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Non-self-similar viscous gravity currents
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Lock-release experiments are performed focusing upon the evolution of near-pure
glycerol flowing into fresh water. If the lock height is sufficiently tall, the current is found
to propagate for many lock lengths close to the speed predicted for energy-conserving
moderately non-Boussinesq gravity currents. The current then slows to a near stop as the
current head ceases to be elevated relative to its tail and the current as a whole forms a wedge
shape. By contrast, an experiment of near-pure glycerol advancing under air exhibits the
well-known slowing of the current such that the front position increases as a one-fifth power
of time. The evolution of a viscous gravity current in water is also qualitatively different
from that for a high-Reynolds number gravity current which transitions smoothly from a
constant speed to self-similar to viscous regime. The reason a viscous gravity current flowing
under water moves initially at near-constant speed is not due to a lubrication layer forming
below the current. Rather it is due to the return flow of water into the lock establishing a
current with an elevated head that is taller than the viscous boundary layer depth near the
current nose. The flow near the top of the head advances to the nose where it comes into
contact with the tank bottom. Meanwhile the ambient fluid is pushed up and over the head
rather than being drawn underneath it. The front slows rapidly to a near stop as the head
height reduces to that comparable to the boundary layer depth underneath the head. The
initial speed and entrainment into the current are shown to depend upon the ratio, R�, of the
starting current height to the characteristic boundary layer depth. In particular, entrainment
via the turbulent shear flow over the head is found to increase the volume by less than
10% during its evolution if R� � 10 but increases by as much as 100% for high-Reynolds
number gravity currents. A conceptual model is developed that captures the transition from
an inertially driven current to its sudden near stop by viscous forces.

DOI: 10.1103/PhysRevFluids.3.034101

I. INTRODUCTION

Gravity currents, also called density currents, move horizontally due to the difference in density
between the current and the surrounding ambient fluid. Such is the case for example of sea breezes,
dust storms, and the accidental sudden release of heavy gas [1,2]. In the laboratory a standard method
for producing gravity currents is through lock-release experiments in which dense fluid behind a gate
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is suddenly released into the ambient fluid on the other side by rapid vertical extraction of the gate. In
sufficiently long tanks with relatively short locks the typical evolution of the current passes through
three stages: the slumping (or steady-state) regime in which the current nose propagates at constant
speed, the self-similar regime in which the front slows as a consequence of the finite-length lock, and
the viscous regime in which the tangential stress of the tank bottom acting on the fluid significantly
slows the front [3–6]. Of course, if the fluid in the lock is very viscous, one would expect after release
that the current should rapidly enter the viscous regime. This circumstance was examined by Huppert
[5], who derived a differential equation determining the height of the current along its length as it
advanced in time. Assuming the shape was self-similar, he found an explicit analytic expression for
the current height and nose position. His predictions were found to be consistent with experiments
he performed of silicone oil released from a cylinder and spreading axisymmetrically into air.

Motivating the study presented here, we asked how the evolution of a viscous gravity current
would be affected if it could mix with a significantly less viscous ambient fluid. Such mixing, where
it occurs, would reduce the current’s viscosity and so render it susceptible to more mixing. However,
in performing laboratory experiments of glycerol moving into water it was found that, even with
apparently negligible mixing, the current evolved qualitatively differently than would a current of
glycerol moving into air. The current front is found to move at near constant speed for many lock
lengths and then rapidly slows to a near stop. The self-similar power-law behavior associated with
the front position versus time in the buoyancy-inertia regime is not evident.

In Sec. II we review the relevant aspects of the theory for steady inviscid gravity currents and for
viscous gravity currents. After describing the experiment setup in Sec. III, we present the qualitative
and quantitative results for viscous gravity currents in air and water. In Sec. IV we combine the
results of many experiments to form scaling-based predictions of the speed, near-stopping distance,
and entrainment as they depend upon the initial current height relative to a characteristic boundary
layer depth. Based upon these results a conceptual model is developed in Sec. V for Boussinesq
viscous gravity currents released from relatively tall locks. This is shown to capture the key features
of the experiments. The results are discussed in Sec. VI.

II. GRAVITY CURRENT THEORY

The steady propagation speed of inviscid gravity currents was considered first by von Kármán
[7] and then more generally in a seminal paper by Benjamin [3] who used mass and momentum
conservation in a control volume surrounding the current head in a reference frame moving with
the head. In particular, assuming no loss of energy in the ambient fluid flowing toward and over the
current head, and assuming the dense fluid in the lock has the same depth as the ambient fluid (a
“full-depth lock-release” experiment), the current is predicted to propagate at speed

UH =
√

g′H/2, (1)

in which H is the height of the ambient fluid. Because the near-pure glycerol used in our experiments
is 26% denser than fresh water, we define the reduced gravity by g′ = g(ρ� − ρ0)/ρ�, which is
appropriate for Boussinesq and moderately non-Boussinesq gravity currents [8,9]. In this expression,
ρ� is the current density and ρ0 is the ambient fluid density. The height, h, of this energy-conserving
current well behind the head is predicted to be half that of the domain: h = H/2. Thus, in terms of
the current height, the speed is

Uh = 1√
2

√
g′h. (2)

In studies of partial-depth lock-release currents, Shin et al. [10] predicted the current height, h,
should be half that of the depth of the lock fluid and the speed of the front should be

Uh =
√

g′h
√

1 − h/H. (3)
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This differs from the empirical expression found by Huppert and Simpson [11]. But it was found,
within error, to predict the speeds observed in their laboratory experiments. It was suggested that the
discrepancy with the empirical relation was due in part to the challenge in accurately measuring h in
a flow that in fact exhibits mixing over and behind the head due to the turbulent shear at the interface
between the miscible liquids.

