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ABSTRACT

Two mechanisms are proposed whereby internal gravity waves (IGW) may radiate from a linearly unstable
region of Boussinesq parallel flow that is characterized in the far field by constant horizontal velocity and Brunt—
Viisild frequency. Through what is herein referred to as “‘primary generation,”” IGW may be directly excited
by linear instability of the initial-state parallel shear flow. Characteristically, these waves propagate with hori-
zontal phase speed and wavenumber equal to that of the most unstable mode of linear stability theory. Through
the second mechanism, referred to as *‘secondary generation,”” IGW may be excited via nonlinear modification
of the initial instability into a form that couples strongly to a large amplitude outgoing internal wave field. The
authors propose that the primary generation of IGW may occur provided a penetration condition, which is derived
on the basis of linear theory, is satisfied. The penetration condition provides a limit on the growth rate of a
disturbance of any particular frequency that is capable of propagating into the far field. This hypothesis is
supported by a sequence of representative nonlinear numerical simulations in two spatial dimensions for both
free mixing layer and jet flows with horizontal velocity profiles U(z) = tanh(z) and U(z) = sech?(z), respec-
tively. For the purpose of these analyses, the fluid density is taken to be such that the square of the Brunt—
Viisili frequency is given by N*(z) = J tanh®(z/R). Such stratification allows both for the development of
large-scale eddies in the region of low static stability and, in the far field where N* = J is positive and approx-
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imately constant, for the radiation of a broad frequency spectrum of IGW.

1. Introduction

The momentum deposition associated with the
“‘breaking’’ of internal gravity waves (hereafter re-
ferred to as IGW) in the middle and upper atmosphere
is believed to constitute a significant forcing of the
mean flow, as first pointed out by Hines (1960) and
Hodges (1969) and further examined by Lindzen
(1981). In the absence of internal wave forcing, for
example, Geller (1983) has shown through numerical
experiments that the extrema of temperature at the sum-
mer and winter stratopause/mesopause are Overpre-
dicted. Irregular motions such as the equatorial quasi-
biennial oscillation are also understood to be driven in
part by mixed Rossby—IGW that originate in the tro-
posphere (Lindzen and Holton 1968; Holton and Lind-
zen 1972; Takahashi and Holton 1991). Recent anal-
yses of observational data by Nastrom and Fritts
(1992) and Fritts and Nastrom ( 1992) have attempted
to identify the various tropospheric sources of IGW.
The most intense source of mixing according to these
analyses is by IGW generated by topographic forcing.
They showed, however, that IGW that radiate from
convective or frontal systems or from instabilities of
the jet stream may also be responsible for large vari-
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ances in the observed mean zonal and meridional ve-
locity fields and in the mean temperature field. The
mechanism by which IGW are generated by stratified
flow over surface topography has been examined in
detail by many authors, including Lilly ( 1971), Peltier
and Clark (1979), and Durran and Klemp (1987).
Though recent progress has been made in the under-
standing of the mechanism by which IGW are gener-
ated by convective mixing (Clark et al. 1986; Fovell
1992), the efficient generation of IGW by nonstation-
ary sources such as wind shear has never been clearly
demonstrated. Indeed, the analysis of Mclntyre and
Weissman ( 1978) has often been misconstrued as im-
plying that linear parallel shear instability cannot lead
to the direct emission of such waves.

The possible excitation of IGW by eddies that de-
velop in an unstable shear layer has been examined
previously in the context of linear theory by Drazin et
al. (1979), who classified as “‘unbound’’ those (neu-
trally stable ) modes that propagate at infinity and are
modified by shear. Their analysis included an exami-
nation of IGW modified by coupling with unstable
modes of the Bickley jet and hyperbolic tangent shear
layer in fluid with ¥V ? constant. However, these authors
focused primarily on the nature of modes with hori-
zontal phase speeds greater than the maximum velocity
or less than the minimum velocity of the parallel flow.
Such waves clearly cannot be generated spontaneously
by instability processes (Howard 1961 ). Fritts (1982)
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FiG. 1. Vertical profiles of (a) horizontal velocity U(z) and (b) squared Brunt—Viisili frequency N*(z)
and local Richardson number. The jet flow profile (solid curve) is of the Bickley form, sech®(z), and the
shear flow profile (dashed curve) is of the form tanh(z); N” is given by J tanh?(z/R) in which the case J
= 0.1 and R = 3 is shown above (solid curve). The local Richardson number calculated for this form of N?
is shown for the jet (dashed curve) and the shear (dot—dashed curve).

examined various unstable modes of hyperbolic tan-
gent shear flow with N? constant and showed that one
family of such modes is vertically propagating above
the shear layer. The growth rate of these modes is much
smaller than that of the most unstable mode, however,
and there is the important issue as to whether any sig-
nificant IGW radiation may be excited in this circum-
stance. Since a direct linear mechanism for emission
appeared not to be available, a number of nonlinear
mechanisms have been proposed by Fritts (1982, 1984)
and Chimonas and Grant (1984), for example,
whereby propagating disturbances may be excited by
resonant interaction with Kelvin modes of similar
wavelength. The nonlinear generation of IGW by sub-
harmonic excitation, such as vortex pairing, was in fact
proposed earlier by Davis and Peltier ( 1979). Recently,
however, in the context of a sequence of high-resolu-
tion numerical simulations, Sutherland and Peltier
(1994 ) observed the radiation of large amplitude IGW
on the flanks of a jet flow in fluid with variable N*(z;
J, R) [Jand R are constant parameters—see Eq. (1)].
These waves were apparently directly excited in some
parameter regimes as a consequence of linear instabil-
ity of the basic state, while in other parameter regimes
emission was observed to occur through nonlinear
mechanisms.

Since the initial intrusion of waves into a statically
and dynamically stable region constitutes a linear pro-
cess, linear theory may be employed to predict the con-
ditions under which the incident waves may pass un-
retarded through the region. Some new results from
linear theory applied to an unstable parallel flow of
Boussinesq fluid with constant horizontal velocity U,
and Brunt—Viisilid frequency N.. above some level z;
are presented in section 2. Therein, a ‘‘penetration con-
dition’’ is derived that we propose may be used to dis-

tinguish two mechanisms by which radiating waves
may be generated.

As pointed out by McIntyre and Weissman ( 1978)
and Davis and Peltier (1979), the generation of IGW
by eddies that develop from instability of the mean flow
might be expected to involve nonlinear interactions,
and there is some question as to the extent to which
linear theory may be applicable. For this reason, the
nonlinear evolution of two-dimensional unstable jet
flows and shear flows in variable N fluid will be herein
simulated numerically, the results of which are pre-
sented in section 3. The vertical profile of horizon-
tal velocity of the jet flow will be taken as U(z)
= sech?(z) (the so-called Bickley jet) and the shear
flow considered here will be of the tanh(z) form. The
velocity profiles for these flows are shown in Fig. la.
As in Sutherland and Peltier (1994 ), the vertical vari-
ation of background density is taken to be such that N2
is of the nondimensional form

N%*(z) = Jtanh*(z/R), (D)

in which R is the scale of the density variation and J
is a characteristic value of N?. The vertical profile of
N? is the solid curve shown in Fig. 1b for a particular
choice of parameters. This form is deliberately chosen
so that eddies may develop in the region of low static
stability and force IGW in the ambient stratified fluid.
It is a particular example of the profile for N? consid-
ered by Lott et al. (1992), who found analytical ex-
pressions for the marginal curves of hyperbolic tangent
shear flow. In Sutherland and Peltier (1994), it is ar-
gued that initial mixing processes in shear flows in the
atmosphere may naturally adjust the background den-
sity variation so that N? becomes small over the vertical
extent of the layer. If the large-scale forcing that orig-
inally induced the shear layer was to reinforce it fol-
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lowing an initial episode of mixing, then the initial con-
ditions that we assume for our analyses would be en-
tirely expected.

