being released from the lock. Thus shallow-water theory,
while performing well for bottom-propagating currents in weakly stratified ambients,
does not well capture the observed energetics of subcritical currents in strongly
stratified ambients and, by extension, has questionable applicability to intrusive gravity
currents.

5. Discussion and conclusions
Experiments and numerical simulations have investigated intrusions and their

interactions with internal waves in a uniformly stratified ambient. That the two-
dimensional simulations capture the observed structure and speed of the intrusions
indicates that their macroscopic dynamics can be well described by a two-dimensional
model. The speed of the intrusion was found to match the prediction of Bolster et al.
(2008) in circumstances with ε < 0.5. For ε > 0.5, the theoretical prediction of Ungarish
& Huppert (2002) and the empirical prediction of Maxworthy et al. (2002) is close to
the observed speed of bottom-propagating gravity currents, though theory moderately
underpredicts the speed.
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It is well-established that a gravity current in a uniform-density ambient propagates
6–10 lock lengths before entering the ‘self-similar’ phase in which the current
decelerates. This occurs because the finite volume of lock fluid requires the head-
height to decrease and, consequently, the horizontal pressure gradient force driving
the current decreases. Our results show this does not occur for intrusions released
into a uniformly stratified ambient from a high aspect-ratio lock. Internal waves
interacting with the intrusion head dominate the long-time evolution of the intrusion.
In symmetric cases, the waves propagate at the same speed as the intrusion and
carry the lock fluid at constant speed well past 10 lock lengths, even though the
vertical extent of the head decreases substantially. In asymmetric cases, waves that
reflect from the lock-end of the tank catch up with the head and halt its advance.
Thereafter, the lock fluid slowly undulates forward driven dominantly by the wave
field and not by horizontal pressure gradients established through horizontal density
changes between the intrusion and ambient.

The distance travelled by the intrusion before stopping is related to the wave speed
of the internal waves generated. Intrusions travelling near the mid-depth of the tank
excite mode-2 waves. In the limit of an intrusion becoming a gravity current, more
mode-1-like waves are produced. Mode-1 waves travel faster than mode-2 waves and
faster than the intrusion for intermediate values of ε. The mode-1 waves, which reflect
off the rear wall of the tank and then catch up with the intrusion head, cause the
intrusion to stop before hitting the end of the tank. The energy associated with the
waves lies between 10 % and 20 % of the initial APE of the lock fluid. This may not
be so large as to have a leading-order effect upon the intrusion speed, but it is large
enough to affect non-negligibly the consequent evolution of the intrusion in terms
of the propagation distance. Energy analyses of intrusions in numerical simulations
show that a substantial fraction of the initial APE is transferred to the ambient
if ε is sufficiently larger than zero and mode-1 waves are predominately excited.
Experimental data were used to derive an empirical formula for the wave energy.
This result showed that, for bottom-propagating gravity currents, the energy of waves
relative to the initial APE decreases as ε increases. These results are consistent with
the observation that internal waves do not strongly influence the consequent motion
of the current if ε is large.

In none of the experiments performed did we observe the transition from steady-
state to self-similar propagation of the intrusion, as predicted by Ungarish (2005). The
symmetric intrusion propagates beyond 10 lock lengths without deceleration. Indeed,
Sutherland & Nault (2007) have shown that symmetric intrusions can propagate up
to 22 lock-lengths without decelerating as a result of coupling with mode-2 internal
waves. The long-time evolution in this case is best described by the propagation of
closed core solitary waves in this case. Asymmetric intrusions with 0.18 � ε < 0.5
propagate at constant speed until suddenly stopping due to interaction with internal
waves.

Some signature of a self-similar phase seemed to occur in experiments by Wu
(1969) and Amen & Maxworthy (1980), consistent with shallow-water predictions
(Ungarish 2005). So why was the self-similar phase not observed in our experiments?
A likely explanation is that those experiments generated symmetric intrusions from
the collapse of a mixed region that did not extend over the full depth of the tank, a
circumstance that is better described by the approximations of shallow-water theory.
Thus it seems in those circumstances that the collapsing mixed fluid did not excite such
large amplitude internal waves and that the fluid became sufficiently diluted through
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mixing with the ambient that its advance slowed. Clearly more experiments on partial-
depth mixed region collapse should be performed to examine this circumstance in
more detail.

In order to focus upon the interactions between intrusions and internal waves,
our laboratory experiments were confined to the examination of relatively short locks
compared to the length of the tank. In longer tanks with longer locks a proportionally
smaller volume of the intrusion would mix with the ambient. In these circumstances it
may be that asymmetric intrusions would evolve into a self-similar phase before
interacting with internal waves reflecting from the lock-end of the tank (Paul
F. Linden, private communication 2007). Nonetheless, we have seen that symmetric
intrusions (with ε =0) propagate over 10 lock lengths without decelerating all the
while with the head-height decreasing. Internal waves locked to the intrusion head, not
horizontal density gradients between the intrusion and ambient, are responsible for
the transport at constant speed. Likewise, in asymmetric circumstances the intrusion
stops due to interactions with internal waves and thereafter the transport of lock fluid
is governed primarily by the waves, not horizontal density gradients. In general, the
experimental and numerical results show that the long-time evolution of intrusions
in uniformly stratified fluid is not necessarily well modelled by a straightforward
adaptation of Benjamin’s theory that neglects the generation and consequent influence
of internal waves upon the flow.
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