Crucial to the predictions of the current speed is the influence of the return flow over the head
whose inertia due to Bernoulli’s principle establishes an adverse horizontal pressure gradient [3,12].
The speed of the return flow over and behind the head is faster if the relative current depth h/H is
larger and so the magnitude of the horizontal pressure gradient over the current increases, slowing
the speed that the current would have if the ambient fluid was effectively infinitely deep. In particular,
for a gravity current in air Huppert and Simpson [11] empirically determined the ratio Uh/

√
gh to

be 1.19 whereas von Kármán [7] used shallow water theory to predict a ratio of
√

2.
If the lock fluid is significantly more viscous than the ambient fluid, then continuity of the shear

stress at the interface between these fluids suggests the vertical shear near the top of the current is
approximately zero [5]. The advance of the current nonetheless is retarded by the action of viscous
stresses resulting from the motion of the current over a rigid bottom boundary. In the limit of a
shallow-water flow in which the viscous boundary layer is assumed to extend through the depth
of the current, the velocity within the current is set entirely by a balance between viscous stresses
and the horizontal pressure gradient, which itself is set by hydrostatic balance. Requiring no-slip
flow at the bottom, where z = 0, and no stress at the top, where z = h, the velocity is found to be [5]

u = −1

2

g′

ν

∂h

∂x
z(2h − z), (4)

in which ν is the kinematic viscosity of the current.
The time evolution of the viscous current is given by the condition for mass conservation [5]:

∂h

∂t
= − ∂

∂x

[∫ h

0
u dz

]
= 1

3

g′

ν

∂

∂x

[
h3 ∂h

∂x

]
. (5)

In particular, for a viscous current produced by release from a lock of height H� and length L�, a
self-similar solution can be found for (5) such that [5]

h(x,t) ∝ t−1/5φ(βxt−1/5) (6)

in which β is a constant depending on g′, ν and the product of the lock height and length, H�L�. The
shape function is

φ(x̃) ∝ (1 − x̃2)1/3. (7)

Thus the current nose [situated where h(x̃ = 1) = 0] is expected to advance in time as xN ∝ t1/5.
We now turn to the examination of the experiments presented herein. We consider a fluid of

kinematic viscosity ν much larger than the viscosity, ν0 of the ambient fluid. But we suppose that
its density, ρ�, is only moderately larger than the ambient fluid density, ρ0. In particular, for our
experiments of near-pure glycerol moving into water, the viscosity ratio is ν0/ν � 0.001 whereas
the density ratio is γ = ρ0/ρ� � 0.79. It is also assumed that the diffusivity, κ , of the viscous
fluid is much smaller than its kinematic viscosity (for glycerol in water, the Schmidt number is
Sc ≡ ν/κ � 1.1 × 103). So diffusion has negligible influence upon the evolution of the currents [13].

After extraction of the gate, the horizontal density gradient between the lock fluid and ambient
fluid acts to accelerate the fluid leaving the lock. Two opposing forces act upon this fluid. One comes
from tangential stresses exerted from the bottom and sides of the tank. Of these, the bottom stress
is ultimately expected to be most significant: as the current advances and its height decreases, the
vertical scale of the current becomes the smallest in the system. However, even this stress takes
time to exert itself through the depth of the current. A simple scaling predicts that after the current
nose has passed a fixed location the viscous boundary layer above that point should grow at a rate
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given by

δ ∼ √
νtN , (8)

in which tN measures the time since the nose passed over that location. If δ is much less than the
current height at the position, then viscosity should not act significantly to retard the advance of the
current nose.

The second force comes from the return flow passing over the advancing current and flowing
toward and into the lock. Because ν � ν0 and ρ � ρ0, the balance of tangential stresses in the
current and ambient fluid acting at the interface between them suggests the vertical shear in the
current near the interface is negligibly small [5]. Thus viscous stresses are likewise negligible.
However, the return flow establishes an adverse pressure gradient along the interface between the
current and ambient fluid. This reduces the total horizontal pressure gradient within the current from
that given by hydrostatic balance alone. Neglecting energy dissipation in the return flow as well as
viscous forces at the bottom and side boundaries, the anticipated current speed is expected to be that
for an inviscid gravity current. That is, for δ 	 z � h, the fluid within the advancing current front is
expected to move at speed Uh given by (3) in which h = H�/2.

Away from the viscous boundary layers, the motion of viscous fluid in the lock is expected to
correspond approximately to that of potential flow such that

(U�,W�) �
(

Uh

x − δ

L�

,−Uh

z − δ

L�

)
. (9)

As the current nose advances from the lock, the viscous boundary layer trailing the nose grows
until δ becomes comparable to h in which case the flow slows over the whole vertical extent of the
current. However, the boundary layer depth is infinitesimally small at the nose itself. And so the
nose is expected to advance at speed close to Uh until the head is depleted of fluid due to viscosity
slowing the fluid behind the head.

Based upon these arguments, an estimate of how high the lock fluid must be in order for the
current it generates to advance at speed Uh is given by a comparison of the current height H�/2 to the
characteristic boundary layer height, δ�, after the current has propagated one lock length at constant
speed Uh. Using (8), we set δ� ∼ √

νL�/Uh. Explicitly the ratio is given by the nondimensional
parameter

R� =
√

αRe/2, with α ≡ H�/L�, Re ≡ Uh(H�/2)/ν. (10)

Here α is the aspect ratio of the lock fluid and Re is the Reynolds number based upon the initial
current height. We refer to the gravity current as being “moderately viscous” if R� is of order unity.