Numerical simulations have been conducted using
the above set of initial conditions for two jet flows, for
which the penetration condition is not satisfied (is sat-
isfied) by the most unstable mode of linear theory, and
therefore, IGW are not expected (are expected) to be
excited directly by the instability. In both cases, wave
packets of IGW with approximately the same horizon-
tal wavenumber and phase speed as the most unstable
mode of linear stability theory are observed to propa-
gate vertically away from either flank of the jet. The
energy of the radiating waves is equally partitioned be-
tween kinetic and available potential forms, a feature
that is characteristic of neutrally propagating waves.

The results for these jet simulations are compared
with corresponding simulations for shear flow. In one
case, the most unstable mode does not satisfy the pen-
etration condition and the intrusion into the far field of
IGW of the same horizontal wavenumber as the most
unstable mode is not observed. Instead, waves with
twice the horizontal wavelength are observed to radi-
ate, corroborating the viability of the nonlinear gener-
ation mechanism first suggested by Davis and Peltier
(1979). In a second simulation of shear flow, the pen-
etration condition is satisfied by the most unstable
mode and waves of the same horizontal wavelength as
the most unstable mode continuously radiate away
from the region of strong shear. In this case it is shown
that the energy density of radiated waves and the ver-
tical flux of horizontal pseudomomentum across a fixed
level outside the mixing region are significantly larger
than those of the other three cases investigated. In par-
ticular, we believe this last case to be representative of
many realizable atmospheric flows and that intense
emission of this kind may explain the source of much
of the IGW activity that is actually observed in the
middle and upper atmosphere.

2. Linear theory

The governing equations of the linear stability prob-
lem are expressed in nondimensional form with respect
to characteristic length and velocity scales £ and %,
respectively. Here ¥ may be identified with an appro-
priate measure of the depth over which the velocity of
the jet or shear layer varies, and % may be identified
with the maximum velocity of the flow. The horizontal
velocity u and vertical velocity w are then expressed in
nondimensional form by the substitutions u — %u and
w — %w. In the Boussinesq approximation, the back-
ground density is assumed to vary on a length scale &
> #. The density fluctuation field p' is expressed in
nondimensional form by the substitution p’ = (% po/
#)p' in which p, is a measure of the background den-
sity at some reference level.

It is now well known that a flow with vertical profile
of horizontal velocity U = U(z) and of density
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p = p(z) may give rise to the growth of unstable per-
turbations, the necessary condition for linear normal
mode instability being given by the so-called Miles—
Howard theorem (Miles 1961; Howard 1961). This
seminal result follows through consideration of the sta-
bility of a two-dimensional, stratified flow in the Bous-
sinesq approximation to small perturbations in velocity,
pressure, and density. These perturbations may be de-
noted by u’, p’, and p’, respectively. Since the flow is
two-dimensional, we may express the x and z compo-
nents of the velocity perturbation in terms of deriva-
tives of a streamfunction (x, z). For the purpose of a
conventional modal stability analysis, the disturbance
may be assumed to be periodic in the streamwise di-
rection allowing ¢ to be resolved into Fourier compo-
nents with horizontal wavenumber «, (possibly com-
plex) phase speed ¢, and amplitude that varies with z.
Explicitly, ¢/(x, z) = ¢(z) exp[ia(x — ct)]. Substitut-
ing these quantities into the basic equations of motion
and keeping only first-order terms, it is found that the
complex amplitude ¢(z) satisfies the classical Taylor—
Goldstein equation (e.g., see Drazin and Reid 1981,
section 44.2):

¢" + y'p =0, (2)

in which
. N2 B ﬁ” B
T (U=-¢)* (U-c)

Y a’. (3)
Here N is the Brunt—Viisili frequency, defined as N’
= —J(dp/dz) in which J = (g/# )( ¥ 19)? is the bulk
Richardson number and g is the acceleration due to
gravity. It is supposed that the flow is stably stratified
so that N* is everywhere nonnegative.

Methods for the solution of the eigenvalue problem
posed by Egs. (2) and (3), along with suitable bound-
ary conditions, have been discussed by many authors
(e.g., Drazin and Reid 1981), and it is not the focus of
the analysis to be presented herein. Rather, we consider
the form of the eigenfunction over a vertical range in
which U(z) and N?(z) are constant and we examine
the condition that this form imposes on the sus-
tained radiation of IGW. Supposing U(z) = U, and
N?*(z) = N§ are constant over a range 7 € [z,, 2,1, then
(2) is the wave equation with solution

d(z) = Ce" + C_e 0%, (4)

in which C. are constants and the vertical wavenumber
Yo, from Eq. (3), is defined by

N§

—t 2
We—cr * o

Y=
Anticipating the imposition of boundary conditions, the

branch of the square root defining vy, is taken so that

arg(yo) € (0, 7]. (6)
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For neutral waves (for which ¢ is real), Eq. (5) is
the dispersion relationship for internal gravity waves in
a nonrotating Boussinesq fluid, usually written in the
form

2% = Ni cos?0, (7)
in which cos’® = a?/(a® + y}) and Q* = a*(U,
—¢)?. In this form, @ represents the angle that the
wavenumber vector makes with the horizontal and (2
= a(c — Uy) is the Doppler-shifted frequency of the
wave with respect to the background flow. By conven-
tion it is assumed that « is positive and ) is positive
for ¢ > U,. If = N, so that y} = 0, then v, is real
[by Eq. (6), v, = 0] and Eq. (4) represents a general
propagating wave solution. If €2 > N, so that y§ < 0,
then vy, is pure imaginary (the root lying in the upper
half complex plane) and Eq. (4) corresponds to a su-
perposition of two evanescent waves. If the amplitude
of the waves grows in time, then ¢ and hence 7y, will,
in general, have both real and imaginary parts. Explic-
itly, the vertical wavenumber in the range [z;, z;] may
be written in the form y, = v, + ivo;-

With these comments in mind, the propagation of
IGW is considered in a flow that is unbounded above
and for which, above some level (say, z = z;), the
horizontal velocity U = U.. and the Brunt— Viiisili fre-
quency N = N.,, are constant. This region will be re-
ferred to hereafter as %,, consistent with the nomen-
clature in Mclntyre and Weissman (1978). (The ar-
guments that follow may easily be extended to the case
of downward penetration of waves into a region of con-
stant U and N? that is unbounded below.) In what fol-
lows, it will be unnecessary to specify whether or not
the flow is bounded below, and no particular form for
either U(z) or N*(z) will be assumed for the region
below z;, though the background flow below 2, is as-
sumed to be unstable and thus capable of generating
disturbances in £, spontaneously. Because of the
choice of branch cut in the definition of y, [Eq. (6)],
it is clear that the form of a linear normal mode in %,
is given by Eq. (4) with C_ = 0. This follows by re-
quiring that |¢(z)| is bounded (does not diverge for
large z) when v, is complex and by the requirement for
upward energy propagation if 7y, is real. Drazin et al.
(1979) refer to the latter case as ‘‘unbounded.”” As a
simple corollary, since yy is positive definite for an
unstable mode (for which ¢ is complex), it is con-
cluded that all unstable modes are bounded. Only neu-
tral modes for which € < N.. (corresponding to prop-
agating wave disturbances) are unbounded.