III. EXPERIMENT SETUP AND QUALITATIVE RESULTS

Here we describe the setup of the experiments and the analysis techniques used to measure the
front position and the current height as they evolve in time. From the latter we assess entrainment
by changes to the vertical-streamwise cross-sectional area (the volume per unit width) of the current
over time. The evolution of currents composed of near-pure glycerol moving into water are compared
with classic experiments of glycerol moving into air and of salt water moving into water.

Figure 1 shows a snapshot of an experiment just before it begins. Experiments were performed in
a rectangular glass tank with internal dimensions of length LT = 197.1 cm, width WT = 17.5 cm,
and height HT = 48.6 cm. The side walls and bottom were 1.2 cm thick. The tank was backlit either
with a bank of four horizontally stacked 2-m-long fluorescent bulbs or with two white LED spot
lamps. In either case the light was diffused through two layers of translucent white acrylic sheets
placed against the back wall of the tank. In many experiments a 124-cm-long mirror angled at 36.4◦
from the horizontal was situated above the tank midway along its length thus providing simultaneous
top and side views of an experiment with respect to a camera situated approximately 3 m in front
of the tank and with a lens at the level of the bottom of the tank. For these experiments, the tank
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FIG. 1. Snapshot from an experiment just before gate is extracted. For this experiment the dyed lock fluid
is 99.2% glycerol situated in a lock of width � = 8.3 cm. The ambient fluid to the right of the gate is fresh water
(the superimposed dashed line indicates its surface). The height of both lock and ambient fluids is 19.9 cm. The
angled mirror above the tank gives top views of the ensuing flow between approximately 50 and 130 cm from
the left end of the tank.

was bottom-supported by benches on the left and right ends of the tank, while the middle section
was illuminated from below by a fluorescent light shining on matt-finish Mylar film taped to the
underside of the tank.

A gate was inserted in one of the five pairs of 0.1-cm-thick vertical glass guides. Foam tape
around the edges of the gate ensured a good seal with the tank side walls and bottom so that fluid
would not pass around or below the gate between the lock and ambient fluid. A viscous liquid of
density ρ� and viscosity ν� was added to the lock to a predetermined depth, H�. In some experiments
up to 20 drops of food colouring were added to the lock fluid in order to distinguish it from the
clear ambient fluid. In most cases the lock fluid was near-pure or diluted glycerol. Its density was
measured to five-digit accuracy with a densitometer (Anton Paar, DMA4500). From the density
measurement, the viscosity was estimated by a cubic spline interpolation of values of viscosity
versus density of glycerol as tabulated in Ref. [14]. The viscosity of glycerol decreases significantly
as it becomes diluted, dropping by nearly half of its pure value if its concentration is 96%. While
this is disadvantageous for many studies of viscous flows, we use glycerol here in part to examine
the positive feedback whereby possible mixing around the current head may reduce its viscosity thus
further enhancing mixing.

After the glycerol was added to the lock, time was given for any bubbles entrained into the glycerol
during the filling process to rise to the surface (up to an hour for near-pure glycerol). Meanwhile,
ambient fluid of density ρ0 < ρ� and viscosity ν0 	 ν� (typically fresh water) was added to the right
of the gate. In full-depth lock-release experiments, the ambient fluid was added to the height, H = H�,
of the lock fluid. In partial-depth lock-release experiments, the ambient was filled to depth H > H�

and ambient fluid was slowly added above the glycerol to a total lock height moderately smaller
than H , set so that the hydrostatic pressure at the bottom was the same on either side of the gate
(accounting for the fact, for example, that pure glycerol is about 26% more dense than fresh water).

Movies of the experiment were taken with a digital camera (Canon Rebel T3i) at a resolution of
1980 by 1080 pixels per frame and recorded at 29.97 frames per second. These were cropped and
converted in MPEG movies at 24 frames per second that were then processed using MATLAB to
extract snapshots, create horizontal time series, and perform analyses to find the current height along
its length at each time during the current’s evolution. The typical pixel resolution was 0.1 cm/pixel in
the horizontal and vertical. However, the actual resolution is closer to twice this value due to filtering
in the camera and conversion to MPEG format.

As an example of these analysis methods, Fig. 2 shows side-view snapshots of the classic
experiment in which a rectilinear viscous gravity current collapses into air. After rapidly advancing
from the lock in the first second its progress slows significantly. At all times the current height
increases monotonically from the nose to the lock end of the tank. Indeed, the current height along
its full length is well predicted by the formula for a self-similar gravity current according to (7). The
dotted curve in the bottom image of Fig. 2 is the plot of h(x) = h0[1 − (x/xN)2]1/3 with h0 = 3.2 cm
and xN = 82 cm.

034101-5



SUTHERLAND, COTE, HONG, STEVERANGO, AND SURMA

t = 0 s

t = 0.5 s

t = 1 s

t = 1.5 s

t = 2 s

t = 2.5 s

t = 3 s

FIG. 2. Snapshots taken from an experiment with 99.2% glycerol collapsing into air [17]. Initial conditions
are H� = 19.9 cm, L� = 8.3 cm, ρ� = 1.2590 g/cm3, and ν� = 10.40 cm2/s. Only the leftmost 97 cm of the
tank is shown, and all but the top image shows the bottom 9 cm. The times of each snapshot are indicated at the
upper right of each frame. The dotted red line superimposed on the bottom image plots the shape predicted for
a self-similar viscous current given by (7).

The corresponding horizontal time series is constructed by taking horizontal slices through
successive snapshots at a pixel location corresponding to 0.1 cm above the bottom of the tank.
The result is shown in Fig. 3(a). The regular horizontal banding in this image is due to a strobing
effect between the frequency of the lighting and the camera frame rate. Using image-processing
techniques, these horizontal bands and the vertical features (due to the glass guides for each lock
and other irregular marks near the tank bottom) can be filtered out so that the distance of the gravity
current nose from the gate can be tracked in time. This curve, denoted by xN(t), is indicated by the
white dashed line in Fig. 3(a) and is graphed as a log-log plot of position versus time in Fig. 3(b). The
jagged features of this curve at times before 0.5 s are a consequence of the pixel and time resolution.
Such resolution limitations are not an issue after 0.5 s. In particular, it is clear that a few seconds
after release the front advances according the predicted power law xN ∝ t1/5.

That the shape of the current and its advance agree well with the theory for one-dimensional
(spanwise infinite) viscous gravity currents provides good evidence that viscous stresses at the side
walls of the tank do not play a significant role in affecting the front’s advance.

In comparison, we show snapshots and time series for an experiment of 99.2% glycerol collapsing
into fresh water, the initial setup for which is shown in Fig. 1. The reduced gravity of the current is
g′ = g(ρ� − ρ0)/ρ� � 0.21g, in which g is gravity. Hence the speed of the current is expected to be
about 45% that of the corresponding gravity current collapsing into air. For this reason, the snapshots
in Fig. 4 are shown every second, whereas those for the gravity current in air are shown every half
second in Fig. 2. These snapshots clearly show that the evolution of the current is qualitatively
different. Whereas the height of the gravity current in air monotonically increases from nose to tail
for all times, shortly after release the gravity current moving into water develops a clearly defined
elevated head such that the current height reaches a maximum moderately behind the nose. The
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FIG. 3. (a) Horizontal time series constructed from successive horizontal slices taken 0.1 cm above the
bottom of the tank for the experiment with snapshots shown in Fig. 2. The superimposed white dashed line
indicates the measured front position. (b) Log-log plot of corresponding front position versus time. The offset
dashed line with one-fifth slope is that predicted for viscous gravity currents [4,5]. Note that the horizontal
banding in (a) is due to a stroboscopic effect between the camera’s frame rate and the 60 Hz background
lighting used in this experiment.

current height decreases behind the head and then increases again, albeit slowly, along the tail to the
lock end of the tank. The elevated head persists though its height and length decrease as the gravity
current propagates along the bottom until time t � 6 s when the head flattens and the current as a
whole adopts the approximate shape of a wedge. Although this shape monotonically increases from
the nose to the tail, its structure is not that given by the formula (7) for self-similar viscous gravity
currents. For example, superimposed on the bottom image is the height predicted for a self-similar
gravity current using h0 = 2.4 cm for the depth at the lock end of the tank and xN = 125 cm for the
nose position. The height of the actual current is well below this curve over three fourths of its length
behind the nose. This suggests that near the current’s front viscous forces dominate over buoyancy
forces manifest through horizontal pressure gradient forces set by hydrostatic balance.

The corresponding top-view snapshots in Fig. 5 show that the front is nearly uniform across the
span of the tank with some evidence of the viscous no-slip condition of the side walls extending
about a half-centimeter inwards from each wall. There is no evidence of lobe-and-cleft instabilities
developing along the front as has been observed for high Reynolds number gravity currents [15].

The horizontal time series is constructed from snapshots of this experiment by taking slices 0.1 cm
above the bottom of the tank. This reveals that the advance of the front position is also qualitatively
different from that of a gravity current moving into air. As shown in Fig. 6, the front advances as far
as 60 cm (seven lock lengths) from the gate with little deceleration. Indeed, even though the initial
current speed is less than half that of the corresponding gravity current in air, comparison of Fig. 4
and Fig. 2 at t = 3 s shows that the nose of the gravity current in water is close to the position of the
nose of the gravity current in air. Although the speed of the latter is initially much faster, it rapidly
slows down, whereas the current in water advances at near-constant speed.

Also different from a gravity current in air, the advance of the front does not enter into the regime
where xN ∝ t1/5, as predicted for a self-similar current in the viscous-buoyancy regime. Instead the
speed of the current rapidly decelerates almost to zero around t = 7 s. It is at this time that the
elevated head of the current has flattened out and, as argued above, viscous forces near the current
front dominate over buoyancy forces. Although it appears to stop, the nose nonetheless advances
slowly: it travels the remaining 80 cm to the end of the tank over tens of minutes while the current
height gradually flattens out along its length.
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t = 0 s

t = 1 s

t = 2 s

t = 3 s

t = 4 s

t = 5 s

t = 6 s

FIG. 4. As in Fig. 2 but showing snapshots taken from an experiment of near-pure glycerol collapsing into
water having initial condition shown in Fig. 1 [17]. The time t = 0 is taken to be when the gate has been lifted
halfway out of the lock and just before the viscous fluid begins to slump out of the gate. Only the leftmost
130 cm of the tank is shown, and all but the top image show the bottom 10 cm. The dotted red line superimposed
on the bottom image plots the shape predicted for a self-similar viscous current given by (7).