In developing a condition for sustained radiation into
%, due to an instability below %, with phase speed ¢
= ¢, + ic;, McIntyre and Weissman ( 1978 ) developed
the phase speed condition (referred to hereafter as the
PSC) requiring that U.. — No/a < ¢, < U. + N./a for
some wavenumber a > (). They further estimated the
length scale L (the penetration depth) of penetration of
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the instability into %, as a function of the growth rate
Q,’ = 0, by

119,
a 0,

L=

(8)

This upper bound leads the authors to conclude that the
development of disturbances which satisfy the PSC are
apparently trapped (as opposed to the real trapping of
waves not satisfying the PSC) during the linear growth
stage. Even in cases for which the PSC is satisfied, they
propose that a nonlinear treatment would be required
to judge the effectiveness of an instability as a radiator.
This conclusion may be overly pessimistic, however,
since a detailed analysis of the dispersion relationship
for growing disturbances leads us to define a penetra-
tion condition that is a generalization of the PSC and
that, we demonstrate, does indeed predict the effect-
iveness of wave radiation by unstable growing modes
on the basis of linear theory. The penetration condition
is derived in what follows.

A measure of the intrusion into %, of IGW of ver-
tical wavenumber v, and penetration depth 1/y; may
be provided by & = v,/v;, referred to hereafter as the
penetration ratio (which is the ratio of the length scale
on which the amplitude of the wave in %, will be di-
minished by a factor e to the wavelength of the wave).
We note that Z is positive (negative) if the horizontal
component of the phase speed of a growing wave in
R, 1s less than (greater than) the speed of the back-
ground flow in %,. This result follows from the con-
dition for upward energy propagation. If |2 | > 1, the
penetration condition is said to be satisfied and, since
the disturbance is associated with some undulant ver-
tical motion over one penetration depth, it is supposed
that waves radiate significantly into 2, . Together with
the form of the dispersion relation for temporally grow-
ing disturbances, the penetration condifion imposes a
restriction on the growth rate for radiating waves.

Dividing Eq. (5) by a* we obtain

2
o P

=2 (9)

in which I' = y,/a. Expanding Eq. (9) for complex I
and {2 and matching real and imaginary parts, it is clear
that

2z =2 B -1 (10)
and
, .9
l",l",—=—N;IQ'4. (11)

Assuming that the intrusion of IGW into #, is a linear
process, & can be found in terms of the frequency and
growth rate of the wave by dividing Eq. (11) by Eq.
(10) to obtain
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P*—-2B9 - 1=0, (12)

in which

R A
=- —|QP*-Q2+ Q). (i3
- 20,9,.(1\&,'9' ‘ ) ()

Explicitly solving Eq. (12) for &, we have the roots

%D, =B+VB?+ 1. (14)

If B> 0 (B < 0), the penetration condition is %,
>1(9. < —1),and |2.| = 1if and only if B = 0.
For finite and nonzero €2, and §};, the critical con-
dition B = 0 is equivalent to
1
N2
which implicitly defines the critical growth rate €2; for
IGW radiation as a function of the Doppler-shifted fre-
quency f2,. The square of the critical growth rate is
shown by the heavy curve in Fig. 2. Also shown in Fig.
2 are curves for which |%| = 2 and 3, the curves
asymptotically approaching the {27 axis in the range 0
<, < J"Y for successively larger values of |Z|.
Where | 2| > 1 in Fig. 2, values of Q, and €, are such
that B < 0 (B > 0) if the product Q,£}; > 0 (Q,Q;
< 0). The dotted line extending from the peak of the
curve | 2| = 1 to the Q? axis represents values of ()}
= 1(Q7 + 1) for which the penetration ratio is greatest
for a disturbance of a given growth rate. From Fig. 2,
limits on the growth rate and frequency of radiating
waves are apparent. Internal waves do not radiate into
4R, if the rate of growth of the disturbance exceeds 0.,
= N../8"?. The frequency corresponding to this maxi-
mum is N..(3/8)". Furthermore, if €, is larger than
N.., no growing disturbances radiate, which is just the
condition of the frequency limit for evanescent waves.
Based on these arguments, means are examined by
which IGW radiate into %, from eddies below %,
which arise due to linear instability of a basic-state par-
allel flow. If the wavelength, frequency, and growth
rate of the perturbation to the horizontal flow are such
that the penetration condition |Z| > 1 is satisfied in
A, , then IGW that radiate in this way are referred to
hereafter as primary internal gravity waves. If the con-
dition is not satisfied, however, IGW may nevertheless
be generated by eddies that develop nonlinearly to a
state such that the frequency and growth rate of the
disturbances extending into %, may satisfy the pene-
tration condition. For example, Davis and Peltier
(1979) suggested that vortex merging processes might
effectively give rise to disturbances of longer wave-
length and thereby lead to the emission of internal wave
radiation into the far field of a shear layer. Also, Fritts
(1984 ) and Chimonas and Grant (1984) have exam-
ined the possibility for ‘‘envelope radiation’’ by exci-
tation of a propagating mode through resonant inter-
action of two growing modes in a resonant triad. Nei-

22+ Q) —Q2+ Q7 =0, (15)
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FiG. 2. Contours of the penetration ratio | #| as a function of the
squared frequency and growth rate of a disturbance into a region of
constant N* = J. The dark contour corresponds to |Z| = 1, which
determines the fastest growth rate of the disturbance of a given fre-
quency. The dotted line represents those values of 2] for which the
penetration ratio is greatest for disturbances of a given growth rate.

ther of these analyses recognized the importance of the
N?*(z) profile in enhancing the strength of the emission
mechanism, and only weak excitation was obtained. In
the simulations that follow we demonstrate a third non-
linear mechanism for wave radiation whereby waves
subharmonic to eddies are excited even though large-
scale vortices do not merge. Hereafter, IGW that radi-
ate as a consequence of nonlinear interactions in an
initially linearly unstable mean state are referred to as
secondary internal gravity waves. Though many non-
linear mechanisms for propagating wave excitation,
such as those mentioned above, have been proposed,
we believe that the generation of intense primary IGW
emission is demonstrated here for the first time.

3. Nonlinear simulations

Nonlinear simulations restricted to two spatial di-
mensions are performed for unstable jet and shear flows
in variable N* fluid. The first set of simulations will
focus on the so-called Bickley jet for which the vertical
profile of horizontal velocity is given by U(z)
= sech?(z). The linear stability of the Bickley jet in
uniformly stratified fluid has been the subject of many
studies (e.g., Hazel 1972; Sutherland and Peltier 1992)
and the nonlinear evolution in two dimensions of the
Bickley jet flow with both uniform and variable N* has
recently been investigated by Sutherland and Peltier
(1994). In the second set of simulations to be discussed
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F1G. 3. The penetration ratio & (solid line) as a function of the bulk Richardson number J. Gradations of
& are shown on the left vertical axis of both plates. The values are calculated for the structure on the upper
flank of the most unstable mode of shear flow with horizontal velocity profile U = tanh(z) and with (a) N*

= Jtanh?(z/R)and R = 5 and (b) N* =

J constant. In (a), the penetration condition is satisfied for J

> (.391 as indicated by the dotted lines, though in (b) the penetration condition is not satisfied for any value
of J. Also represented by the dashed line is the growth rate {2, of the most unstable mode as a function of
J. Gradations of }; are shown on the right vertical axis of both plates.

herein, the evolution of a hyperbolic tangent shear layer
(the so-called free mixing layer) will also be consid-
ered. The linear stability and two-dimensional nonlin-
ear evolution of this flow in stratified fluid such that N*
is large in the region of maximum shear has also been
the subject of numerous studies (Hazel 1972; Pierre-
humbert 1984; Klaassen and Peltier 1985; Smyth and
Peltier 1989, 1993). The detailed nature of the internal
wave critical layer in the hyperbolic tangent shear flow
with constant N? has recently been considered by Lott
and Teitelbaum (1992).