Entrainment into the gravity current was examined in one set of experiments by allowing
potassium permanganate crystals to settle and partially dissolve on the bottom of the tank in
the ambient fluid of fresh water several lock lengths ahead of the gate. Of the two experiments
shown in Fig. 7, the left column of snapshots shows the advance of a salt-water gravity current
(ρ� = 1.14 g/cm3, ν� = 0.014 cm2/s) whereas the right column shows the advance of a nearly pure

t = 2 s

t = 3 s

t = 4 s

FIG. 5. Top views of the experiment with side-views shown in Fig. 4 as seen at t = 2, 3, and 4 s from the
angled mirror above the tank between 50 cm and 140 cm from the lock end of the tank. Superimposed black
arrows point to the location of the front at midspan in the tank.
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FIG. 6. (a) Horizontal time series and (b) front position as in Fig. 3 but shown for a gravity current moving
into water, with corresponding snapshots shown in Fig, 4. The dashed line with one-fifth slope is drawn to
indicate that the front does not enter the classical viscous regime for any appreciable time.

glycerol gravity current (ρ� = 1.26 g/cm3, ν� = 10.6 cm2/s). The dye is carried into the salt-water
current from below whereas for the glycerol current the dye is swept up and over the current without
entraining into the head. A top view (not shown) of the glycerol experiments reveals that the crystals
themselves move little from their original positions at the bottom of the tank. These observations
suggest that there is no lubrication layer of fresh water that is drawn under the viscous gravity current.
Rather, as in the case of a viscous gravity current in air, the head rolls out like an unfurling carpet
with flow near the top of the head advancing to the nose where it comes into contact with the bottom.

From side-view snapshots of the current at successive times, using MATLAB we track the interface
between the current and ambient fluid by setting an intensity threshold to be the ambient fluid intensity
less 10% of the intensity difference between that of the ambient fluid and of the current well below
the interface. Thus at each time we measure the current height h(x,t). The algorithm fails at early
times within the lock region due to viscous fluid running down the side walls of the tank after the

t = 1 s t = 1 s

t = 2 s t = 2 s

t = 3 s t = 3 s

FIG. 7. Snapshots at times t = 1, 2, 3 s from experiments with salt water advancing into water (left column)
and nearly pure glycerol advancing into water (right column) [17]. Each frame shows a window extending
between 20 and 90 cm from the lock end of the tank and extending 10 cm from the bottom in full-depth
lock-release experiments with total depth 20 cm. Potassium permanganate crystals are placed along the bottom
of the tank over the range indicated by the dotted lines in the top two panels. The experiments compare how dye
from the partially dissolved crystals is carried by the currents in each circumstance. In all images the intensity
has been adjusted to enhance the contrast between the current (medium gray) and potassium permanganate
(black).
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FIG. 8. For the experiment with snapshots shown in Fig. 4. (a) Time series of measured current height as
function of time and distance from the gate, (b) height profile of the current at t = 6.7 s, and (c) area of the
current as function of time. In (c) the dotted line indicates times where the computed area is not reliable due to
difficulty in tracking the current height in the lock at early times.

bulk of the lock fluid has rapidly descended and moved out of the lock. The algorithm can also give
erroneous values in regions where the current passes by the five sets of glass guides on the side walls
of the tank. These errors are removed and replaced by smoothed values through the application of
MATLAB’s smoothing function “rlowess.”

An example of the measured along-current height versus time is shown in Fig. 8. The time-series
plot in Fig. 8(a) clearly shows the advance of an elevated head behind the current nose, with the head
height decreasing in time until the current height is monotonically decreasing all the way from tail
to nose. It is at this time that the front comes to a near stop at t = 6.5 s. The height profile at this
time is shown in Fig. 8(b).

At each time for which the height profile is found, we integrate over the entire length of the current
to find its area (volume per unit width). In the absence of entrainment this area should be equal, within
measurement errors, to the area of the lock fluid, A� = H�L�. The corresponding plot of relative
current area versus time is shown in Fig. 8(c). The plot is drawn as a dotted line for the first quarter
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FIG. 9. Front position versus time in experiments with H� � 20 cm and L� = 8.3 cm and with lock fluids of
different densities and viscosities. The horizontal position ahead of the gate is given relative to the lock length,
L�, and time is given relative to the time for a full-depth lock-release energy-conserving gravity current with
speed UH to travel one lock length. The diagonal dashed black line shows the predicted front position for a
current moving at constant speed UH . The meaning of the colored lines are indicated at the upper left of the plot,
and the corresponding viscosities and values of Re and R� are indicated toward the right of each curve. Note
that the dotted curve, corresponding to 64% glycerol, underlies the blue curve for salt water almost everywhere
along its length.

of the time, as a reminder that these values are unreliable due to measurement errors associated
with viscous fluid sliding down the side walls of the lock shortly after release of the current. What
is clear from this plot is that about 2 s after release the area of the current varies little even as the
nose advances and the head height decreases. For times between 1.9 � t � 2.1, the relative area is
1.05 ± 0.01 whereas the final relative area is 1.090 ± 0.005. This indicates there is relatively little
mixing into the current head as it propagates far from the lock.

IV. QUANTITATIVE RESULTS

Here we present the results of the analyses for a range of experiments of Boussinesq and moderately
non-Boussinesq gravity currents moving into fresh water. The experiments reported upon include
the classical case of a salt water current as well as currents composed of glycerol with concentrations
between 64% and 99.2%. Experiments with full- and partial-depth locks of different lengths are
examined.

First we compare how the position of the front versus time depends upon the fluid viscosity
in full-depth lock-release experiments. For each of the plots shown in Fig. 9, the corresponding
lock height and length of the experiments were fixed at H� = H = 20(±0.1) cm and L� = 8.3 cm,
respectively. Time is normalized in this plot using the predicted energy conserving gravity current
speed given by (1).