In simulations of the evolution of the Bickley jet in
constant N2 fluid (with N* nondimensionalized so that
the flow is unstable for N? < 0.127), Sutherland and
Peltier (1994) have shown that large-scale eddies are
strained for N? as small as 0.005. Radiation of IGW
was observed in simulations for N* = 0.02, although
the eddies that developed in the simulation were
strained to small scale so that forcing of IGW on the
flanks of the jet was weak and the amplitude of the
waves was small.

To allow for the development of large-scale eddies,
N? is required to be small over a vertical range includ-
ing the inflection points in the horizontal flow. In order
to support the radiation of IGW in a broad frequency
range, however, N? is required to be large on either
flank of the jet. Therefore, a suitable profile for the
square of the Brunt—Viisilid frequency that satisfies
these criteria is given by Eq. (1): N*(z) = J tanh*(z/
R). Here J is the bulk Richardson number, equal to the
value of N? in the far field, and R is an adjustable length
scale. Qualitatively, a background density distribution
that gives rise to an N2 profile of this form may occur
as a consequence of mixing processes. Because large-

scale vertical motion is inhibited in the region of en-
hanced N?, eddies that develop in the region of strong
shear are confined to a waveguide whose vertical extent
is determined by R. The background profiles of U(z)
and N*(z) for these archetypal flows are presented in
Fig. 1. Tests of the robustness of the simulations in
terms of the ability of these initial states to generate
IGW of significant amplitude have been carried out for
00l <J<landforl <R < 10.

Linear stability analysis applied to these background
profiles also provides a useful theoretical framework in
which to compare the predicted characteristics of grow-
ing disturbances that do propagate into a region of con-
stant N* and U. Specifically, because N” is depressed
in the region of large velocity variation, provided R is
sufficiently large, the growth rate of the most unstable
mode should not vary significantly over a large range
of J in comparison with the penetration ratio 9. We
examine this hypothesis in detail for shear flow with
mean horizontal velocity U(z) = tanh(z) and, in case
(a), N*> = J tanh?(z/5), and, in case (b), N* = J
(constant). In case (a), for J ranging from 0 to 1, we
calculate the growth rate of the most unstable mode and
the corresponding penetration ratio in the far field on
the upper flank of the shear. These quantities are shown
in Fig. 3a. Over the range of J shown, the growth rate
decreases slightly and monotonically from 0.19 to 0.16
and therefore, according to Eq. (8), the estimate for
the penetration depth of the disturbance increases only
moderately, implying no significant radiation into the
far field. In contrast, the penetration ratio increases
from 2 = 0, in which case disturbances are strongly
trapped, to & =~ 2.35, in which case primary IGW are
generated. In case (b), for J ranging from 0 to 0.25,
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9 and (), are calculated for the most unstable mode as
in case (a). These quantities are shown in Fig. 3b. In
this case, the growth rate decreases from 0.19 to 0,
which, according to Eq. (8), corresponds to an infinite
increase in penetration depth. Nonetheless, it is well
known from simulations of shear flow in constant N*
fluid (e.g., Smyth and Peltier 1989) that no significant
generation of IGW occurs in this case, and so the pen-
etration depth is an inappropriate measure of the ability
for the flow to radiate. Over the same range of J in this
case, however, & is much smaller than 1 and so the
penetration condition is not satisfied for any J, a result
consistent with observations. This example clearly il-
lustrates the usefulness of the penetration ratio that we
have defined in providing a prognostic assessment of
the effectiveness of a linear instability as an IGW ra-
diator.

The numerical model to be employed for the nonlin-
ear simulations to be discussed in what follows is based
on the methodology developed by Smyth and Peltier
(1989) for the study of the evolution of Kelvin—Helm-
holtz and Holmboe waves. The evolution of the flow
in two spatial dimensions is represented using the prim-
itive equations for incompressible, Boussinesq fluid in
a horizontally periodic channel with free-slip upper and
lower boundary conditions. The nondimensional form
of the fully nonlinear equations, in two spatial dimen-
sions, for momentum conservation and for the conser-
vation of internal energy are, respectively,

Du 1

== =pl4 =P 16

Dt P ReVu (16)

Dw 1

— e :_ f+_ 2 ]

TR (17
and

Dp’ N? g

—r _ = +

TR A A (18)

in which D/Dt = 8/dt + u-V is the material deriva-
tive. The Reynolds number is Re = %.¥/v, in which
% is the maximum velocity of the initial state back-
ground flow, % is a characteristic measure of the jet
width or shear layer depth, and » is the kinematic vis-
cosity. The Prandtl number is Pr = v/« in which x is
the thermal diffusivity. The pressure fluctuation p ' is
the total pressure less the pressure p(z) that is in hy-
drostatic balance with the background density p(z).

For the purpose of numerical integration of (16)—
(18), it is convenient to evolve the flow using the vor-
ticity—streamfunction representation since the model
then reduces to the evolution equations for two coupled
fields, namely, w and p’. The vorticity equation that
follows from Eqgs. (16) and (17) is

(19)
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in which w = u, — w, is the spanwise component of
vorticity. The components of the velocity vector may
be calculated from the streamfunction, which is itself
found by inverting the elliptic differential equation:

Vi = —w. (20)

Diffusion in the model is enhanced at small scales
to a degree that is determined by the Reynolds number
and the Prandtl number. The simulations to be de-
scribed here are performed with a moderately high
Reynolds number, Re = 600, and with Pr = 1. Vertical
motion is damped near the upper and lower boundaries
of the channel by inserting a “‘sponge’” layer in which
the kinematic viscosity is gradually enhanced. Specif-
ically, over the top and bottom 15% of the domain, Re
is taken to decrease linearly from its middomain value
to 1 at the boundaries. The inclusion of such damping
into the model is sufficient to eliminate the reflection
of small amplitude disturbances. Simulations are ad-
vanced in time only until vertically propagating waves
of nonnegligible amplitude are incident on the damping
region,

The most unstable mode of linear theory for the ini-
tial state background flow is determined through the
application of a Galerkin stability analysis employing
finite Re and Pr (e.g., Klaassen and Peltier 1985). This
analysis is performed on domains of sufficient spatial
scale and high resolution that the predicted growth rate
is relatively insensitive to any further increase in either
of these quantities. The most unstable mode, which is
normalized so that the maximum vertical velocity of
the perturbation is initially set to be 0.05%, is super-
posed on the background fields of density and horizon-
tal velocity, and a small amplitude random component
is added across the wavenumber spectrum. To ensure
that the growth rate ¢ predicted by linear theory is ad-
equately reproduced, the predicted growth rate is com-
pared to the initial growth rate o, of the perturbation
determined in simulations by examination of the initial
change in perturbation energy E'. Specifically, o is
compared with o, = ;E'(dE’/dt) and, in practice,
agreement is generally found to within 5%.