In the case of a near-saturated salt-water current (ρ� = 1.14 g/cm3), the front initially moves at a
speed 16% below the predicted speed of an energy conserving gravity current. As is well established,
the front slows after moving beyond 6–10 lock lengths as a consequence of transitioning into the
self-similar regime [6]. While in this regime the current reaches the end wall of the tank a distance of
23 lock lengths from the gate. That viscosity plays a negligible role over this distance is anticipated
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FIG. 10. As in Fig. 9 but showing the front position for experiments with nearly pure glycerol released from
locks with different heights and lengths as indicated at the top. In experiments with H� � 16 cm, the ambient
fluid height is H = 20 cm; in experiments with with H� � 7.9 cm, the ambient fluid height is H = 10 cm. The
values of R� are indicated near the end points of each corresponding plot. Time is normalized using the predicted
speed, Uh, for energy-conserving partial-depth lock-release gravity currents.

from the high Reynolds number (Re � 1.9 × 104) and the large ratio of current height to the boundary
layer depth given by (10): R� � 152.

The front position of a viscous gravity current having a 64% concentration by mass of glycerol,
after rescaling time by L�/UH , is found to follow almost the same curve as that of a salt-water
current even though its viscosity is 10 times larger. Discrepancies begin to become apparent when
the viscosity becomes larger than 0.5 cm2/s (50 cS). In the case of 80% glycerol, the current begins to
slow more than the salt water current over the last fifth of the tank. In the cases with 90% (ν = 320 cS)
and 99.2% (ν = 1057 cS) glycerol, the current comes to a near stop before reaching the end of the
tank. Nonetheless, even in these last two cases the initial relative current speed is close to that of
salt water. This is anticipated because R� � 6 even for the case of near-pure glycerol. That is, the
boundary layer extends over a relatively small fraction of the current after it has propagated a distance
of one lock length.

We now turn to examine the evolution of the front position in experiments with near-pure glycerol
but with different lock heights and lengths. In all plots of Fig. 10 time is scaled by the current speed,
Uh, predicted by (3) with h = H�/2, which accounts for the speed of energy-conserving partial depth
as well as full-depth lock-release currents. Explicitly Uh = [g′H�(2 − H�/H )]1/2/2. The case of a
full-depth lock release of 99.2% glycerol in a lock of height H� = 20 cm and length L� = 8.3 cm
is reproduced as the solid line in Fig. 10. In this case the initial speed over the first lock length is
(0.79 ± 0.02)Uh. In the case of the four partial-depth lock-release experiments for which H� � 0.8H ,
the initial speeds of the currents are found to be (0.30 ± 0.02)Uh, which is significantly smaller than
the predicted energy-conserving speed.

A quantitative comparison of the initial speeds in all experiments is shown in Fig. 11, which plots
against R� [given by (10)] the ratio of the observed speed to that predicted by (3). These clearly show
a sharp drop in the relative speed as R� drops below �5.

While the initial speed may not be significantly influenced for currents with R� ranging from 1.1
to 3.1, the near-stopping distance is sensitive to the values of the lock height and length. As a crude
estimate of the near-stopping distance, we suppose the current front moves at constant speed Uh until
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FIG. 11. Measured initial speed of the current front relative to the predicted energy-conserving speed plotted
against the current-to-boundary layer height parameter, R�. Circles (squares) denote full-depth (partial-depth)
lock-release experiments.

coming to a near stop at a distance Xs from the lock end of the tank. Stopping occurs because the
boundary layer depth extends over the full depth of the current everywhere along its length. Thus we
approximate the height of the current with distance Xs − x behind the front to be proportional to the
boundary layer depth such that h(x,ts) ∝ (ν(Xs − x)/Uh)1/2, in which ts denotes the near-stopping
time. Neglecting entrainment into the head, we equate the area under h(x,ts) to the area of the lock
fluid, A� ≡ H�L�. Thus we predict that the near-stopping distance is given approximately by

Xs ∝ (
UhA�

2/ν
)1/3

. (11)

Figure 12 plots the ratio of the measured near-stopping distance X�
s to the right-hand expression

of (11). With over a decade of values of R�, we find the ratio is approximately constant suggesting
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FIG. 12. Measured near-stopping position of the current front relative to the estimated near-stopping scale
(11) plotted against R�.
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FIG. 13. Net entrainment into current measured through the relative increase in area of the current at the
end of an experiment compared with the initial lock area, A0 ≡ L�H�. Circles (squares) denote full-depth
(partial-depth) lock-release experiments.

a semiempirical prediction for the near-stopping distance to be

Xs = (2.8 ± 0.4)
(
UhA�

2/ν
)1/3

. (12)

Finally, by determining the height of the gravity current as it evolves over time, we construct an
indirect measure of entrainment by finding how the vertical cross-sectional area (volume per unit
width) of the current increases compared with the initial area A� = H�L� of fluid in the lock. The
area measured when the current comes to a near stop is plotted for different experiments in Fig. 13.
For moderately viscous gravity currents with R� � 10, the area increases by less than about 10%
of its original area. However, entrainment is substantially larger in experiments with R� � 20. In
those experiments the current propagated to the end of the tank without slowing to a near stop, and
the area was computed at the time when the front reached the end of the tank. In a longer tank, the
entrainment coefficient is expected to be larger still since the current would continue to entrain while
propagating in the self-similar regime.