In order to solve the model equations, the fields w
and p' are decomposed into horizontal spectral com-
ponents and vertical derivatives are represented using
a second-order accurate centered finite-difference
scheme. Time stepping is achieved through application
of the second-order accurate leapfrog scheme with an
Euler backstep taken at regular intervals to eliminate
splitting errors. To ensure that the results are not sen-
sitive to resolution, simulations were performed for
channels of varying width and the model equations
were integrated with varying spatial and temporal res-
olution. The horizontal and vertical extents of the chan-
nel are assumed to have the nondimensional scales L,
and L., respectively. The centerline of the jet and the
inflection point of the shear flow are each set to cor-
respond with the midpoint of the channel.
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In the simulations for which results will be reported
below, the horizontal extent of the channel was ad-
justed to allow the growth of two wavelengths of the
most unstable mode of linear theory so that subhar-
monic pairing of the finite-amplitude form of the most
unstable mode is not precluded a priori. In the discus-
sion that follows, a disturbance that propagates with the
same horizontal wavenumber as the most unstable
mode is said to be associated with a mode of wave-
number 2. Similarly, a subharmonic disturbance with
horizontal wavelength twice that of the most unstable
mode is said to be associated with a mode of wave-
number |.

a. An overview of the simulations

Though we have found IGW to be generated in sim-
ulations of jet and shear flow with the above described
initial conditions for a large range of the parameters J
and R, the waves are excited through different mech-
anisms. To examine in detail the ways in which IGW
develop and propagate, four specific cases are analyzed
below. The characteristics and results of those simu-
lations are summarized briefly in Table 1. In two cases,
the evolution of jet flow is studied for moderate and
large bulk Richardson number. Here J is sufficiently
small in the first case that the penetration condition is
not satisfied and J is sufficiently large in the second
case that the penetration condition is satisfied. Simi-
larly, in two studies of the evolution of shear flow, J
is sufficiently small (large) that the penetration is not
satisfied (is satisfied).

In the case we shall refer to as J1, simulations of
jet flow are performed for the choice of parameters J
=0.1 and R = 3. Table 1 shows that |%| < 1 on the
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upper flank for the most unstable mode (and similarly
|%| < 1 on the bottom flank ) and so the penetration
condition predicts that the radiation of neutrally prop-
agating IGW, if it occurs, must be a nonlinear process.
We also note here that the PSC in this case is not
satisfied and so waves of the same frequency as the
growing normal mode are evanescent in the far field.
In Fig. 4, the vorticity (panels a and b) and pertur-
bation density (panels ¢ and d) fields are shown at
times t = 100 and 200 during the simulation. The vor-
ticity fields are displayed over the vertical range —5
= z = 5 in order to better reveal the detailed structure
of the eddies in the region of the flow with enhanced
shear, and the zero contour is shown in bold to reveal
the emission of IGW from eddies in the mean flow
that are confined to the waveguide where N is small.
At time ¢ = 100 the large-scale eddies maintain a hor-
izontally periodic symmetry, though this symmetry is
broken somewhat at t = 200. The perturbation density
fields are shown over the full vertical extent of the
domain, including the damping regions near the
boundaries that extend from —40 = z = —28 and 28
=< z =< 40. The figure demonstrates that IGW persist
and propagate upward even when eddies evolve into
small-scale structures through wave—mean flow inter-
action. At r = 200, IGW of wavenumber 2 are ob-
served to have propagated upward and downward, the
two wave packets being centered about z ~ +20.
Though the flow does radiate waves, a fact which
seems to contradict the predictions of the penetration
condition, the disturbance is not evanescent in the far
field and must therefore be associated with a fre-
quency different from that of the most unstable mode.
We conclude that the generation of these waves in-
volves a nonlinear mechanism and the waves them-

TABLE 1. A brief summary of the results of four nonlinear simulations. The most unstable mode characteristics are given
with respect to a stationary frame of reference; & is the penetration ratio.

Most unstable mode
characteristics (z = ()

Simulation label
and flow parameters

Comments

JI: Jet flow a = 0.95
J=10.1 w, = 0.430
= 0.150
D = -0.20

S1: Shear flow a = 0.49

J=01 w, = 0.0
R=3 w; = 0.180

9 =0.16

J2:  Jet flow a=1.13
J=1.0 w, = 0.609
R=35 w; = 0.130
D =-292

$2:  Shear flow a = (L6]

J=1.0 w, = 0.0
R=35 w; = 0.160

P =235

PSC and penetration condition are not satisfied
weak radiation of wavenumber 2
APE > KE in far field

PSC and penetration condition are not satisfied
radiation primarily of wavenumber 1
APE = KE in far field

PSC and penetration condition are satisfied
radiation of wavenumber 2
APE = KE in far field

PSC and penetration condition are satisfied
strong radiation of wavenumber 2
APE = KE in far field
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b) J1, t=200.0: ®
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FiG. 4. Vorticity fields of jet flow for J = 0.1 and R = 3 at times (a) t = 100 and (b) 200
shown for —5 < z < S. The horizontal extent of the computational domain is twice the wavelength
of the most unstable mode of linear theory. In (a), contours are set at 0 and £0.4. In (b), contours
are set at 0, 0.1, and +0.2. Positive (negative ) contours are solid (dashed) curves and the zero
contour is shown in bold to enhance the details of the IGW radiation. Even at late times, pairing
is inhibited between large-scale vortices of like sign. Fluctuation density fields are shown at times
(c) 1= 100 and (d) 200 over the full vertical extent of the domain. Contours are set at £0.05,
+(.15, and *=0.25 in both plates. Positive (negative) contours are solid (dashed) curves. These
plates show wave radiation from the top and bottom flank of the jet with downstream phase tilt.

selves must be secondary IGW according to the pre-
vious discussion.

As in case J1, in S1 the evolution of the hyperbolic
tangent shear layer is studied for parameters J = (.1
and R = 3. For this case, the penetration condition is
not satisfied, and so we predict that the radiation of
waves may occur only due to nonlinear interactions.
The vorticity and perturbation density fields from sim-
ulations for S1 are shown in Fig. 5 at times ¢ = 100
and 200. Panels (a) and (b) show the vorticity field
over the vertical range —5 < z < 5, and panels (¢) and
(d) show the perturbation density field over the full
vertical extent of the channel —80 =< z < 80, including
the boundary damping region that extends from —80
< z <= —56 and 56 < z < 80. At time ¢ = 100, the
propagation of a wavenumber 2 disturbance into the
more strongly stratified fluid on either flank of the shear
layer is suppressed. At time ¢ = 200, however, a sec-
ondary wave of horizontal wavenumber 1 develops

from the eddies of wavenumber 2 on either side of the
shear layer. The IGW are not retarded in this case and
rapidly propagate vertically away from the shear layer.
In comparison with IGW that radiate from the jet, the
backward tilt of the phase lines of IGW that radiate
above the shear at ¢+ = 200 is in accordance with the
upstream phase speed of waves with respect to the
background flow. This simulation demonstrates a novel
nonlinear mechanism whereby IGW may be generated
in a stratified, parallel flow. The mechanism is similar
to that suggested by Davis and Peltier (1979), who
proposed that IGW may be generated by a vortex pair-
ing process. In this simulation, however, large-scale ed-
dies near the critical layer do not entirely merge during
the emission process. The IGW appear to be generated
through subharmonic excitation by large-scale, hori-
zontally periodic eddies. Consistent with the predic-
tions of the penetration condition, waves excited in this
manner are secondary IGW.
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b) S1, t=200.0: ®
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FIG. 5. Vorticity fields of shear flow for / = 0.1 and R = 3 at times (a) ¢ = 100 and (b) 200 shown
for —5 < z < 5. The horizontal extent of the computational domain is twice the wavelength of the
most unstable mode of linear theory. Contours are set at (.1, 0.3, 0.5, 0.7, and 0.9 in both plates.
Fluctuation density fields are shown at times (c¢) + = 100 and (d) 200 over the full vertical extent of
the domain. Contours are set at =0.1, =0.3, 0.5, and *0.7 in both plates. Positive (negative)
contours are solid (dashed) curves. At ¢t = 100, the development of waves that radiate with horizontal
wavenumber 1 and retrograde phase tilt is apparent at this time even though the eddy energy is
resolved primarily in the wavenumber 2 mode. At 1 = 200, a wave packet of horizontal wavenumber
| propagates vertically away from the mixing region although the large-scale vortices in this region

have not merged.

If the bulk Richardson number is larger on the flanks
of the jet or shear layer, then the penetration condition
| 2| > 1, where 9 is given by Egs. (12) and (13),
can be satisfied by a larger class of IGW and, in par-
ticular, primary generation of IGW may be more likely
to occur. This hypothesis is investigated by performing
simulations for the choice of parameters J = | and R
= 5 for both jet flow (case J2) and shear flow (case
S2). The bulk Richardson number is such that waves
of frequency less than unity may radiate into the far
field. In both cases, therefore, the frequency of the most
unstable mode with respect to the asymptotic flow is
well within the limit for propagating waves. Further-
more, the growth rate of the most unstable mode is such
that the penetration condition is satisfied in both cases,

and therefore the primary generation of IGW is ex-
pected to occur.

The vorticity and perturbation density fields at times
¢ = 50 and 100 for J2 are shown in Fig. 6. The vertical
extent of the domain ranges from —5 =< z < 5 for the
vorticity fields, and the domain of the perturbation den-
sity fields is shown ranging from —40 < z < 40. The
outward propagation of IGW with large vertical wave-
number radiating from large-scale vortex centers is ap-
parent in this case from the zero contour shown in bold
in panels (a) and (b). The waves persist and propagate
outward even when the vortex cores weaken signifi-
cantly at time ¢ = 100. We have found that the phase
speed of the waves in the far field corresponds with
that of the initial mode of instability, which supports
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b) J2, t=100.0: ®
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FiG. 6. Vorticity fields of jet flow for J = 1.0 and R = 5 at times (a) r = 50 and (b) 100 shown
for =5 =< z < 5. The horizontal extent of the computational domain is twice the wavelength of
the most unstable mode of linear theory. In (a), contours are set at 0 and *+0.5. In (b), contours
are set at 0, 0.1, and +0.2. Positive ( negative ) contours are solid (dashed) curves, and the zero
contour is shown in bold to enhance the details of the IGW radiation. Fluctuation density fields
are shown at times (c) + = 50 and (d) 100 over the full vertical extent of the domain. Contours
are set at 0.05 (solid curve) and —0.05 (dashed curve) in both panels. These panels show wave
radiation from the top and bottom flank of the jet with downstream phase tilt. The intensity of
wave radiation from the mixing region appears to reduce at later times as the flow stabilizes.
Nonetheless, waves continue to propagate outward even when the vortices in the central region

of the jet weaken.

the prediction of the penetration condition that the
disturbance in the far field is composed of pri-
mary IGW.

Similarly, the vorticity and perturbation density
fields at times ¢ = 50 and 100 for S2 are shown in Fig.
7. The figure demonstrates strong and continuous wave
radiation, although it is apparent in panels (a) and (b)
that the entrainment of fluid into the mixing region
gives rise to strong baroclinic torques.

In all four simulations, though the nature of the
radiating wave field may be quite different near |z|
= R at later times, a study of the vertical profiles of
Reynolds stress, KE, and APE in section 3¢ demon-
strates that the waves that radiate in the far field prop-
agate outward and are unlikely to be affected by
subsequent nonlinear developments in the mixing
region.

b. Diagnosric analyses of the characteristics of the
emitted waves

At fixed times in each of the simulations we have
examined, the horizontally averaged wave kinetic en-
ergy (KE) and available potential energy (APE) are
calculated. These are defined, respectively, by

(KE), =3 (u'> + w'), (21)

and

(APE), = -

‘]_2 12
(o)

in which w’' = w is the vertical velocity field and u’
= u — (u), is the horizontal velocity of waves super-

(22)
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FiG. 7. Vorticity fields of shear flow for J = 1.0 and R = 5 at times (a) r = 50 and (b) 100
shown for —5 < z < 5. The horizontal extent of the computational domain is twice the wavelength
of the most unstable mode of linear theory. Contours are set at =0.2 and 0.6 in both plates.
Positive (negative) contours are solid (dashed) curves. Fluctuation density fields are shown at
times (c¢) t = 50 and (d) 100 over the full vertical extent of the domain. Contours are set at 0.1
(solid curves) and —0.1 (dashed curves) in both plates. Though the eddies in the mixing region
are not well resolved, simulations at double resolution also reproduce the strong and continuous

emission of IGW that emanate from the mixing region for the times shown.

posed on the background (horizontally averaged ) flow.
The above expression for wave APE is exact only in
regions of the fluid in which N? is constant. Since the
primary interest of this study concerns the energetics
of waves that exist in the region of enhanced N° ~ J
in the far field, Eq. (22) together with (21 ) can be taken
to be an accurate measure of the energy of the IGW.
For plane IGW in nonrotational, inviscid fluid with
constant N?, it is well known that energy is equiparti-
tioned over the KE and APE forms (e.g., Gill 1982,
section 7.8 ). The Reynolds number is sufficiently large
in simulations presented here that the analysis of the
energetics of radiating disturbances may reasonably be
compared with the energetics of plane IGW in inviscid
fluid. This provides a useful characterization of the
waves observed in the far field at late times in each
case study.

The vertical transport of momentum is characterized
by the horizontal average of the Reynolds stress

T=(u'w =2 (UWp),

n=1

(23)

which is the sum of contributions to the vertical trans-
port by waves of horizontal wavenumber n. More ac-
curately, at each time ¢ the vertical flux of horizontal
pseudomomentum %y ( z; 1) may be calculated accord-
ing to the formulas given by Shepherd (1990). How-
ever, in the far field (and in particular for |z| = 10)
negligible differences were found between 7 and
throughout all four simulations, a consequence of the
fact that the vertical shear of the horizontal mean flow
vanishes.

By symmetry, the total momentum conceivably
available for upward vertical transport across a fixed
level z = z; > 0 from the initial basic state is given by

M, =_f U(z)dz. (24)
0
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With zo = 10, My = 1.0 for jet flow and M; = —9.3
for shear flow. (In practice, the inflection points of the
jet are situated at vertical levels where N is finite and
therefore the mean flow may become Richardson num-
ber stable after the flow evolves nonlinearly for some
time. The total momentum available, which we have
defined above for jet flow, in this sense overestimates
the actual momentum that may be imparted to the ra-
diating wave field). The pseudomomentum flux may
be integrated in time to give the total vertical transport
of horizontal pseudomomentum over the duration of
each simulation. We define the ratio

]
=— | Fulzp; t)dt 25
77 MT l”(zo ) ( )
as a reasonable measure of the efficiency of wave ra-
diation.

¢. Results of the diagnostic analyses

The results of these diagnostic analyses applied to
the simulations described in section 3a are discussed in
detail below. For purposes of an initial comparison,
Table 2 summarizes some of the more relevant results
for cases J1 and S1 at times ¢t = 100 and 200, and for
cases J2 and S2 at times ¢ = 50 and 100. The table
gives the horizontally averaged KE and APE evaluated
at a vertical level z,,, which corresponds approximately
to the center of the region of apparent wave propaga-
tion on the top flank of the jet/shear layer. Explicitly,
the value of z,, is the greatest height at which the con-
tribution to the Reynolds stress is a maximum. This
height is generally coincident with the level at which
the wave energy density is greatest. At late time in sim-
ulation S1, energy in wave APE form is greater than
the wave KE. In simulations J1, J2, and S2, however,
the peak values of wave KE and APE are comparable,
which is a property characteristic of plane IGW, as pre-
viously mentioned. That the energy distribution of KE
and APE is not equal in case S1 is an indication that
the wave field is not composed of the superposition of
neutrally propagating plane waves.