V. CONCEPTUAL MODEL

We have found that moderately viscous gravity currents with R� � 10 are not self-similar and that
their advance into an ambient fluid of comparable but smaller density is influenced by the return flow
into the lock. Such dynamics make it challenging to develop an analytic model describing the flow
evolution, not least because of the complicated nature of viscous flow near a corner [16]. Instead,
here we develop a conceptual model that attempts to capture the evolution of the gravity current
head including only those physical processes suggested by the behavior observed in laboratory
experiments. The numerical solution of the resulting model equations is computed in less than 10 s,
which is significantly faster than solving the fully nonlinear equations of motion.

A. Model equations

Our focus is to model the structure and advance of the current head for moderately viscous gravity
currents whose initial advance is affected primarily by the return flow and not the viscous boundary
layer at the bottom. Rather than model the dynamics of the return flow moving into the lock and
impacting the lock end of the tank, we initialize the simulations at a time when the front is already
situated approximately one lock length from the gate. This time we denote by τ = 0. Explicitly, as a
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model initial condition we set the height of the current along its length to be a power law of the form

h(x,τ = 0) = h0[1 − (x/L0)2]p, (13)

in which 0 < p < 1 and the coordinates are set with x = 0 at the lock end of the tank. This form,
which mimics the structure of a classic viscous gravity current [5] with the choice p = 1/3, has the
property that h(0,0) = h0, ∂xh(0,0) = 0 and the front becomes vertical asymptotically as x → L0.
The last condition is required because the viscous boundary layer at the front, initially growing with
distance behind the nose as (ν(L0 − x)/U0)1/2, is likewise vertical at the front. We choose h0 = H�/2,
consistent with the theory for energy-conserving partial-depth lock-release gravity currents which
predicts that the current height behind the head should be half the lock height. The initial current
length, L0, is given by the condition that the area of the current at τ = 0 equals the lock area, A�.
Explicitly,

L0 = A�

[
h0

√
π

2

�(p + 1)

�(p + 1/2)

]−1

. (14)

Assuming the current moves at constant speed U0 from the time of lock release to time τ = 0, we
can relate the virtual time τ to the time t in experiments approximately by t = τ + t0, in which
t0 ≡ (L0 − L�)/U0 is the effective start time of the simulations with respect to the time when the
fluid is entirely inside the gate.

We assume that the initial boundary layer thickness, η(x,τ = 0), is everywhere much smaller
than the current height, with the exception of the current front at x = L0, which is a singular point.
Explicitly, we take the boundary layer depth to be like that due to an impulsively started infinite plate
beneath a viscous fluid:

η0(x) ≡ η(x,τ = 0) =
{

2
√

νt0 = 2
√

ν(L0 − L�)/U0, 0 � x � L�

2
√

ν(L0 − x)/U0, L� < x � L0

. (15)

The horizontal flow well above the boundary layer is prescribed so that it smoothly transitions from
that of potential flow inside the lock to near-uniform flow outside. Explicitly we set the horizontal
flow at z = h to be

Uh(x,τ = 0) = U0 tanh(x/L�), 0 � x � L0. (16)

So that it is straightforward to transition between the description of vertical profiles of the flow from
circumstances where η 	 h to where η ∼ h, we set

u(x,z,τ = 0) =
{

Uhz(2η − z)/η2 0 � z � η

Uh η < z � h
, (17)

in which h, η and Uh are given by the initial values prescribed, respectively, by (13), (15), and (16).
This form of the horizontal velocity field ensures u = 0 at z = 0 and ensures zero stress at the top
of the boundary layer (so that ∂u/∂z = 0 at z = η). The horizontal velocity is assumed to have the
form of (17) at all times such that the time evolution of u is prescribed by changes in h, η, and Uh

with the condition η � h for all time. When the boundary layer fills the current depth (η = h), the z

dependence of u is that given by Huppert [5] except that here Uh depends upon its evolution from
that given by (16) rather than upon a balance between viscosity and the hydrostatic pressure gradient.

With these prescribed initial conditions, the evolution of the current is set by the condition for
mass conservation and the growth of the viscous boundary layer in time. Explicitly the boundary
layer depth is advanced in time according to

∂η

∂τ
=

√
ν

t0 + τ
. (18)
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If after this time advancement the resulting boundary layer depth η exceeds the current height h,
then the speed at z = h is adjusted to be Uh → Uhh(2η − h)/η2 and η is then set equal to h. Hence,
given the current velocity, the height behind the nose changes in time according to

∂h

∂τ
= −∂F

∂x
(19)

in which the volume flux per width, F , is given by the integral

F ≡
∫ h

0
u dz = Uh(h − η/3). (20)

This equals 2Uhh/3 where the boundary layer has grown to the height of the current. The current
front is assumed to advance at speed Uh(x = xN,τ ) until all the fluid in the current head is consumed
in the boundary layer.

Because the stress of the ambient flow upon the viscous current is negligible, the return flow
passing over the current plays no role in the evolution of the current other than setting its initial
maximum flow speed, U0, as a consequence of pressure gradients set up by the speed of the return
flow passing over the current. The speed of the return flow is set by the condition for mass conservation
assuming a rigid, free-slip surface condition: ur (x,z,τ ) = −F/(H − h) for h < z � H and x < xN.
The ambient flow is assumed to be zero for x > xN.