In order to measure the relative efficiency by which
radiating waves transport momentum vertically from
the source region in the mean flow, the mean vertical
flux of horizontal pseudomomentum across a level z;
= 10 is calculated throughout each simulation. The
pseudomomentum flux as a function of time is shown
for all four cases in Fig. 8. The figure shows that waves
propagating upward from the jet (shear layer) carry
forward (backward) momentum with respect to the
mean flow at z; consistent with the tendency for waves
to accelerate (decelerate) the background flow in the
far field. In cases J1 and S1, pseudomomentum is car-
ried across the vertical level z = z, in pulses and for
late times must be associated with disturbances excited
by eddies in the mixing region and not with the initial
linearly unstable mode. In contrast, for the times shown
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TasLE 2. KE and APE at z,, corresponding to the largest vertical
level above z = R at which the Reynolds stress is a maximum. For
J2 and S2 at ¢ = 50, KE and APE are evaluated at z = R (where APE
is well defined) although the maximum Reynolds stress occurs at z
= 4.7 and 7 = 0.0, respectively. Otherwise, z,, is an approximate
measure of the position of the center of the wave packet moving
upward from the top flank of the jet or shear flow under consideration.
The last column in the table is a measure of the vertical flux of
horizontal pseudomomentum across the level z, = 10, which is time
integrated from the start of the simulation of time r. The value is
given as the ratio to the total momentum initially available in the
basic state for upward transport (see text).

7: Momentum

Simulation APE transfer ratio
and time Zy KE (z,) () across zo = 10
JI: =100 9.5 0.00088 0.00092 0.011
=200 14.7 0.00013 0.00014 0.018
Sl: =100 215 0.00009 0.00004 0.001
=200 50.3 0.00034 0.00041 0.002
12: 1=50 5.0 0.0044 0.0045 0.007
t= 100 16.4 0.0011 0.0011 0.085
8§ =350 5.0 0.0621 0.0579 0.045
=100 14.7 0.0534 0.0538 0.340

in cases J2 and S2, waves carry pseudomomentum
across z; in a single smooth pulse. The integral of the
pseudomomentum flux in time is the total transfer of
pseudomomentum across zo; this value is compared
with the total available momentum of the initial mean
state between z = 0 and z = z, to give the efficiency n
defined by Eq. (25).

The efficiency is given in the last column of Table
2. Comparing the two jet cases, the momentum trans-
port appears to be moderately more efficient in case J2.
On the other hand, though in case S1 wave radiation is
weak, case S2 is extraordinarily efficient in extracting
energy from the mean flow, transporting over one-third
of initial horizontal momentum of the shear layer away
from the mixing region. The transport of momentum
by primary IGW is generally more efficient than trans-
port by secondary IGW. In jet flow, however, the total
momentum transport is limited by the nonzero flux of
pseudomomentum away from the mixing region, a re-
striction which is not imposed by the spatial vertical
symmetry of shear flow examined here. We demon-
strate this symmetry explicitly in our study of the Reyn-
olds stress profiles below.

For case J1 we show in Fig. 9 the vertical profiles of
(a) mean horizontal velocity, (b) Reynolds stress, (¢)
KE, and (d) APE at time t = 100, and the vertical
profiles of the same quantities (panels e—h, respec-
tively) at time ¢ = 200. The profile of APE is not shown
for |z| < R, within which region the approximation
APE = }(J¥N?)(p')* may not be valid. At both times
shown, the jet is most intense for |z| < R and is only
weakly accelerated by the divergence of wave pseu-
domomentum flux in the far field. At r = 100, the ver-
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FiG. 8. The mean vertical flux of horizontal pseudomomentum across z = 10 is shown for cases
(a) J1, (b) S1, (c) J2. and (d) S2 over the times of each simulation. The upward propagation of
waves emanating from a jet flow tends to accelerate the background flow and carry positive
forward momentum, whereas the waves emanating upward from a shear flow tend to decelerate
the background flow and carry negative forward momentum. The flux of momentum is greatest

in cases J2 and S2.

tical profiles of wave KE and wave APE demonstrate
that the energy of the wave is in equipartition. At ¢
= 200 the wave packets on either flank of the jet are
separate from the jet core. That the energy is radiated
away from the jet at both times is indicated by the sign
of the Reynolds stress, which shows the upward transfer
of forward momentum on the top flank of the jet and
the downward transfer of forward momentum on the
bottom flank. It is a consequence of the symmetry of the
jet that the total momentum carried away from the mix-
ing region by waves is positive. The vertical extent of
the IGW wave packets, which may be adequately mea-
sured by the range over which the stress is of one sign
on either flank of the jet, is larger at + = 200 than at ¢
= 100, and the peak value of energy is smaller. These
observations are attributed in part to wave dispersion.
In S1, as remarked earlier, waves that are excited by
the most unstable mode and propagate vertically into
the region of enhanced N? are expected to be evanes-
cent. Figure 10, the panels of which correspond to those
of Fig. 9, shows the results of the simulation analyses.

Like case J1, the vertical extent of the mixing region
does not vary over the times shown, and the momentum
flux divergence of propagating waves in the far field is
small so that the mean flow is not significantly decel-
erated. Furthermore, at late times the energy associated
with the waves is manifested primarily in the form of
APE. At t = 200, the energy of waves on either flank
of the shear layer is significantly greater and must result
from a different generation mechanism for the radiation
of waves. Though a fraction of this energy is carried
by the wavenumber 2 mode, it is apparent in Fig. 5d
that the dominant waves radiating from the shear layer
are those of horizontal wavenumber 1. This is quanti-
fied by calculating the partition of the wave energy into
modes of wavenumbers 1 and 2 at times t = 100 and
200, the vertical profiles of which are shown in Fig.
11. The vertical range |z| < R (=3) is excluded from
these plates. The total energy of the wavenumber 1
mode is represented by the solid curve, and the energy
of the wavenumber 2 mode is represented by the
dashed curve. The energy in both modes is weak at time
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FIG. 9. From the jet simulation for J = (.1 and R = 3 are shown vertical profiles at time r = 100 of (a) mean
horizontal velocity, (b) Reynolds stress, (c) horizontally averaged wave kinetic energy, and (d) available potential
energy. These four profiles are shown at time ¢ = 200 in panels (e), (f), (g). and (h), respectively. The full vertical
extent of the channel is shown in all eight panels and the horizontal scales are shown on each graph. APE is not shown
for |z| =< R since this quantity may not be quadratic in p’ over this range.

t = 100, though the wavenumber 2 mode is slightly
more energetic on the flanks of the shear layer. At time
t = 200, however, the energy in the wavenumber |
mode is an order of magnitude larger than that in the
wavenumber 2 mode on the flanks. Apparently, the en-
ergy transferred into the mode of wavenumber | is not
due to a vortex pairing mechanism since the large-scale
eddies shown in Fig. 5b have not merged to form a
single larger eddy at this time. Rather, as the distur-
bance energy carried by the most unstable mode prop-
agates upward, energy is transferred into the wavenum-
ber 1 mode through subharmonic excitation by eddies.
In Fig. 10 the vertical symmetry of the Reynolds stress,
KE, and APE profiles is broken, which is a conse-
quence of the sensitivity of the subharmonic excitation
process to background noise.