B. Numerical implementation

The equations above are discretized on a staggered finite-difference grid. The current height, h,
and boundary layer height, η, are represented by N + 1 equally spaced points in the horizontal on
the “regular grid” from x = 0 to x = xN, corresponding to a horizontal resolution of � = xN/N .
The current speed, Uh, and volume flux per width, F , are represented on the “staggered grid” by N

equally spaced points ranging between �/2 to xN − �/2.
The average of the neighboring values of h and η are used in (20) to compute F . Neighboring

differences of F are then used to compute ∂h/∂t on the regular grid for � � x � xN − �. Under
the assumption of no horizontal flow at x = 0, the change in height at x = 0 is taken to be
−F |x=�/2/(�/2). With the assumption that the current front advances in a small time �τ to xN + �N

with �N = Uh�τ , the change in height at x = xN is set by volume conservation so that

∂h

∂τ

∣∣∣∣
xN,τ

= 1

�τ

[
(1/8)�h|xN−�,τ + F |xN−�/2,τ�τ

]/
(�N + �/2). (21)

Given ∂h/∂τ, h is advanced to time τ + �τ on the regular grid. The grid is then rescaled to extend
from x = 0 to xN|τ+�τ

by N + 1 points, and linear interpolation is used to represent h on this new grid
specifying h = 0 at xN|τ+�τ

. Likewise, the boundary layer depth is interpolated onto this new grid.
The velocity field may then be defined on the rescaled staggered grid according to (17) and (16) using
the updated values of h and η. Likewise the volume flux is computed on the rescaled staggered grid.
As a diagnostic, the ambient flow above the current on the rescaled staggered grid is −F/(H − h).

The code iterates through this procedure, computing the change in time to h and η, advancing these
fields with an area-conserving nose condition, recomputing h, η by interpolation onto the rescaled
regular grid and then recomputing F on the rescaled staggered grid.

C. Results

Figure 14 shows snapshots from a simulation initialized with the parameters of the experiment
shown in Fig. 4. As with this experiment, the model is initialized with a gravity current having
viscosity ν� = 11 cm2/s and density ρ� = 1.26 g/cm3 originating from a full-depth lock of height
H� = H = 20 cm and length L� = 8.3 cm. The current propagates into water of viscosity 0.01 cm2/s
and density 0.998 g/cm3. The simulation starts at the effective time t0 = 0.335 s. The initial current
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FIG. 14. Horizontal velocity of current and return flow computed from the conceptual model with initial
conditions determined from those of the experiment shown in Fig. 4. In each plot, the height of the current is
indicated by the solid white line and the white dashed lines indicate the height of the viscous boundary layer.
Only half the vertical extent of the domain is shown. The color scale for horizontal speed in all plots is given
in the upper-right corner of (a). Color is plotted only between the lock end of the tank and the current nose.
Beyond, the ambient fluid is assumed to be stationary and not included in the model.

height is given by (13) with h0 = H�/2 and p = 1/4. The corresponding initial length of the current
is L0 = 19.0 cm.

While the flow near the lock end of the tank shallows faster than observed, the simulation does
reproduce the formation of an elevated head that advances rightward decreasing in maximum height
until the current comes to a near stop after τ = 4.2 s (t � 4.5 s) at xN = 150 cm. Despite the crude
approximations of the model, the simulated near-stopping time and distance are comparable to those
observed in the experiment.

VI. DISCUSSION AND CONCLUSIONS

Laboratory experiments show that a viscous gravity current of glycerol flowing into water evolves
qualitatively differently from that of a viscous gravity current flowing into air. While the latter adopts
the monotonic self-similar shape predicted by (7) and its nose advances as a one-fifth power of time,
a viscous gravity current in water has a nonmonotonic shape with a head that is elevated above the
trailing current and whose nose advances at near-constant speed until the head flattens out and the
current comes to a near stop.

The explanation for this evolution, supported by a conceptual model, is that the return flow into
the lock sets up an adverse pressure gradient that retards the advance of the current. This builds up
a current head whose depth is significantly larger than the boundary layer depth behind the nose.
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Because the viscous stresses are negligible over the top of the head, the fluid in the current above
the boundary layer is free to advance without the influence of viscous forces to slow it down. Like
an unfurling carpet, this fluid moves toward the nose where it comes into contact with tank bottom,
thereafter lying within the viscous boundary layer behind the nose. In this way the freely flowing fluid
in the head above the boundary layer becomes lost to the boundary layer. Correspondingly the head
height decreases until it flattens out at which time the viscous boundary layer extends over the depth
of the current along its whole length. Being formed in this way, the current has an approximate wedge
shape when the head flattens: there is no steep rise of the current height immediately behind the nose
as is the case for self-similar viscous gravity currents. Thus near the nose viscous forces dominate
over buoyancy forces manifest through horizontal pressure gradients establish by hydrostatic balance.
It is for this reason that the current comes to a near stop.

These proposed dynamics inspired classification of the importance of viscosity upon the initial
current speed in terms of the ratio R� of the initial current depth to the characteristic boundary layer
depth, which itself is related to the Reynolds number and the aspect ratio of the fluid in the lock.
The speed was found to slow substantially if R� � 5. Likewise, the proposed dynamics were used to
formulate a semiempirical prediction (12) for the distance at which the current comes to a near stop.
Entrainment into the current was estimated by comparing the volume per width of the current when
it comes to a near stop (or reaches the end of the tank) to the volume per width of fluid initially in
the lock. Entrainment was found to be relatively small if R� � 7, in which case the area increased
by less than 10%. In comparison, the increase was between 40% and 100% if R� � 20.

This idealized study demonstrates that the theory of Huppert [5] in the specific case of lock-release
viscous gravity currents well predicts their evolution only if their density is much larger than the
ambient fluid into which it propagates so that the ambient fluid always plays a passive role from
initial release to consequent evolution. If the ambient fluid has comparable density to the lock fluid,
then the return flow into the lock non-negligibly influences the structure and speed of the current at
early times and consequently changes the evolution of the current at moderate times thereafter.
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