In Fig. 12 the radiation of IGW is investigated at
times ¢t = 50 and 100 for the case J2. The panels cor-
respond to those in Fig. 9. Like J1, the extent of the
mixing region is confined within the waveguide |z|
< R. Unlike J1, however, the wave KE is comparable
to the APE, a feature characteristic of plane IGW. The
significant broadening of the vertical energy and Reyn-
olds stress distributions from ¢ = 50 to # = 100 indicates
the dispersive nature of the wave field on either flank
of the jet. At t = 100, the wave KE is greatest in the
wave packets on either flank of the jet. Although, in
theory, the vertical group velocity for neutral plane
waves is smaller in large N fluid, in practice the ver-
tical transport of energy is more efficient since waves
penetrate more effectively into the strongly stratified
medium.
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FiG. 10. From the shear simulation for J = 0.1 and R = 3 are shown vertical profiles at time r = 100 of (a) mean
horizontal velocity, (b) Reynolds stress, (c) horizontally averaged wave Kinetic energy, and (d) available potential
energy. These four profiles are shown at time r = 200 in panels (e), (f), (g), and (h). The full vertical extent of the
channel is shown in all eight panels, and the horizontal scales are shown on each graph. APE is not shown for |z| = R

since this quantity may not be quadratic in p" over this range.

The results of the simulation for S2 are shown in
Fig. 13 at times ¢ = 50 and 100. The panels correspond
to those of Fig. 9. In this case the energy of the wave
packet, equally distributed in the form of KE and APE,
is more than an order of magnitude larger and more
broadly distributed than the energy of the IGW in J2.
Whereas the peak energy of the waves that radiate in
J2 is significantly smaller at t+ = 100, there is only a
small decrease in energy for waves that radiate in S2.
The mean horizontal velocity profiles show that the
waves propagating away from the shear layer act to
decelerate (accelerate) the flow on the top (bottom)
flank of the region of maximum shear. However, the
maximum strength of the shear does not decrease sig-
nificantly during the simulation. By symmetry, the ver-
tical flux of horizontal pseudomomentum associated

with the wave field is zero throughout the IGW emis-
sion process. Therefore, unlike the jet for which the total
vertical flux of horizontal pseudomomentum of radiated
waves is nonzero, conservation of momentum does not
limit wave radiation from a shear flow. Furthermore, as
the shear layer does not stabilize during the emission
process, the flow on either flank is a large reservoir from
which waves may continuously extract energy.

4. Conclusions

On the basis on linear theory, limits have been de-
rived for the growth rate that must be satisfied for dis-
turbances incident on a stratified region (%,) charac-
terized by constant N? above some level z, in order that
the disturbance propagate in Z%,. A disturbance is said
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FiG. 11. The energy associated with modes of wavenumber 1 (solid curve) and wavenumber 2
(dashed curve) at time (a) t = 100 and (b) 200 for the case S1. These analyses demonstrate that
energy is carried more effectively by IGW that radiate with twice the horizontal wavenumber of

the most unstable mode of linear theory.

to propagate if a penetration condition, |Z| > 1, is
satisfied, in which & is the ratio of the penetration
depth to the vertical wavelength of the IGW excited by
the incident disturbance. This condition restricts the
growth rates of IGW that may propagate into %, as a
function of the Doppler-shifted frequency at which the
waves are forced according to Eqs. (12) and (13).
In particular, only waves with growth rate less than
N/8" may successfully propagate into the far field.
The same condition requires that waves penetrate into
the far field only if the absolute value of the Doppler
shifted frequency is less than N. This is precisely the
evanescent condition that can be derived separately
from the form of the dispersion relationship for plane
IGW. Furthermore, in the case of growing disturbances
in a uniform background flow, the penetration condi-
tion is a useful generalization of the phase speed con-
dition given by McIntyre and Weissman ( 1978 ), which
requires that the magnitude of the Doppler-shifted fre-
quency be less than the Brunt—Viisild frequency but
does not explicitly pose restrictions to wave radiation
in terms of the disturbance growth rate.

The predictions of this new penetration condition
have been tested in simulations restricted to two spatial
dimensions for both stratified jet and shear flow with
N? = J tanh®*(z/R). In each case waves of significant
amplitude are excited by eddies that develop in the mix-
ing region, |z| < R. Phase lines of waves that radiate
from a jet (shear) flow tilt in a downstream (upstream)
direction, a characteristic consistent with IGW of pos-
itive (negative) horizontal phase speed with respect to
the background horizontal wind speed. In case J1, for
which |Z| < 1, waves are generated by a nonlinear
mechanism. In J2 as well as J1, for which |Z| > 1,
the energy density is equally in the form of KE and
APE, consistent with the energy distribution character-
istic of plane IGW. The total energy density of the
waves in both cases is of the same order of magnitude.
In case J2, though waves may be expected to extract
momentum from the mean flow more efficiently, we
demonstrate that the total upward flux in time of hori-
zontal pseudomomentum is only moderately larger
than in case J| because the total pseudomomentum flux
outside the mixing region is finite in both cases. The
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FiG. 12. From the jet simulation for J = 1.0 and R = 5 are shown vertical profiles at time 1 = 50 of (a) mean

horizontal velocity, (b) Reynolds stress, (c¢) horizontally averaged wave kinetic energy, and (d) available potential
energy. These four profiles are shown at time ¢ = 100 in plates (e), (f), (g), and (h). The full vertical extent of the
channel is shown in all eight plates and the horizontal scales are shown on each graph. APE is not shown for |z| < R

since this quantity may not be quadratic in p" over this range.

wave emission process, therefore, exerts an effective
drag on the mean flow (radiation reaction), which, in
turn, stabilizes and terminates further radiation.

In simulations of case S1, for which |Z| < 1, the
Doppler-shifted frequency of the most unstable mode
is greater than the frequency of the natural buoyancy
oscillations. Disturbances with the same horizontal
wavenumber as this mode are suppressed, though at
later times in the simulation waves develop on the
flanks of the shear layer with twice the horizontal
wavelength of the most unstable mode of linear the-
ory. This subharmonic excitation occurs though large-
scale vortices in the mixing region have not merged
and represents a novel nonlinear generation mecha-
nism of IGW. The wave APE in the far field is greater
than the wave KE. In case S2, however, for which

|4 | = 1, the energy of radiated waves is distributed
approximately equally between the KE and APE
forms. Of the four cases considered here, this last sim-
ulation, in particular, demonstrates the efficiency of
the mechanism through which momentum is trans-
ported vertically away from the unstable region when
the region has a Brunt—Viisild frequency that is sig-
nificantly lower from that of the surrounding fluid.

Our contention is that the internal wave emission
mechanisms discovered in the analyses reported here
are liable to be extremely important to understanding
the origins of a significant fraction of the internal wave
activity observed in the middle atmosphere, for which
a source in parallel shear instability has often been pos-
tulated in the past but for which no efficient mechanism
has been previously identified.
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FiG. 13. From the shear simulation for / = 1.0 and R = 5 are shown vertical profiles at time ¢ = 50 of (a) mean
horizontal velocity, (b) Reynolds stress, (c¢) horizontally averaged wave kinetic energy, and (d) available potential
energy. These four profiles are shown at time 1 = 100 in panels (e), (f), (g), and (h). The full vertical extent of the
channel is shown in all eight panels and the horizontal scales are shown on each graph. APE is not shown for |z| < R
since this quantity may not be quadratic in p’ over this range.
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